L21: Markov Chains

Jeff M. Phillips

April 6, 2016

Graphs

Mathematically: $G=(V, E)$ where
$V=\{a, b, c, d, e, f, g\}$ and
$E=\{\{a, b\},\{a, c\},\{a, d\},\{b, d\},\{c, d\},\{c, e\},\{e, f\},\{e, g\},\{f, g\},\{f, h\}\}$.
Matrix-Style: As a matrix with 1 if there is an edge, and 0 otherwise.
(For a directed graph, it may not be symmetric).
$G=\left|\begin{array}{l|llllllll} & a & b & c & d & e & f & g & h \\ \hline a & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ b & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ c & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ d & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ f & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ g & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ h & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\end{array}\right|=\left(\begin{array}{llllllll}0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)$

Markov Chain

$(V, P, q): V$ node set, P probability transition matrix, q initial state. e.g. $q^{T}=\left[\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0\end{array} 000\right.$ or $q^{T}=\left[\begin{array}{lllll}0.1 & 0 & 0 & 0.3 & 0\end{array} 0.6000\right]$.

$$
P=\left(\begin{array}{cccccccc}
0 & 1 / 2 & 1 / 3 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\
1 / 3 & 1 / 2 & 1 / 3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 0 & 1 / 3 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 & 1 / 3 & 0 & 1 / 2 & 1 \\
0 & 0 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 3 & 0 & 0
\end{array}\right)
$$

Transitions

$$
\begin{aligned}
& P=\left(\begin{array}{cccccccc}
0 & 1 / 2 & 1 / 3 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\
1 / 3 & 1 / 2 & 1 / 3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 0 & 1 / 3 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 & 1 / 3 & 0 & 1 / 2 & 1 \\
0 & 0 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 3 & 0 & 0
\end{array}\right) \text { and } q^{T}=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array} 0 \quad 0 \quad 0\right] \\
& q_{1}=P q=\left[\begin{array}{llllllll}
\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0
\end{array}\right]^{T} .
\end{aligned}
$$

Transitions

$$
\begin{aligned}
& P=\left(\begin{array}{cccccccc}
0 & 1 / 2 & 1 / 3 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\
1 / 3 & 1 / 2 & 1 / 3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 0 & 1 / 3 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 & 1 / 3 & 0 & 1 / 2 & 1 \\
0 & 0 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 3 & 0 & 0
\end{array}\right) \text { and } q^{T}=\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& q_{1}=P q=\left[\begin{array}{llllllll}
\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0
\end{array}\right]^{T} . \\
& q_{2}=P q_{1}=P P q=P^{2} q=\left[\begin{array}{llllllll}
\frac{1}{6} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} & 0 & 0 & 0 & 0
\end{array}\right]^{T} .
\end{aligned}
$$

Transitions

$$
\left.\begin{array}{c}
P=\left(\begin{array}{cccccccc}
0 & 1 / 2 & 1 / 3 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\
1 / 3 & 1 / 2 & 1 / 3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 0 & 1 / 3 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 & 1 / 3 & 0 & 1 / 2 & 1 \\
0 & 0 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 3 & 0 & 0
\end{array}\right) \text { and } q^{T}=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array} 0\right.
\end{array}\right] .
$$

Transitions

$$
\begin{aligned}
& P=\left(\begin{array}{cccccccc}
0 & 1 / 2 & 1 / 3 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\
1 / 3 & 1 / 2 & 1 / 3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 0 & 1 / 3 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 & 1 / 3 & 0 & 1 / 2 & 1 \\
0 & 0 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 3 & 0 & 0
\end{array}\right) \text { and } q^{T}=\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& q_{1}=P q=\left[\begin{array}{llllllll}
\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0
\end{array}\right]^{T} . \\
& q_{2}=P q_{1}=P P q=P^{2} q=\left[\begin{array}{llllllll}
\frac{1}{6} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} & 0 & 0 & 0 & 0
\end{array}\right]^{T} . \\
& q_{3}=P q_{2}=\left[\begin{array}{llllllll}
\frac{1}{3} & \frac{1}{9} & \frac{1}{9} & \frac{1}{3} & \frac{1}{9} & 0 & 0 & 0
\end{array}\right]^{T} .
\end{aligned}
$$

In the limit: $q_{n}=P^{n} q$

Cyclic Examples

$$
\begin{gathered}
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\left(\begin{array}{cccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \\
\left(\begin{array}{ccccc}
0 & 1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 \\
1 / 4 & 0 & 0 & 0 & 0 \\
1 / 4 \\
1 / 4 & 0 & 0 & 0 & 0 \\
1 / 4 & 0 & 0 & 0 & 0 \\
1 / 4 \\
1 / 4 & 0 & 0 & 0 & 0 \\
0 & 1 / 2 & 1 / 2 & 1 / 2 & 1 / 2
\end{array}\right)
\end{gathered}
$$

Absorbing and Transient Examples

$$
\begin{gathered}
\left(\begin{array}{ll}
1 / 2 & 0 \\
1 / 2 & 1
\end{array}\right) \\
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
\left(\begin{array}{ccccc}
1 / 2 & 1 / 2 & 0 & 0 & 0 \\
1 / 2 & 49 / 100 & 0 & 0 & 0 \\
0 & 1 / 100 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 \\
0 & 0 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 0 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 0 & 1 / 4 & 1 / 4 & 1 / 4 \\
0
\end{array}\right)
\end{gathered}
$$

Unconnected Examples

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{lllll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

