L21: Markov Chains

Jeff M. Phillips

April 6, 2016

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Graphs

Mathematically: G = (V, E) where

$$V = \{a, b, c, d, e, f, g\} \text{ and}$$
$$E = \left\{\{a, b\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{c, e\}, \{e, f\}, \{e, g\}, \{f, g\}, \{f, h\}\right\}.$$

Matrix-Style: As a matrix with 1 if there is an edge, and 0 otherwise. (For a directed graph, it may not be symmetric).

		a	b	с	d	е	f	g	h		/ 0	1	1	1	0	0	0	0 \
<i>G</i> =	а	0	1	1	1	0	0	0	0]	$\begin{pmatrix} 0\\1 \end{pmatrix}$	0	0	1	0	0	0	1
	b	1	0	0	1	0	0	0	0			-	-	-	-	-	-	0
	с	1	0	0	1	1	0	0	0			0 0	0	1	1	0	0	0
	,	-	1		-	-	-	-	0		1	1	1	0	0	0	0	0
	d	1	T	1	0	0	0	0	0	=	0	0	1	0	0	1	1	0
	е	0	0	1	0	0	1	1	0		0	0	0	0	1	0	1	1
	f	0	0	0	0	1	0	1	1		-	0	-	-	_	-	-	
	g	0	0	0	0	1	1	0	0		0	0	0	0	1	1	0	0
	-	0	0	0	0	0	1	0	0		(0	0	0	0	0	1	0	0 /
	h	0	0	0	U	U	T	U	U	J		•		< 🗗)		È ► - 4	(≣))	E .

Markov Chain

(V, P, q): V node set, P probability transition matrix, q initial state. e.g. $q^{T} = [0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0]$ or $q^{T} = [0.1 \ 0 \ 0 \ 0.3 \ 0 \ 0.6 \ 0 \ 0]$.

$$P = \begin{pmatrix} 0 & 1/2 & 1/3 & 1/3 & 0 & 0 & 0 & 0 \\ 1/3 & 0 & 0 & 1/3 & 0 & 0 & 0 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 & 0 & 0 & 0 \\ 1/3 & 1/2 & 1/3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 0 & 1/3 & 1/2 & 0 \\ 0 & 0 & 0 & 0 & 1/3 & 0 & 1/2 & 1 \\ 0 & 0 & 0 & 0 & 1/3 & 1/3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1/3 & 1/3 & 0 & 0 \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$q_1 = Pq = \left[egin{matrix} 1 & 0 & 0 & rac{1}{2} & 0 & 0 & 0 \end{bmatrix}'$$

$$q_1 = Pq = \begin{bmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \end{bmatrix}^{T} .$$
$$q_2 = Pq_1 = PPq = P^2q = \begin{bmatrix} \frac{1}{6} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} & 0 & 0 & 0 \end{bmatrix}^{T} .$$

$$q_{1} = Pq = \begin{bmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \end{bmatrix}^{T} .$$

$$q_{2} = Pq_{1} = PPq = P^{2}q = \begin{bmatrix} \frac{1}{6} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} & 0 & 0 & 0 \end{bmatrix}^{T} .$$

$$q_{3} = Pq_{2} = \begin{bmatrix} \frac{1}{3} & \frac{1}{9} & \frac{1}{9} & \frac{1}{3} & \frac{1}{9} & 0 & 0 & 0 \end{bmatrix}^{T} .$$

$$P = \begin{pmatrix} 0 & 1/2 & 1/3 & 1/3 & 0 & 0 & 0 & 0 \\ 1/3 & 0 & 0 & 1/3 & 0 & 0 & 0 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 & 0 & 0 & 0 & 0 \\ 1/3 & 1/2 & 1/3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 0 & 1/3 & 1/2 & 0 \\ 0 & 0 & 0 & 0 & 1/3 & 0 & 1/2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1/3 & 1/3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1/3 & 0 & 0 \end{pmatrix} \text{ and } q^{T} = [0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \end{bmatrix}^{T}$$

$$q_{2} = Pq_{1} = PPq = P^{2}q = \begin{bmatrix} \frac{1}{6} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} & 0 & 0 & 0 \end{bmatrix} .$$
$$q_{3} = Pq_{2} = \begin{bmatrix} \frac{1}{3} & \frac{1}{9} & \frac{1}{9} & \frac{1}{3} & \frac{1}{9} & 0 & 0 & 0 \end{bmatrix}^{T}.$$

<□ > < @ > < E > < E > E のQ @

In the limit: $q_n = P^n q$

Cyclic Examples

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1/2 & 1/2 & 1/2 & 1/2 & 0 \\ 1/4 & 0 & 0 & 0 & 0 & 1/4 \\ 1/4 & 0 & 0 & 0 & 0 & 1/4 \\ 1/4 & 0 & 0 & 0 & 0 & 1/4 \\ 1/4 & 0 & 0 & 0 & 0 & 1/4 \\ 1/4 & 0 & 0 & 0 & 0 & 1/4 \\ 0 & 1/2 & 1/2 & 1/2 & 1/2 & 0 \end{pmatrix}$$

Absorbing and Transient Examples

$$\begin{pmatrix} 1/2 & 0 \\ 1/2 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1/2 & 1/2 & 0 & 0 & 0 & 0 \\ 1/2 & 49/100 & 0 & 0 & 0 \\ 0 & 1/100 & 1/4 & 1/4 & 1/4 & 1/4 \\ 0 & 0 & 1/4 & 1/4 & 1/4 & 1/4 \\ 0 & 0 & 1/4 & 1/4 & 1/4 & 1/4 \\ 0 & 0 & 1/4 & 1/4 & 1/4 & 1/4 \end{pmatrix}$$

Unconnected Examples

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1/2 & 1/2 & 0 & 0 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 1/2 & 1/3 & 0 \\ 0 & 0 & 1/3 & 0 & 1/3 & 0 \\ 0 & 0 & 1/3 & 1/2 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$