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Predicting Fingertip Forces by Imaging Coloration
Changes in the Fingernail and Surrounding Skin

Yu Sun*, Member, IEEE, John M. Hollerbach, Fellow, IEEE, and Stephen A. Mascaro, Member, IEEE

Abstract—This paper presents an external camera method for
measuring fingertip forces by imaging the fingernail and surround-
ing skin. A 3-D model of the fingernail surface and skin is obtained
with a stereo camera and laser striping system. Subsequent images
from a single camera are registered to the 3-D model by adding
fiducial markings to the fingernail. Calibration results with a force
sensor show that the measurement range depends on the region
of the fingernail and skin. A generalized least squares model is
developed to predict fingertip force given coloration changes, and
results for normal and shear force measurement are presented.

Index Terms—Force sensing, haptics, human grasping, imaging,
registration.

I. INTRODUCTION

I T HAS BEEN shown that coloration changes in the fingernail
due to fingertip pressure can serve to transduce fingertip

force [14], [15]. Pressure at the fingerpad affects blood flow
at the fingernail, which causes a nonuniform pattern of color
change in the fingernail area. By measuring the intensity changes
at several points of the fingernail, the fingertip force can be
deduced after a calibration procedure.

Previously, Mascaro and Asada [14], [15] have proposed a
photoplethysmograph (PPD) sensor that has an array of inferred
LEDs and photodetectors. It is embedded in a custom-fabricated
artificial nail made of epoxy. The artificial nail attaches to the
back of the fingernail with an adhesive, and wires are routed
out for interface with a computer. The PPD sensor response
was linear up to 1 N normal force, and beyond 1 N, there was a
nonlinear leveling off [14]. The sensor predicted normal force to
within 1 N accuracy in the range of 2 N and shear force to within
0.5 N accuracy in the range of 3 N. The relation between sensor
response and force differs among subjects and different finger-
nails for the same subject. Therefore, a calibration procedure is
required for every fingernail.

In the literature on human grasping [3], [6], [27] instrumented
objects are typically created that incorporate miniature six-axis
force/torque sensors at predefined grasp points (e.g., [24]–[26]
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and [28]). Special-purpose objects have to be fabricated to incor-
porate force sensors. The points of grasping have to be defined
beforehand, which means that a subject is not free to grasp an
object in different ways or change the grasp points. So far, the
grasp geometries have been limited to cylindrical grasps. If the
goal is to characterize grasp forces for a wide variety of every-
day objects, where distances and slopes of grasp points vary
as well as local surface conditions of curvature, material type,
and friction, then a great many special-purpose instrumented
objects would have to be made. In addition, miniature six-axis
force/torque sensors are expensive.

By contrast, the PPD sensor has the great advantage that
objects do not have to be instrumented. Everyday objects can
be used, or if objects with special properties such as particular
shapes need to be fabricated, it is relatively easy to do so. There
is no constraint on how a subject locates or changes grasp points.

Despite the advantages, the PPD sensor has some disadvan-
tages. The sensor needs to be fabricated to fit each fingernail.
Other limitations are the sparse sampling of the fingernail and
the lack of imaging of the surrounding skin, whose coloration
change has been found to transduce fingertip force well also.
Besides normal and shear forces, other factors that influence
fingernail coloration include shear torque, the contact orienta-
tion, the curvature of the contact, and the distal interphalangeal
(DIP) joint angle. They all combine to affect the coloration pat-
tern, but a fixed sparse sampling of the fingernail image is not
sufficient to separate the influences of these factors.

