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Problem Statement

Principal Component Regression (PCR)
•Regression: given covariate matrix M and observations y, find β s.t. Mβ = y

•Multi-collinearity problem: linearly dependent M =⇒ ill-conditioned system
• Idea behind PCR: project M to top k principal components (obtaining Mk) and
solve system with Mk

Intuition: PCR handles multi-collinearity by reducing the number of predictors to a
smaller number of uncorrelated ones.
Semirandom Observation Model
• Setting: partially observed covariates. Each covariate is observed with probability
≥ p for some known p.
• Can also be viewed as a two-step model: (a) every covariate is revealed with prob
(exactly) p, obtaining observations Ω (b) adversary reveals additional entries,
obtaining Ω̃.
•Note: Similar in spirit to Massart noise in classification problems.

Why is the semirandom model more challenging?

• Semirandom observation model is natural model in applications like
recommender systems, where (e.g.) some certain users may review more
products than others.
• In spite of seeming easier, semirandom model causes spectral methods to fail.
•Problem: without step (b), can obtain unbiased estimator of M by
re-weighting observed entries. Adversary revealing new entries makes it
impossible to obtain unbiased estimator of M .

Our Contributions

• Introduce a new semidefinite programming relaxation for noisy matrix completion –
every observed entry has N (0, σ2) added.

Sdp(δ) : min ‖Z‖∗ subject to
|Zij −Mij| ≤ δ ∀ (i, j) ∈ Ω̃,

(1)

• “Per entry” constraint with δ = Õ(σ). Main technical result: providing theoretical
guarantees for the recovery error for matrix completion.
• Implies new theoretical guarantees for Principal Component Regression using the
low rank completion.

Assumptions

• Sufficiently large sampling complexity,i.e. np ≥ Cκ4µ2r2 log3 n

• Sufficiently low noise,i.e. σ ≤ c σmin log n
n3/2

Our results

Algorithm

(I) Solve the SDP 1 (using σ) and get the optimal solution Z ;
(II) Define Z(r) ← rank-r approximation of Z (obtained via SVD) ;
(III) Carry out ordinary least squares using Z(r) and the given y, return the
obtained β̂ ;

Theoretical Guarantees
Matrix Completion:
Under appropriate incoherence assumptions onM∗ (the covariate matrix without noise),
there exists a polynomial time algorithm that finds an estimate Z s.t.

‖M − Z‖F ≤ Oκ,p,µ

(
nr3
√

log n · σ
)
.

Principal Component Regression:
Under appropriate incoherence assumptions on M∗, there exists an efficient algorithm
that, given a noisy and partially observed covariate matrix, outputs β̂ whose mean-
squared-error (defined as 1

n‖M
∗β̂ −M∗β∗‖2

2 for the optimal coefficients β∗) is at most
O(“optimal MSE”) + Oκ,µ,p

(
‖β∗‖2

2r
6n log n · σ2) .

Idea of the proof

• Our analysis goes through drawing a connection between the solution of the SDP 1
and the factorization derived for the non-convex optimization problem discussed
in [1].
•We can show that the claims required for our analysis, made in [1] holds true even
with the relaxed regularization parameter given necessary conditions on noise and
the sample complexity.
•We can use the properties of the factorization derived following the aforementioned
conditions and the proof ideas used in [2] to derive stronger bounds that are roughly
O(
√
np) better than the bounds derived in [2].

Experiments
Matrix Recovery Error
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Figure: Comparison of scaled Frobenius norm error of recovered matrices when observations are
random and semirandom.

Regression Error
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Figure: Comparison of regression error when covariates are observed in random and semirandom
manner.

Recap
We were able to:
• Provide the first recovery guarantee for matrix completion under semi-random
observations.
• Obtain a more robust algorithm for PCR via solving the SDP 1.
• Avoid additive error terms in the regression error (in contrast to [3]) and provide a
bound that converges to the optimal error in the absence of noise.
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