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Abstract. Matrices have become essential data representations for many
large-scale problems in data analytics, and hence matrix sketching is a
critical task. Although much research has focused on improving the er-
ror/size tradeoff under various sketching paradigms, we find a simple
heuristic iSVD, with no guarantees, tends to outperform all known ap-
proaches. In this paper we adapt the best performing guaranteed algo-
rithm, FrequentDirections, in a way that preserves the guarantees,
and nearly matches iSVD in practice. We also demonstrate an adversar-
ial dataset for which iSVD performs quite poorly, but our new technique
has almost no error. Finally, we provide easy replication of our studies on
APT, a new testbed which makes available not only code and datasets,
but also a computing platform with fixed environmental settings.

1 Introduction

Matrix sketching has become a central challenge [3, 16, 20, 28, 33] in large-scale
data analysis as many large data sets including customer recommendations, im-
age databases, social graphs, document feature vectors can be modeled as a
matrix, and sketching is either a necessary first step in data reduction or has
direct relationships to core techniques including PCA, LDA, and clustering.

There are several variants of this problem, but in general the goal it to process
an n×d matrix A to somehow represent a matrix B so ‖A−B‖F or (examining
the covariance) ‖ATA−BTB‖2 is small.

In both cases, the best rank-k approximation Ak can be computed using the
singular value decomposition (svd); however this takes O(ndmin(n, d)) time and
O(nd) memory. This is prohibitive for modern applications which usually desire
a small space streaming approach, or even an approach that works in parallel.
For instance diverse applications receive data in a potentially unbounded and
time-varying stream and want to maintain some sketch B. Examples of these
applications include data feeds from sensor networks [6], financial tickers [10,41],
on-line auctions [5], network traffic [23,38], and telecom call records [13].

In recent years, extensive work has taken place to improve theoretical bounds
in the size of B. Random projections [3,37] and hashing [11,40] approximate A
in B as a random linear combination of rows and/or columns of A. Column
sampling methods [7, 15–17, 19, 30, 36] choose a set of columns (and/or rows)
from A to represent B; the best bounds require multiple passes over the data.
We refer readers to recent work [11,22] for extensive discussion of various models
and error bounds.
? Thanks to supported by NSF CCF-1115677, IIS-1251019, and CCF-1350888.



Very recently Liberty [28] introduced a new technique FrequentDirec-
tions (abbreviated FD) which is deterministic, achieves the best bounds on
the covariance ‖ATA − BTB‖2 error, the direct error ‖A − B‖2F [22] (using B
as a projection), and moreover, it seems to greatly outperform the projection,
hashing, and column sampling techniques in practice.

However, there is a family of heuristic techniques [8,24,25,27,35] (which we
refer to as iSVD, described relative to FD in Section 2), which are used in many
practical settings, but are not known to have any error guarantees. In fact, we
observe (see Section 3) on many real and synthetic data sets that iSVD noticeably
outperforms FD, yet there are adversarial examples where it fails dramatically.

Thus in this paper we ask (and answer in the affirmative), can one achieve
a matrix sketching algorithm that matches the usual-case performance of iSVD,
and the adversarial-case performance of FD, and error guarantees of FD?

1.1 Notation and Problem Formalization

We denote an n× d matrix A as a set of n rows as [a1; a2; . . . , an] where each ai
is a row of length d. Alternatively a matrix V can be written as a set of columns
[v1, v2, . . . , vd]. We assume d� n. We will consider streaming algorithms where
each element of the stream is a row ai of A.

The squared Frobenius norm of a matrix A is defined ‖A‖2F =
∑
i=1 ‖ai‖2

where ‖ai‖ is Euclidean norm of row ai, and it intuitively represents the total
size of A. The spectral norm ‖A‖2 = maxx:‖x‖=1 ‖Ax‖, and represents the max-
imum influence along any unit direction x. It follows that ‖ATA − BTB‖2 =
maxx:‖x‖=1 |‖Ax‖2 − ‖Bx‖2|.

Given a matrix A and a low-rank matrix X let πX(A) = AXT (XXT )+X
be a projection operation of A onto the rowspace spanned by X; that is if X is
rank r, then it projects to the r-dimensional subspace of points (e.g. rows) in X.
Here X+ indicates taking the Moore-Penrose pseudoinverse of X.

The singular value decomposition of A, written svd(A), produces three ma-
trices [U, S, V ] so that A = USV T . Matrix U is n×n and orthogonal. Matrix V
is d×d and orthogonal; its columns [v1, v2, . . . , vd] are the right singular vectors,
describing directions of most covariance in ATA. S is n× d and is all 0s except
for the diagonal entries {σ1, σ2, . . . , σr}, the singular values, where r ≤ d is the
rank. Note that σj ≥ σj+1, ‖A‖2 = σ1, and σj = ‖Avj‖ describes the norm
along direction vj .