This paper presents an alternative approach: an external cam-
era system that provides a fuller imaging of the back of the
fingertip. The use of an external camera system presents chal-
lenges of keeping the fingernail in view, the lighting environ-
ment, and registration. None of these challenges is an issue with
the PPD sensor, since the sensor is fixed to the back of the
nail and the lighting environment is controlled. Nevertheless,
the high resolution of the fingernail image and surrounding skin
is an offsetting advantage, provided that these challenges can
be met. The external camera approach uses the information of
the skin as well as the fingernail, since we have found that the
surrounding skin transduces much higher level of force than the
fingernail does. Furthermore, the external camera approach does
not encumber a subject, and there is no need for sensor fabri-
cation and individual fitting. The existence of low-cost cameras
and image processing methods readily performed on PCs makes
the instrumentation costs of such an approach relatively low.

In this paper, we consider a fixed fingertip pressing against
a flat surface mounted on a six-axis force sensor and imaged
by a camera system in a controlled lighting environment. We
do not yet consider issues of finger tracking or of handling
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Fig. 1. Experiment setup. (a) Flea 2-D high-resolution camera images a con-
tact plane mounted on a six-axis JR3 force sensor and manual Cartesian stage.
A dome light and a molded plastic arm supporter with Velcro strips to provide
arm fixation. (b) Visual display feedback.

variable lighting environments in order to explore the fundamen-
tal effect of fingertip force versus fingernail coloration, without
yet considering such complicating factors. The fingertip orien-
tation is restricted to be flat (nail parallel to the surface). This
paper presents the features of the coloration response to fingertip
force of the fingernail and surrounding skin. A generalized least
squares estimation method is developed to predict fingerpad
force from coloration changes.

II. CALIBRATION STAGE

Fig. 1 shows a calibration stage comprising a six-axis JR3
force sensor (from JR3, Inc.) mounted on a small manual Carte-
sian stage, a Flea charge-coupled device (CCD) video cam-
era (Point Grey Research, Inc.), and a small lighting dome. A
rubber-surface flat plane is mounted on the JR3 force sensor
to provide a contact surface; the Cartesian table is adjusted to
locate the contact plane beneath a subject’s fingertip. The sub-
ject’s arm is fixated by a molded plastic arm support and Velcro
strips; the plastic arm has 2 DOFs for position adjustment. A
subject sits in a chair adjustable with 4 DOF for positioning
relative to the experimental stage.

The small lighting dome provides a controlled lighting envi-
ronment so that the images taken at different times are compa-
rable. A reflective hemisphere was created from molded plastic;
a hole at the top permits visual access by the Flea camera. LEDs
placed along the perimeter reflect off the dome to create uni-
form lighting on the fingernail surface and to avoid specular
reflection.

Images are captured from the Flea camera at 30 fps, syn-
chronously with recorded forces from the JR3 force sensor. The
force is sampled at 500 Hz. The camera runs at 30 fps. They
run as two different processes on a computer. In each cycle right
before a frame is recorded, the camera handling process requires
and stores a current sample of the force from the force-sensor-
handling process. We select a Tamron C-mount high-resolution
mega pixel lens 23FM16SP so that the Sony ICX204AK CCD
chip inside the Flea camera measures an image that is about 8 cm
along the optical axis and is about 4× 3 cm in cross-section. The
green channel from the camera’s red, green, blue (RGB) color
space has been found to produce a larger coloration response

Fig. 2. (a) Fingernail with fiducial marks. (b) The 3-D point cloud from the
stereo camera. (c) Triangular 3-D mesh with color mapped from the 2-D image.

and better linearity with force than the other color channels, and
is used subsequently.

A visual display [Fig. 1(b)] is provided to guide subjects for
calibration. Two of the three dimensions of force read from the
JR3 force sensor are represented by position, while the third
dimension is represented by the radius of a circle. Colors are
used in the actual display. There is a blue circle with a blue cross
in the center to represent the actual force applied, as measured
by the JR3 force sensor beneath the finger. The x-position of the
cross represents lateral shear force fx , the y-position represents
longitudinal shear force fy , and the size of the circle represents
the normal force fz . The x-position of a white-filled red-edge
sphere represents the desired shear force fx and the y-position
represents the desired shear force fy . The circle size of the red
circle, whose center follows the cross, represents the desired
normal force fz .

