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Problem Statement

Principal Component Regression (PCR)

e Regression: given covariate matrix M and observations vy, find 5 st. MS =y
e Multi-collinearity problem: linearly dependent M =— ill-conditioned system

e [dea behind PCR: project M to top k principal components (obtaining M},) and
solve system with M

Intuition:
smaller number of uncorrelated ones.

PCR handles multi-collinearity by reducing the number of predictors to a

Semirandom Observation Model

e Setting: partially observed covariates. Each covariate is observed with probability
> p for some known p.

e Can also be viewed as a two-step model: (a) every covariate is revealed with prob
(exactly) p, obtaining observations €2 (b) adversary reveals additional entries,

obtaining €.
e Note: Similar in spirit to Massart noise in classification problems.

Why is the semirandom model more challenging?

e Semirandom observation model is natural model in applications like
recommender systems, where (e.g.) some certain users may review more
products than others.

e In spite of seeming easier, semirandom model causes spectral methods to fail.

e Problem: without step (b), can obtain unbiased estimator of M by
re-weighting observed entries. Adversary revealing new entries makes it
impossible to obtain unbiased estimator of M.

Our Contributions

e Introduce a new semidefinite programming relaxation for noisy matrix completion —
every observed entry has A(0, o%) added.

SDP(J) : min || Z]||, subject to

- 1
1 Zij — M| <6 ¥V (1,7) € €, ()

e “Per entry” constraint with o0 = 5(0). Main technical result: providing theoretical
cuarantees for the recovery error for matrix completion.

e Implies new theoretical guarantees for Principal Component Regression using the
low rank completion.
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Assumptions

e Sufficiently large sampling complexity,i.e. np > Cr*u®r?log’ n

Omin 10g T
32

e Sufficiently low noise.i.e. o0 < ¢

Our results

Algorithm

(I) Solve the SDP 1 (using o) and get the optimal solution Z ;
(II) Define Z'") < rank-r approximation of Z (obtained via SVD) :

(IIT) Carry out ordinary least squares using Z () and the given y, return the
obtained [ ;

Theoretical Guarantees

Matrix Completion:
Under appropriate incoherence assumptions on M* (the covariate matrix without noise),
there exists a polynomial time algorithm that finds an estimate Z s.t.

| M —Z||r < Okpy (nr?’\/logn : O') .

Principal Component Regression:

Under appropriate incoherence assumptions on M, there exists an efficient algorithm
that, given a noisy and partially observed covariate matrix, outputs 5 whose mean-
squared-error (defined as +||M*3 — M*j3*||3 for the optimal coefficients 5*) is at most

O(“optimal MSE”) + O, ., (||15*[5r°nlogn - 07) .

Idea of the proof

e Our analysis goes through drawing a connection between the solution of the SDP 1
and the factorization derived for the non-convex optimization problem discussed
in [1].

e We can show that the claims required for our analysis, made in [1] holds true even
with the relaxed regularization parameter given necessary conditions on noise and
the sample complexity:.

e We can use the properties of the factorization derived following the aforementioned
conditions and the proof ideas used in [2]| to derive stronger bounds that are roughly

O(+/np) better than the bounds derived in [2].
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Experiments

Matrix Recovery Error
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Figure: Comparison of scaled Frobenius norm error of recovered matrices when observations are
random and semirandom.

Regression Error
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Figure: Comparison of regression error when covariates are observed in random and semirandom
manner.
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We were able to:

e Provide the first recovery guarantee for matrix completion under semi-random

observations.

e Obtain a more robust algorithm for PCR. via solving the SDP 1.

e Avoid additive error terms in the regression error (in contrast to [3]) and provide a

bound that converges to the optimal error in the absence of noise.
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