Principal Component Regression with Semirandom Observations

UNIVERSITY
of UTAH
Aditya Bhaskara Aravinda Kanchana Ruwanpathirana Maheshakya Wijewardena

School of Computing, University of Utah

Problem Statement

Principal Component Regression (PCR)

- Regression: given covariate matrix M and observations y, find β s.t. $M \beta=y$
- Multi-collinearity problem: linearly dependent $M \Longrightarrow$ ill-conditioned system
- Idea behind PCR: project M to top k principal components (obtaining M_{k}) and solve system with M_{k}

Intuition: PCR handles multi-collinearity by reducing the number of predictors to a smaller number of uncorrelated ones
Semirandom Observation Model

- Setting: partially observed covariates. Each covariate is observed with probability $\geq p$ for some known p
- Can also be viewed as a two-step model: (a) every covariate is revealed with prob (exactly) p, obtaining observations Ω (b) adversary reveals additional entries, obtaining $\widetilde{\Omega}$.
- Note: Similar in spirit to Massart noise in classification problems.

Why is the semirandom model more challenging?

- Semirandom observation model is natural model in applications like recommender systems, where (e.g.) some certain users may review more products than others.
- In spite of seeming easier, semirandom model causes spectral methods to fail.
- Problem: without step (b), can obtain unbiased estimator of M by re-weighting observed entries. Adversary revealing new entries makes it impossible to obtain unbiased estimator of M

Our Contributions

- Introduce a new semidefinite programming relaxation for noisy matrix completion every observed entry has $\mathcal{N}\left(0, \sigma^{2}\right)$ added.

$$
\begin{align*}
\operatorname{SDP}(\delta): & \min \|Z\|_{*} \quad \text { subject to } \tag{1}\\
& \left|Z_{i j}-M_{i j}\right| \leq \delta \quad \forall(i, j) \in \widetilde{\Omega},
\end{align*}
$$

- "Per entry" constraint with $\delta=\widetilde{O}(\sigma)$. Main technical result: providing theoretical guarantees for the recovery error for matrix completion.
- Implies new theoretical guarantees for Principal Component Regression using the low rank completion.

Assumptions

- Sufficiently large sampling complexity,i.e. $n p \geq C \kappa^{4} \mu^{2} r^{2} \log ^{3} n$
- Sufficiently low noise,i.e. $\sigma \leq c \frac{\sigma_{\text {min }} \log n}{n^{3 / 2}}$

Our results

Algorithm

(I) Solve the SDP 1 (using σ) and get the optimal solution Z
(II) Define $Z^{(r)} \leftarrow$ rank-r approximation of Z (obtained via SVD) ;
(III) Carry out ordinary least squares using $Z^{(r)}$ and the given y, return the obtained $\widehat{\beta}$;

Theoretical Guarantees

Matrix Completion
Under appropriate incoherence assumptions on M^{*} (the covariate matrix without noise), there exists a polynomial time algorithm that finds an estimate Z s.t.

$$
\|M-Z\|_{F} \leq O_{\kappa, p, \mu}\left(n r^{3} \sqrt{\log n} \cdot \sigma\right)
$$

Principal Component Regression:
Under appropriate incoherence assumptions on M^{*}, there exists an efficient algorithm that, given a noisy and partially observed covariate matrix, outputs β whose mean-squared-error (defined as $\frac{1}{n}\left\|M^{*} \beta-M^{*} \beta^{*}\right\|_{2}^{2}$ for the optimal coefficients β^{*}) is at most

$$
O(\text { "optimal MSE" })+O_{\kappa, \mu, p}\left(\left\|\beta^{*}\right\|_{2}^{2} r^{6} n \log n \cdot \sigma^{2}\right)
$$

Idea of the proof

- Our analysis goes through drawing a connection between the solution of the SDP 1 and the factorization derived for the non-convex optimization problem discussed in [1].
- We can show that the claims required for our analysis, made in [1] holds true even with the relaxed regularization parameter given necessary conditions on noise and the sample complexity
- We can use the properties of the factorization derived following the aforementioned conditions and the proof ideas used in [2] to derive stronger bounds that are roughly $O(\sqrt{n} p)$ better than the bounds derived in [2].

Experiments

Matrix Recovery Error

Figure: Comparison of scaled Frobenius norm error of recovered matrices when observations are random and semirandom.

Regression Erro

Figure: Comparison of regression error when covariates are observed in random and semirandon manner.

Recap

We were able to:

- Provide the first recovery guarantee for matrix completion under semi-random observations
- Obtain a more robust algorithm for PCR via solving the SDP 1.
- Avoid additive error terms in the regression error (in contrast to [3]) and provide a bound that converges to the optimal error in the absence of noise

References

[1] Yuxin Chen et al. Noisy Matrix Completion: Understanding Statistical Guarantes for Convex Relaxation via Nonconvex Optimization. 2019. arXiv: 1902.07698 [stat.ML].
[2] Emmanuel J. Candes and Yaniv Plan. Matrix Completion With Noise. 2009. arXiv: 0903.3131 [cs. IT]. [3] Anish Agarwal et al. On Robustness of Principal Component Regression. 2019, arXiv: 1902. 10920