III. IMAGE REGISTRATION

Fingernail locations will vary depending on the grasp and the
relative locations of the camera. As a particular fingernail is
imaged, it will be necessary to correspond points in the image
to a reference image so that calibration results can be applied.
In experiments, subjects can translate their fingers and rotate
in and out of the contact plane. When the optical axis is not
perpendicular to the fingernail and the viewing distance is short,
it is necessary to include the curvature of the fingernail.

The reference image needs to be a 3-D surface model fitted to
the fingernail. After comparing different surface representations
including polygonal meshes, B-spline surfaces, and quadric sur-
faces, we chose a dense triangle mesh model since it is easiest
to adapt to fingernail geometry. 3-D points that form the ver-
tices of triangular meshes are obtained with a Bumblebee BB-
HICOL-60 (Point Grey Research, Inc.) stereo camera. Since the
fingernail is smooth and relatively featureless, it is difficult for
the stereo camera system to find corresponding points in the two
images. A common computer vision method for such situations
is structured light onto the surface, which is easy for stereo vi-
sion to match [10]. We employ a Steminc SMM96355SQR laser
module to create a 4 × 4 grid pattern. A 3-D data cloud obtained
from the stereo camera is shown in Fig. 2(b).

We do not employ the Bumblebee stereo camera for the col-
oration measurements because its resolution is too low. How-
ever, its output is adequate for determining a 3-D mesh model.

To map the high resolution Flea 2-D images to a 3-D model,
we employ a well-known technique from computer vision [7] of
adding fiducial marks to the fingernail and surrounding skin with
a black marker [Fig. 2(a)]. Without fiducial marks, automatic
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feature detection can only find landmarks on the edge of the
fingernail and in the surrounding skin since the fingernail is
smooth and relatively featureless.

It is necessary that the relative locations of the fiducial mark-
ings in the 3-D model be known; this knowledge is obtained
using the stereo camera. The fiducial marks are then automati-
cally detected in the 2-D image from the Flea camera [29], [33]
and used to compute the extrinsic parameter matrix [R t], where
R and t are the rotation and displacement from the 2-D image
to the coordinates of the 3-D model.

The homogeneous coordinates of a point i in the 2-D image
pi and in the 3-D model Pi are

pi = [ui vi 1]T , Pi = [X Y Z 1]T

where the 2-D camera coordinates are (ui, vi). Let K be the
intrinsic parameter matrix for the camera, and define the 3 × 4
transformation

M = K [R t] = [m1 m2 m3 ]
T .

The transform relation between the two coordinates is pi =
MPi . Hence,

mT
1 Pi − (mT

3 Pi)ui = 0 (1)

mT
2 Pi − (mT

3 Pi)vi = 0. (2)

With six fiducial marks, the parameters in M can be cali-
brated with linear least squares. A registration result is shown
in Fig. 2(c).

In practice, if the axis of the 2-D camera is always located per-
pendicular to the fingernail, the curvature of the fingernail can
be neglected. A much simpler and faster 2-D to 2-D registration
would be sufficient. Natural landmarks on the edges of the fin-
gernail and surrounding skin can be automatically detected for
2-D homography mapping. A detailed 2-D to 2-D registration
is described in [32].

IV. COLORATION RESPONSE

After registration, the color changes in the fingernail and
surrounding skin corresponding to the force on the fingertip
are studied point by point. For all subjects, we have found that
different regions in the fingernail and surrounding skin responds
differently to the force.

For simplicity of mathematical formulation, we only consider
1-D force in this section. The derived conclusions hold for the
3-D force situation.

