

Additive Error Guarantees for Weighted Low Rank Approximation

Aditya Bhaskara Aravinda Kanchana Ruwanpathirana Maheshakya Wijewardena

School of Computing, University of Utah

Low Rank Approximation

- Classic formulation: Given matrix A, find a rank-k matrix L that minimizes $||A L||_F^2 = \sum_{i,j} (A_{ij} L_{ij})^2$. Can be solved efficiently (e.g., SVD).
- Natural variants are NP hard: e.g., different *importance* for different entries.
- Weighted LRA: Given matrix A and weight matrix W of the same size, find a rank-k matrix L that minimizes $Cost(L) = \sum_{i,j} W_{ij} \cdot (A_{ij} L_{ij})^2$.
- Can also consider ℓ_p error, $\sum_{i,j} W_{ij} (A_{ij} L_{ij})^p$.

Motivation

varying importances

3.8	4.3	9	3	5
2	8.1	7	0.3	9.1
1.1	8	7.1	4	1
7	6.2	6	2.2	8

varying noises

3.8	4.3	9+8	3+ ε	5+ε			
2 +ε	8.1	7 +ε	0.3	9.1			
1.1+8	8	7.1	4+ E	1+ε			
7 +ε	6.2	3+6	2.2	8			

Prior Work

- Alternating minimization heuristic [1] no guarantees
- Multiplicative error bounds assumes low rank W and time complexity exponential in rank of W. [2, 3]
- \bullet Additive error bounds simple algorithm, but requires extra 'low communication complexity' assumption on W.

Our goal: design and analyze efficient, practical algorithms for weighted and ℓ_p error low rank approximation

Results

Informal. There exist greedy iterative algorithms that achieve *additive error* guarantees, under mild assumption on target matrix L (informally, the opt solution). Formally, suppose the target L satisfies (for some parameter Λ)

$$\frac{\|L\|_F^2}{\|A\|_F^2} \le \Lambda. \quad \text{(target not too different from } A \text{ in Frobenius norm)}$$

Theorem. (Weighted LRA) For any $\epsilon > 0$, there is a greedy algorithm that outputs L' of rank $O(k\Lambda/\epsilon^2)$, satisfying $Cost(L') \leq Cost(L) + \epsilon ||A||_F^2$.

Extensions to ℓ_p norm error.

- Analogous result holds under an ℓ_p error objective, with a different greedy step.
- Implies an *unconditional* algorithm for unweighted ℓ_p LRA, for $p \geq 2$.

Algorithm outline

Idea: Build approximation of columns a_j using a set of 'basis vectors' Z Initialize $Z = \emptyset$, $x_j^{(0)} = 0$ (approximation for column a_j) for all j;

for t = 1, 2, ..., k' do

(I) Solve an optimization problem to find \mathbf{z} that captures sufficient mass from the "residual" $(a_j - x_i^{(t)})$;

(II) Add **z** to Z and update approximations of columns $x_j^{(t)}$;

\mathbf{end}

Return Z and $L' = [x_1^{(k')}, \dots, x_n^{(k')}];$

Analysis

Let $X^{(t)}$ be the matrix approximating A at step t (columns $x_j^{(t)}$), and L be the target low rank approximation.

Basic idea. As long as $Cost(X^{(t)}) < Cost(L)$, there exists a vector **z** that reduces the cost "significantly". (Reminiscent of Set Cover.)

• "Per column" analysis. For column j, define $f_j: \mathbb{R}^n \mapsto \mathbb{R}$ as

$$f_j(v) = \sum_{r \in [d]} w_{j,r} (a_{j,r} - v_r)^2.$$

- Key Lemma: Suppose y is the current approximation for column a_j and suppose the "ideal" approximation is $z = \sum_i \alpha_i u_i$. If $f_j(z) < f_j(y)$, there exists index i such that adding u_i to y reduces f_j by $\Omega_{\alpha} ((f_j(y) f_j(z))^2)$.
- (One column \to matrix) If $Cost(L) := \Gamma$ and $Cost(X^{(t)})$ is Δ_t , there exists \mathbf{z} in the algorithm such that

$$\Delta_{t+1} \leq \Delta_t - \frac{(\Delta_t - \Gamma)^2}{4\Lambda}$$
. (Implies desired convergence rate)

• Optimization problem: required **z** can be obtained by solving:

$$\max \sum_{i} \langle \nabla f_j(x_j^{(t)}), u \rangle^2$$
 subject to $||u|| \le 1$.