Frequent Directions bounds. We describe FD in detail in Section 2, here we state
the error bounds precisely. From personal communication [21], in a forth-coming
extension of the analysis by Liberty [28] and Ghashami and Phillips [22], it is
shown that there exists a value ∆ that FD, run with parameter `, satisfies three
facts (for α = 1):

• Fact 1: For any unit vector x we have ‖Ax‖2 − ‖Bx‖2 ≥ 0.

• Fact 2: For any unit vector x we have ‖Ax‖2 − ‖Bx‖2 ≤ ∆.

• Fact 3: ‖A‖2F − ‖B‖2F ≥ α∆`.
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Their analysis shows that any algorithm that follows these facts (for any α ∈
(0, 1], and any k ≤ α` including k = 0 where A0 is the all zeros matrix) satisfies
∆ ≤ ‖A − Ak‖2F /(α` − k); hence for any unit vector x we have 0 ≤ ‖Ax‖2 −
‖Bx‖2 ≤ ∆ ≤ ‖A−Ak‖2F /(α`−k). Furthermore any such algorithm also satisfies
‖A − πBk

(A)‖ ≤ α`∆ ≤ ‖A − Ak‖2Fα`/(α` − k), where πBk
(·) projections onto

Bk, the top k singular vectors of B. Since these results are actually proven only
with α = 1, we reprove these slightly extended versions in Appendix A.

FD maintains an ` × d matrix B (i.e. using O(`d) space), with α = 1. Thus
setting ` = k+1/ε achieves ‖ATA−BTB‖2 ≤ ε‖A−Ak‖2F , and setting ` = k+k/ε
achieves ‖A− πBk

(A)‖2F ≤ (1 + ε)‖A−Ak‖2F .

1.2 Frequency Approximation, Intuition, and Results
FD is inspired by an algorithm by Misra and Gries [32] for the streaming frequent
items problem. That is, given a stream S = 〈s1, s2, . . . , sn〉 of items si ∈ [u] =
{1, 2, . . . , u}, represent fj = |{si ∈ S | si = j}|; the frequency of each item

j ∈ [u]. The MG sketch uses O(1/ε) space to construct an estimate f̂j (for all

j ∈ [u]) so that 0 ≤ fj − f̂j ≤ εn. In brief it keeps ` − 1 = 1/ε counters, each
labeled by some j ∈ [u]: it increments a counter if the new item matches the
associated label or for an empty counter, and it decrements all counters if there
is no empty counter and none match the stream element. f̂j is the associated
counter value for j, or 0 if there is no associated counter.

Intuitively (as we will see in Section 2), FD works similarly treating the
singular vectors of B as labels and the squared singular values as counters.

This MG algorithm and variants have been rediscovered several times [14,
26, 31] and can be shown to process elements in O(1) time. In particular, the

SpaceSaving (SS) algorithm [31] has similar guarantees (0 ≤ f̂j − fj ≤ εn for
all j ∈ [u]) and also uses ` counters/labels. But when no counter is available,
it does the unintuitive step of replacing the label of the least counter with the
current stream element, and incrementing it by one. f̂j is the associated counter,
or otherwise the value of the minimum counter. A masterful empirical study by
Cormode and Hadjieleftheriou [12] demonstrates that the SpaceSaving approach
can outperform the standard MG step, and Agarwal et al. [4] shows that one
can isomorphically convert between them by adding the number of decrements
to each estimate from the MG sketch.

Main results. To improve on FD empirically, it is natural to ask if variants mim-
icking SpaceSaving can be applied. We present two approaches SpaceSaving
Directions (abbreviated SSD, which directly mimics the SpaceSaving algo-
rithm) and Compensative FrequentDirections (abbreviated CFD, which
mimics the conversion from MG to SS sketch). These are not isomorphic in the
matrix setting as is the case in the items setting, but we are able to show strong
error guarantees for each, asymptotically equivalent to FD. However, while these
sometimes improve empirically on FD, they do not match iSVD.

Rather, we achieve our ultimate goal with another approach Parametrized
FrequentDirections; it has parameter α and is abbreviated α-FD. It smoothly
translates between FD and iSVD (FD = 1-FD and iSVD = 0-FD), and for α = 0.2
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we empirically demonstrate that it nearly matches the performance of iSVD on
several synthetic and real data sets. It also has the same asymptotic guarantees
as FD. Furthermore, we construct an adversarial data set where iSVD performs
dramatically worse than FD and all proposed algorithms, including α-FD. We
observe similar effects where α-FD and FD outperform iSVD on a large real-world
data set that shares some properties with the adversarial synthetic one.