A. Response Model

After investigating the response curves of all points in the
fingernails and surrounding skin of all subjects, we found that
the shape of the response curves was sigmoidal. Fig. 3(a) shows
the response of a typical point in the fingernail (open circles).
The color barely changes for small forces until 2 N, and then,
starts to change significantly until the force reaches 4.5 N. A
generalized sigmoid function [34] is fit to the data

h(x; a, b, c, x0) = a +
b

1 + ec(x−x0 ) (3)

Fig. 3. Coloration changes at different location. (a) Measured color response
(circles) versus modeled sigmoidal response (solid line) of a typical point in
the fingernail to force applied on the fingertip. (b) Color intensity changes from
bright to dark with an increasing force. (c) Point starts to respond at around 1 N
and saturates after around 3 N. (d) Point starts to respond at around 4 N and
continues to increase.

where a, b, c, and x0 are the regression parameters. The modeled
response is shown as a line in Fig. 3(a). The parameters have
geometric meaning. a is the lower asymptote, b is the response
range, x0 is the force of maximum response rate, and c is the
relative response rate. Other examples at different points in the
fingernail are shown in Fig. 3(b)–(d).

The color changes in the fingernail and surrounding skin
reflect the blood distribution in the fingernail. When there is
pressure on the fingertip, the blood vessels deform. The volume
of the blood vessel was found to respond sigmoidally to force
in [13]. Blood is squeezed out from some vessels due to com-
pression, while pooled in other vessels due to tension [16]. In
compression regions, the response looks like Fig. 3(a) since the
area is whitening with blood loss. In tension regions, the blood
is pooling and so the coloration response darkens as in Fig. 3(b).

Different regions start to respond and saturate at different
force levels. The example point in Fig. 3(c) starts to respond at
1 N and saturates at 3 N. The example point in Fig. 3(d) starts
to respond at a relatively high force level of 4 N, and continues
to increase even at the high end of our interest range.

B. Segment Selection

Using Q–Q plot [9], the residual errors of hi of a point i in the
fingernail and surrounding skin on a force f are found to satisfy
a normal distribution [23]. Therefore, the response is modeled
as a conditional Gaussian

p(hi |f) =
1

K1
e−(hi − hi)2/2σ2

i (4)
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where hi and σi are the mean and the variance, respectively, and
K1 is a constant. For all points from 1 to m, the joint distribution
is

p(h|f) =
1

K1
e−(1/2)(h − h)T ΣΣΣ−1(h − h) (5)

where h = [h1 · · ·hm ]T and ΣΣΣ is the covariance of h.
The distribution of a force on the condition of measured color

of all the points is p(f |h). With Bayes rule

p(f |h) =
p(h|f)p(f)

p(h)
. (6)

If we assume that the force distribution is uniform, p(f) is a
constant. Also, p(h) is independent of f . Therefore, we write

p(f |h) =
1

K2
e−(1/2)(h − h)T ΣΣΣ−1(h − h) (7)

where the constant K2 = K1p(h)/p(f).
For a small segment, the relation between f and hi is piece-

wise linear

hi(f) = αi(f) + βi(f)f + εi (8)

where αi(f) and βi(f) are piecewise linear parameters, and
from observation, we can assume that εi does not change with
f and is Gaussian. Since E[εi ] = 0, then

hi(f) = αi(f) + βi(f)f.

Thus,

p(f |h)

=
1
K

e−(1/2)(h−α(f)−β(f)f)T ΣΣΣ−1(h−α(f)−β(f)f)

where α(f) = [α1(f) . . . αm (f)]T and β(f) = [β1(f) . . .
βm (f)]T .

The distribution is determined by the quadratic form

∆2 = (h − α(f) − β(f)f)T ΣΣΣ−1(h − α(f) − β(f)f). (9)

Expressing in terms of f

∆2 =
(

f − h − α(f)
β(f)

)T

β(f)T ΣΣΣ−1β(f)
(

f − h − α(f)
β(f)

)
.