• Reduces to finding top singular vector of appropriate matrix!

Extension to ℓ_p error

S When p > 2, same high-level framework applies, but:

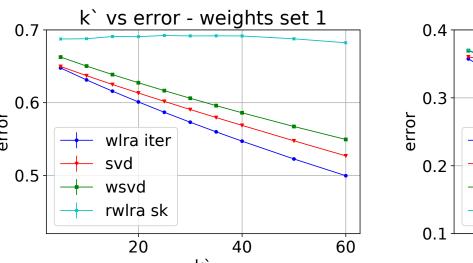
- Requires more involved analysis to prove "progress" (uses recent works on ℓ_p regression to show smoothness of f_i).
- Optimization problem is now instance of matrix $2 \mapsto p$ norm computation can be solved via convex relaxations when $p \geq 2$.

Experiments

The following schemes were used to derive the weight matrices for the plots.

- W_1 : Each element is sampled from the interval [0,1] uniformly at random.
- W_3 : Generate a random binary matrix with each entry 1 with probability 0.1 and then set the first 100 columns of first 150 rows to 1.

Error Against the Rank



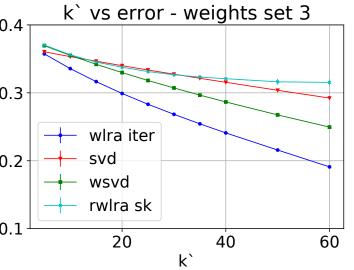
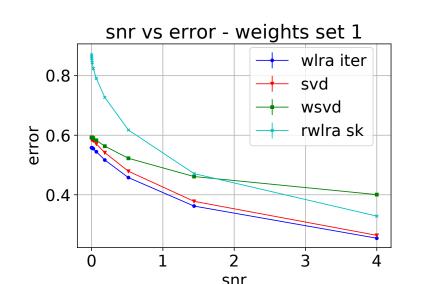


Figure: Comparison of cost of the approximation against the rank of the matrix.

Error Against the Signal-to-noise Ratio



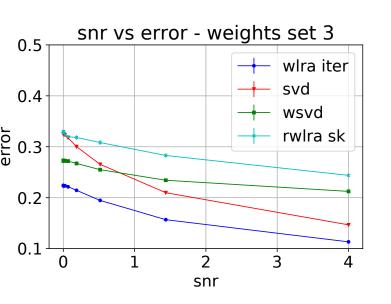


Figure: Comparison of cost of the approximation against the signal to noise ratio of the matrix.

Conclusions

- We study greedy pursuit algorithms for weighted low rank approximation, and show that they yield good bi-criteria approximations with a small *additive error*. Holds for ℓ_p error, for $p \geq 2$, under a realistic assumption on target low rank matrix.
- Proposed algorithm is easy to implement and works well in practice.

References

- [1] Nathan Srebro and Tommi Jaakkola. "Weighted Low-Rank Approximations". In: *Proceedings of the Twentieth International Conference on International Conference on Machine Learning*. ICML'03. Washington, DC, USA: AAAI Press, 2003, pp. 720–727. ISBN: 1577351894.
- [2] Frank Ban, David Woodruff, and Richard Zhang. "Regularized Weighted Low Rank Approximation". In: Advances in Neural Information Processing Systems 32 (2019), pp. 4059–4069.
- [3] Ilya Razenshteyn, Zhao Song, and David P. Woodruff. "Weighted Low Rank Approximations with Provable Guarantees". In: *Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing*. STOC '16. Cambridge, MA, USA: Association for Computing Machinery, 2016, pp. 250–263. ISBN: 9781450341325.