Homework 3: Regression and Gradient Descent

Instructions: Your answers are due at 11:50, before the beginning of class on the due date. You must turn in a pdf through canvas. I recommend using latex (http://www.cs.utah.edu/~jeffp/teaching/latex/, see also http://overleaf.com) for producing the assignment answers. If the answers are too hard to read you will lose points, entire questions may be given a 0 (e.g. sloppy pictures with your phone’s camera are not ok, but very careful ones are)

Please make sure your name appears at the top of the page.

You may discuss the concepts with your classmates, but write up the answers entirely on your own. Be sure to show all the work involved in deriving your answers! If you just give a final answer without explanation, you may not receive credit for that question.

We will use two datasets found here:
http://www.cs.utah.edu/~jeffp/teaching/FoDA/x.csv
http://www.cs.utah.edu/~jeffp/teaching/FoDA/y.csv

There are many ways to import data in python, the genfromtext command in numpy provides an easy solution. Here is a short tutorial from this course that should be helpful:
https://www.youtube.com/watch?v=CUVX1-tsJ2Q
https://colab.research.google.com/drive/1PIIC6X9pMj4wBTP954F9E1X0sKC1MzRs

1. [50 points] Let \(x \in \mathbb{R}^n \) hold the data for an explanatory variable, and \(y \in \mathbb{R}^n \) be the data for the dependent variable. Here \(n = 120 \).

(a) [10 points] Run simple linear regression to predict \(y \) from \(x \). Report the linear model you find. Predict the value of \(y \) for the new \(x \) values of 1 and 10.

(b) [10 points] Split the data into a training set (the first 100 values) and the test set (the last 20 values). Run simple linear regression on the training set, and report the linear model. Again predict the \(y \) value at \(x \) values of 1 and 10.

(c) [15 points] Using the testing data, report the residual vector (it should be 20-dimensional) for the model built on the full data, and another one using the model built just from the training data. For each residual vector, report the corresponding root mean squared error.

 Also compute the root mean squared error of the residual vector for the training data (a 100-dimensional vector) for the model built on the full data, and also for the model built on the training data.

(d) [15 points] Expand data set \(x \) into a \(n \times (p + 1) \) matrix \(\tilde{X}_p \) using standard polynomial expansion for \(p = 3 \). Report the first 3 rows of this matrix.

 Build and report the degree-3 polynomial model using this matrix on the training data. Report the root mean squared error of the residual vector built for the testing data (from a 20-dimensional vector) and for the training data (from a 100-dimensional vector).
2. [25 points] Consider a data set \((X, y)\) where \(X \in \mathbb{R}^{n \times 4}\); and its decomposition into a test dataset \((X_{test}, y_{test})\) and a training data set \((X_{train}, y_{train})\). Assume that \(X_{train}\) is not just a subset of \(X\), but also prepends a column of all 1s. We build a linear model
\[
\alpha = (X_{train}^T X_{train})^{-1} X_{train}^T y_{train}
\]
where \(\alpha \in \mathbb{R}^5\). The test data \((X_{test}, y_{test})\) consists of 3 data points \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\) where \(x_1, x_2, x_3 \in \mathbb{R}^4\). Explain how to use (write a mathematical expression) this test data to estimate the generalization error. That is, if one new data point arrives \(x\), how much squared error would we expect the model \(\alpha\) to have compared to the true unknown value \(y\)?

3. [25 points] Consider two functions
\[
\begin{align*}
 f_1(x, y) &= (x - 3)^2 + 3(y + 1)^2 \\
 f_2(x, y) &= (1 - (y - 3))^2 + 10((x + 4) - (y - 3)^2)^2
\end{align*}
\]
For (a) - (c) below, you also need to report the function value, gradient, and 2-norm of the gradient at the end of each iteration – one set of values per line. This is a common way to see if your results make sense, and is not hard to quickly read through.

(a) [8 points] Run gradient descent on \(f_1\) with starting point \((x, y) = (0, 0)\), \(T = 30\) steps and \(\gamma = .01\)

(b) [8 points] Run gradient descent on \(f_1\) with starting point \((x, y) = (10, 10)\), \(T = 100\) steps and \(\gamma = .03\)

(c) [9 points] Run any variant of gradient descent you want for \(f_2\) with starting point \((x, y) = (0, 2)\). Try to get the smallest function value after \(T = 100\) steps. Also explain in a couple of sentences the procedure you used.

[+5 points] If any students do significantly better than the rest of the class on \(f_2\) in part (c), we will award up to 5 extra credit points. To obtain extra points, a detailed description of how the gradient descent is performed is required.