(10)
From (10), the variance of the distribution p(f |h) is

σ2
f |h = (β(f)T ΣΣΣ−1β(f))−1 . (11)

For simplicity, we assume that the colors of all the points
are independent. Hence, the off-diagonal elements of ΣΣΣ =
diag(σ2

1 . . . σ2
m ) are zeros, and

σ2
f |h =

1
β1 (f )2

σ 2
1

+ · · · + βm (f )2

σ 2
m

. (12)

On the condition of the colors measured from a set of points
in the fingernail and surrounding skin, the distribution of the
force has the variance as formulated in (12). The variance of the
force depends on the variances of the colors and the slopes of
the color responses at that force level. Each color measurement
of a point i decreases the variance of f by βi(f)2/σ2

i . When the

Fig. 4. Selection of correlation range. (a) Sigmoid fit of the color response.
(b) Gradients of the sigmoid function. The one-fifth of the maximum gradient
is indicated. (c) and (d) Selected segment.

slope βi(f) is large and the variance of the color σi is small, its
contribution to decrease the variance of the force is substantial.
On the other hand, when the slope βi(f) is small and the variance
of the color σi is large, its contribution is negligible.

After sigmoid regression fitting, the gradient of the response
curve [Fig. 4(a)] is computed [Fig. 4(b)]. Segments of the sig-
moid with gradients lower than one-fifth of the maximum gra-
dient of the sigmoid curve are not used. Segments with large
gradients [e.g., Fig. 4(c) and (d)] are selected for force esti-
mation. The force range of the selected segment is called the
transducing range. The color intensity range of the selected
segment is called the response range. For this example point,
the transducing range is 1.8–4.9 N and the response range is
0.54–0.80 N.

Different points in the fingernail and surrounding skin have
different transducing ranges. Fig. 5 shows the start point color
map (top two rows) and the saturation point color map (bot-
tom two rows) of one subject. The dark points in each figure
are the regions of the fingernail and surrounding skin with the
associated force levels.

1) Most points in the front of the fingernail start to respond
at a force level of 2–3 N and saturate at 5–6 N.

2) Most areas in the middle of the fingernail start to respond
at 0–1 N. Some of these areas saturate at 1–2 N, while
others saturate at 2–3 N.

3) Some areas on the skin surrounding the fingernail start to
respond at 3–4 N and some start to respond at 4–5 N. They
all saturate at a force larger than 6 N.

By combining all areas, the fingernail coloration can trans-
duce forces from 0 to 10 N for this subject. Different subjects
have different response maps; individual calibration is required.

In practice, since fitting a sigmoid function is time-
consuming, the responses are fitted with locally weighted least
squares [17]. As shown in Fig. 6, the gradient of the response
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Fig. 5. Regions of the finger and their force starting and saturation levels.

Fig. 6. Segment selection with local-weighted least square.

curve is computed locally, and the segmentation selection is car-
ried out in the same way as for the sigmoidal curve. The locally
weighted least squares fitting is carried as follows.

1) Locally weighted linear regression is used to fit the
response curve [17]. The weighting function is wk =
e−D (fk ,fi )2 /K 2

w , where i is the index of the query point, k
is the index of points around i, Kw is the kernel size, D is
a constant, and (fk , fi)2 refers to the distance from a point
i to the query point k. Here, it is the distance along the
force axis. It gives large weight to the points close to the
query point and small weights to distant points. This curve
fitting emphasizes local information, which can pick up
turning points. A typical result is shown in Fig. 6(a).

2) Local gradients on the fitted curve are calculated by dif-
ferentials [Fig. 6(b)].

3) The gradient threshold Tth is one-fifth of the maximum
gradient of the curve. The segment with gradient larger
than Tth is selected [Fig. 6(c) and (d)].

V. LINEAR RESPONSE REGIONS

As shown in Fig. 4(d), with segment selection, the selected
middle segment of the sigmoid curve is very close to linear.
Due to the simplicity of a linear model, it would be attractive to
model the response with linear models.