Finally, to ensure our results are easily and readily reproducible, we implement
all experiments on a new extension of Emulab [39] called APT [34]. It allows one
to check out a virtual machine with the same specs as we run our experiments,
load our precise environments and code and data sets, and directly reproduce
all experiments.

2 Algorithms
The main structure of the algorithm we will study is presented in Algorithm 2.1,
where S′ ← ReduceRank(S) is a subroutine that differs for each variant we
consider. It sets at least one non-zero in S to 0 in S′; this leads to a reduced
rank for B[i], in particular with one row as all 0s. Notationally we use σj as the
jth singular value in S, and σ′j as the jth singular value in S′.

Algorithm 2.1 (Generic) FD Algorithm

Input: `, α ∈ (0, 1], A ∈ Rn×d
B[0] ← all zeros matrix ∈ R`×d
for i ∈ [n] do

Insert ai into a zero valued rows of B[i−1]; result is B[i]

if (B[i] has no zero valued rows) then
[U, S, V ]← svd(B[i])
C[i] = SV T # Only needed for proof notation
S′ ← ReduceRank(S)
B[i] ← S′V T

return B = B[n]

For FD, ReduceRank sets each σ′j =
√
σ2
j − δi where δi = σ2

` .

For iSVD, ReduceRank keeps σ′j = σj for j < ` and sets σ′` = 0.
The runtime of FD can be improved [28] by doubling the space, and batching

the svd call. A similar approach is possible for variants we consider.

2.1 Parameterized FD
Parameterized FD uses the following subroutine (Algorithm 2.2) to reduce the
rank of the sketch; it zeros out row `. This method has an extra parameter
α ∈ [0, 1] that describes the fraction of singular values which will get affected
in the ReduceRank subroutine. Note iSVD has α = 0 and FD has α = 1. The
intuition is that the smaller singular values are more likely associated with noise
terms and the larger ones with signals, so we should avoid altering the signal
terms in the ReduceRank step.

Here we show error bounds asymptotically matching FD for α-FD (for con-
stant α > 0), by showing the three Facts hold. We use ∆ =

∑n
i=1 δi.
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Algorithm 2.2 ReduceRank-PFD(S, α)

δi ← σ2
`

return diag(σ1, . . . , σ`(1−α),
√
σ2
`(1−α)+1 − δi, . . . ,

√
σ2
` − δi)

Lemma 1. For any unit vector x and any α ≥ 0: 0 ≤ ‖C[i]x‖2 − ‖B[i]x‖2 ≤ δi.

Proof. The right hand side is shown by just expanding ‖C[i]x‖2 − ‖B[i]x‖2.

‖C[i]x‖2 − ‖B[i]x‖2 =
∑̀
j=1

σ2
j 〈vj , x〉2 −

∑̀
j=1

σ′
2
j 〈vj , x〉2 =

∑̀
j=1

(σ2
j − σ′

2
j )〈vj , x〉2

= δi
∑̀

j=(1−α)`+1

〈vj , x〉2 ≤ δi‖x‖2 = δi

To see the left side of the inequality δi
∑`
j=(1−α)`+1〈vj , x〉2 ≥ 0. ut

Then summing over all steps of the algorithm (using ‖aix‖2 = ‖C[i]x‖2 −
‖B[i−1]x‖2) it follows (see Lemma 2.3 in [22]) that

0 ≤ ‖Ax‖2 − ‖Bx‖2 ≤
n∑
i=1

δi = ∆,

proving Fact 1 and Fact 2 about α-FD for any α ∈ [0, 1].

Lemma 2. For any α ∈ (0, 1], ‖A‖2F − ‖B‖2F = α∆`, proving Fact 3.

Proof. We expand that ‖C[i]‖2F =
∑`
j=1 σ

2
j to get

‖C[i]‖2F =

(1−α)`∑
j=1

σ2
j +

∑̀
j=(1−α)`+1

σ2
j

=

(1−α)`∑
j=1

σ′
2
j +

∑̀
j=(1−α)`+1

(σ′
2
j + δi) = ‖B[i]‖2F + α`δi.

By using ‖ai‖2 = ‖C[i]‖2F − ‖B[i−1]‖2F = (‖B[i]‖2F + α`δi) − ‖B[i−1]‖2F , and
summing over i we get

‖A‖2F =

n∑
i=1

‖ai‖2 =

n∑
i=1

‖B[i]‖2F − ‖B[i−1]‖2F + α`δi = ‖B‖2F + α`∆.

Subtracting ‖B‖2F from both sides, completes the proof. ut

The combination of the three Facts, provides the following results.
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Theorem 1. Given an input matrix A ∈ Rn×d, α-FD with parameter ` returns
a sketch B ∈ R`×d that satisfies for all k > α`

0 ≤ ‖Ax‖2 − ‖Bx‖2 ≤ ‖A−Ak‖2F /(α`− k)

and projection of A onto Bk, the top k rows of B satisfies

‖A− πBk
(A)‖2F ≤

α`

α`− k
‖A−Ak‖2F .