With experiments, we found that certain areas of the fingernail
and surrounding skin show a good linear response of coloration
to fingertip force, others do not. Within the response range of
mesh element i, a linear model relating coloration intensity hij

to a force component fj for j = 1, . . . , n reading pairs is fit
using ordinary least squares

hij = ai0 + ai1fj , j = 1, . . . , n (13)

where ai0 and ai1 are the linear fitting parameters for mesh
element i. The goodness of fit is determined by thresholding the
correlation coefficient ri [5]

ri =

∑n
j=1(fj − f̄)(hij − h̄i)√∑n

j=1(fj − f̄)2
∑n

j=1(hij − h̄i)2
(14)

where f̄ and h̄i are the averages of the force and coloration read-
ings, respectively. A threshold of ri = 0.8 is chosen to exclude
those mesh elements whose response is not linear enough to be
employed for force prediction.

VI. GENERALIZED LEAST SQUARES MODELING

Using the good mesh elements with coloration readings hi ,
a generalized least squares estimator [19] is applied to predict
fingertip force vector f = (fx, fy , fz ) for a single reading. Gen-
eralize the model (13) to predict multiple force components

hi = ai + bT
i f + εi (15)

where ai and bi = (b1 , b2 , b3) are unknown parameters, and
εi is the residual error. The parameters ai and bi are fitted in
their response ranges using ordinary least squares similar to the
one-component force model (13). Combine all readings hi into
a vector h, the parameters ai into a vector a, the parameters bi

into the rows of a matrix B, and the errors into a vector ε. Then,
stack (15) results

h − a = Bf + ε. (16)

The response model (5) can be written as

p(h|f) =
1
K

e−(1/2)(h − h)T ΣΣΣ−1(h − h) (17)

where h is the average of h and K is a constant. The covari-
ance matrix ΣΣΣ is estimated from the data. The generalized least
squares estimate of the force is

f̂ =
(
BT ΣΣΣ−1B

)−1
BT ΣΣΣ−1 (h − a) . (18)

The mesh elements are weighted by the uncertainties ΣΣΣ−1 to
produce the best force estimates.

When the prior force probabilities are not uniformly dis-
tributed, it would make the Bayesian estimator different from
least squares. However, the prior p.d.f. p(f) can be meaningfully
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Fig. 7. Predicted responses for subject 1 exerting forces primarily in the
(a) fx , (b) fy , and (c) fz directions.

chosen in general because the information conveyed by the mea-
surements far outweighs that contained in the prior p.d.f. and the
final parameter estimate is not very sensitive to the prior [19].

VII. CALIBRATION AND VERIFICATION

To verify the system, a first set of experiments was carried
out to determine how well each force component could be deter-
mined in isolation. Seven subjects participated. Three of them
are east Asians; one of them is Asian Indian and has dark skin;
three of them are white. Three of them are females and four of
them are males.

Subjects used their index fingers to press on the rubber plate
mounted on the JR3 force sensor while the camera monitored
the coloration change of the index finger. Subjects were asked
to produce normal force fz or shear force fx or fy under the
guidance of the visual display. For each direction of force, three
sets of data were taken. The first two sets were used for calibra-
tion and the third set was used for verification. The estimation
equation (18) was simplified to predict only one component of
force.

Fig. 7 shows examples of separate predictions of shear force
(f = fx or f = fy ) and normal force (f = fz ) for slow force
ramps for one subject. Table I shows the rms error of the predic-
tion results for this subject (subject 1) plus six other subjects.
The predictions in all directions show good linearity. The nor-
mal force for this subject saturates above 6 N, which is a typical
result. Some subjects have saturation levels as low as 4 N, while
others have saturation levels above 8 N. The saturation level
limits the magnitude of grasp forces that can be measured by
the coloration effect. The shear force levels are less because
contact is broken. For subject 1’s 6 N force range, the inac-
curacy of prediction ranges from 2.5% (−fx ) to 7.8% (−fy ).
We also computed the multidimensional coefficients of deter-

TABLE I
rms Errors (N) of Prediction for Force Components

for Seven Subjects

Fig. 8. Simultaneous prediction of normal fz . (a) With shear force fx .
(b) With shear force fy .

mination [23], which were above 0.9 and often above 0.95. This
shows that averaging the responses of the lower correlation,
individual mesh elements have produced the desired effect of
increased accuracy.

The second set of experiments was conducted to determine
whether a shear force component (either fx or fy ) could be
predicted simultaneously with normal force fz . Again, (18) was
simplified to predict only two force components. Subjects were
requested to exert a shear force primarily in the fx - or in the
fy -direction. The subjects had to generate some normal force
fz as well to maintain frictional contact. A calibration model
is developed from one set of data, then used to predict another
dataset. The results are shown in Fig. 8 for one subject; responses
for other subjects are similar. For the x-direction, the prediction
errors are 0.17 N in fx and 0.30 N in fz [Fig. 8(a)]. For the
y-direction, the prediction errors are 0.27 N in fy and 0.48 N in
fz [Fig. 8(b)].

VIII. TIME COURSE OF COLORATION EFFECT

The viscoelasticity of the fingertip pulp and circulation dy-
namics will affect how fast the fingernail coloration changes in
response to fingertip force changes. The mechanical properties
of the fingertip were modeled by Pawluk and Howe [20], [21]
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Fig. 9. Response histograms for 1 N steps for both loading and unloading
from 0 to 3 N.

with a viscoelastic model with three time constants, whose val-
ues were determined to be 0.004, 0.07, and 1.4 s. Over 75% of
the magnitude of the response was due to the first two fast terms
whose time constants are less than 0.1 s. From pulsatile pressure
variation in the data, the blood flow is already restored by the
time that the third term dominates. Experimental evidence from
Mascaro and Asada [14] verified that the time constant of the
response of the blood flow is between 0.1 and 0.4 s, depending
on which part of the fingernail is observed.

Using the more recent methods described before to identify
good mesh elements, we have verified that the coloration effect
is reasonably fast. A series of force steps was applied by a linear
motor to the fixated finger. For each force step, the first-order
time constant [22] was calculated for each mesh element. We
found that the time constants tend to cluster around 0.2 s, and the
loading and unloading responses in the same range are relatively
similar. A few mesh elements have responses much slower than
0.2 s. Fig. 9 shows the histograms of the time constants for 1 N
force steps from 1 to 3 N for both loading and unloading of one
subject. More results are shown in our previous work [31].

Given time constants around 0.2 or 0.3 s, the rate of fingertip
force change would have to be kept relatively slow to employ the
coloration effect. For fast force prediction, since the time con-
stants are fairly consistent and calibratable, time compensation
can be applied. An experiment was carried out to test how the
dynamic features of the fingernail coloration affect the model
and the possibility of time compensation. The training is carried
out with slow force and the model is tested on a fast dataset.
Fig. 10(a) shows the prediction result without time compensa-
tion. The shapes of the actual versus predicted force are fairly
similar, but they are displaced in time. The time compensation
result is shown in Fig. 10(b), which is fairly good.

IX. DISCUSSION

This paper has shown that by imaging, the coloration changes
in the fingernail and surrounding skin with an external camera,
normal and shear forces can be estimated with an accuracy of
5%–10% for a force range of up to 10 N. Individual calibration is
required, and a weighted least squares estimator was proposed.

Fig. 10. Force prediction temporal compensation. (a) Prediction result for fast
forces, without considering the dynamic features. (b) Prediction result for fast
force with linear phase shifting.

The dense imaging of the fingernail, and the finding that the
surrounding skin transduces the higher force levels, validate the
external camera approach as opposed to the limited sampling of
the earlier PPD sensor [14].

Our results show a complex pattern of coloration versus force
across the fingernail and skin. Generally speaking, the middle
region of the fingernail has a low force range (0–2 N), the front
region has an intermediate force range (2–6 N), and the sur-
rounding skin has a high force range (3 to >6 N). The saturation
level varies with subject: sometimes less than 6 N, sometimes
up to 10 N. To estimate the fingertip force over the entire range
from 0 N to saturation requires combining readings from all
fingernail and skin regions.

This complex pattern explains the saturation level of 2 N
and accuracy of 0.5 N in a range of 0–1 N for the PPD sen-
sor [14]. A few points on the nail were imaged, typically in
the middle. The fixed sampling location of half a dozen points
meant that the best responding regions could not be identified
and combined. The generalized least square estimator may also
yield greater accuracies than the basic least squares estimator
in [14].

Better accuracies might be possible by designing an auto-
mated calibration system. In this paper, subjects themselves
generated fingertip forces under the guidance of a graphical
display. Apart from the issue of efficiency and time taken to
obtain a good calibration, self-generated shear forces are typi-
cally linear with normal force, and hence, are not independently
produced. This reflects the well-known relation between grip
force and load force in grasping [35]. A calibration procedure
would ideally vary the shear/normal force ratio while maintain-
ing frictional contact. A motorized calibration stage might lead
to a more robust and accurate estimation.

The dynamic features presented here show that for the same
measuring point, the time constants are different for different
force levels and directions (loading and unloading), and the typi-
cal time constant is around 0.2 s. The system’s response speed is
limited by the speed of artery deformation and blood flow. How-
ever, for many grasp studies and applications, the finger force
frequency is fairly low. For example, during surgical training,
a majority of the frequency content is below 5 Hz; during tis-
sue grasps, the average grasp force frequency is approximately
1 Hz [8].
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Although not as accurate as employing an external force sen-
sor at predefined grasp points, our method has compensating ad-
vantages. Everyday objects can be employed, and grasp points
do not have to be predefined. The fingerpad naturally comes
into contact with the object surface, rather than having surfaces
defined by an external force sensor. The use of external cameras
is a low-cost sensing means.

The usable force range, accuracy, and response speed from
our imaging system correspond perfectly to typical fingertip
forces during contact. Pawluk and Howe [20] reported that
forces between 0 and 2 N are the most relevant for grasping
and typing. Jones [12] has found that a human is capable of
controlling a constant finger force in the range of 2–6 N with
average error of 6% with visual feedback and natural haptic
sense. Also, Mascaro and Asada [14] found that the force that
a human subject can comfortably apply for an extended time
is about 3 N. For precision grasps, such as surgeon grasps, the
majority of the frequency content is below 5 Hz [8].

The individual calibration is currently a drawback. Our study
[32] has shown that after shape normalization, all subjects stud-
ied have the same responding regions for different directions of
force. The consistency across subjects may ease the individual
calibration process. In the future, we will investigate how to use
the consistent response in calibration.

This research investigated the accuracy of fingertip force pre-
diction based on coloration changes for relatively ideal condi-
tions: the fingerpad contacted a flat surface in a parallel ori-
entation, the finger was kept stationary and in easy view of a
camera, and a controlled lighting environment was used. The
rationale for these restrictions is in part to ascertain the funda-
mental limitations of the coloration effect, without yet bringing
in technological issues of how to track the fingernail with a
camera system or how to handle varied lighting environments.
For fingernail viewing, it is possible to place miniature portable
cameras and lighting domes on an exoskeleton worn by the user.
If the grasping workspace does not vary too much, a number of
cameras can be arranged around the hand. New computer vision
techniques are being developed that handle varied lighting envi-
ronments, and are particularly good at eliminating the influence
of specular reflection [18].

Future work will also investigate different contact conditions.
The curvature of contact will be varied, such as a point inden-
ter or a line indenter. The orientation of the fingerpad on the
contacted surface will be varied. Adding more variables will
certainly be a challenge for the proposed method. Once again,
critical to these studies will be the development of an automated
calibration system.
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