Setting ` = (k+1/ε)/α yields 0 ≤ ‖Ax‖2−‖Bx‖2 ≤ ε‖A−Ak‖2F and setting
` = (k + k/ε)/α yields ‖A− πBk

(A)‖2F ≤ (1 + ε)‖A−Ak‖2F .

2.2 SpaceSaving Directions
SpaceSaving Directions (abbreviated SSD) uses Algorithm 2.3 for Reduc-
eRank. Like the SS algorithm for frequent items, it assigns the counts for the
second smallest counter (in this case squared singular value σ2

`−1) to the direction
of the smallest. Unlike the SS algorithm, we do not use σ2

`−1 as the squared norm
along each direction orthogonal to B, as that gives a consistent over-estimate.

Algorithm 2.3 ReduceRank-SS(S)

δi ← σ2
`−1

return diag(σ1, . . . , σ`−2, 0,
√
σ2
` + δi).

Then to understand the error bounds for ReduceRank-SS, we will con-
sider an arbitrary unit vector x. We can decompose x =

∑d
j=1 βjvj where

β2
j = 〈x, vj〉2 > 0 and

∑d
j=1 β

2
j = 1. For notational convenience, without loss

of generality, we assume that βj = 0 for j > `. Thus v`−1 represents the entire
component of x in the null space of B (or B[i] after processing row i).

To analyze this algorithm, at iteration i ≥ `, we consider a d× d matrix B̄[i]

that has the following properties: ‖B[i]vj‖2 = ‖B̄[i]vj‖2 for j < `− 1 and j = `,
and ‖B̄[i]vj‖2 = δi for j = ` − 1 and j > `. This matrix provides the constant
but bounded overcount similar to the SS sketch. Also let A[i] = [a1; a2; . . . ; ai].

Lemma 3. For any unit vector x we have 0 ≤ ‖B̄[i]x‖2 − ‖A[i]x‖2 ≤ 2δi

Proof. We prove the first inequality by induction on i. It holds for i = ` − 1,
since B[`−1] = A[`−1], and ‖B̄[i]x‖2 ≥ ‖B[i]x‖2. We now consider the inductive
step at i. Before the reduce-rank call, the property holds, since adding row ai
to both A[i] (from A[i−1]) and C[i] (from B[i−1]) increases both squared norms
equally (by 〈ai, x〉2) and the left rotation by UT also does not change norms
on the right. On the reduce-rank, norms only change in directions v` and v`−1.
Direction v` increases by δi, and in B̄[i] the directions v`−1 also does not change,
since it is set back to δi, which it was before the reduce-rank.

We prove the second inequality also by induction, where it also trivially holds
for the base case i = ` − 1. Now we consider the inductive step, given it holds
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for i − 1. First obverse that δi ≥ δi−1 since δi is at least the (` − 1)st squared
singular value of B[i−1], which is at least δi−1. Thus, the property holds up to
the reduce rank step, since again, adding row ai and left-rotating does not affect
the difference in norms. After the reduce rank, we again only need to consider
the two directions changed v`−1 and v`. By definition

‖A[i]v`−1‖2 + 2δi ≥ δi = ‖B̄[i]v`−1‖2,

so direction v`−1 is satisfied. Then

‖B̄[i]v`‖2 = ‖B[i]v`‖2 = δi + ‖C[i]v`‖2 ≤ 2δi

and 0 ≤ ‖A[i]v`‖2 ≤ ‖B̄[i]v`‖2. Hence ‖B̄[i]v`‖2 − ‖A[i]v`‖2 ≤ 2δi − 0, satisfying
the property for direction v`, and completing the proof. ut

Now we would like to prove the three Facts needed for relative error bounds
for B = B[n]. But this does not hold since ‖B‖2F = ‖A‖2F (an otherwise nice

property), and ‖B̄‖2F � ‖A‖2F . Instead, we first consider yet another matrix B̂

defined as follows with respect to B. B and B̂ have the same right singular values
V . Let δ = δn, and for each singular value σj of B, adjust the corresponding

singular values of B̂ to be σ̂j = max{0,
√
σ2
j − 2δ}.

Lemma 4. For any unit vector x we have 0 ≤ ‖Ax‖2−‖B̂x‖2 ≤ 2δ and ‖A‖2F −
‖B̂‖2F ≥ δ(`− 1).

Proof. Directions vj for j > `− 1, the squared singular values are shrunk by at
least δ. The squared singular value is already 0 for direction v`−1. And the sin-
gular value for direction v` is shrunk by δ to be exactly 0. Since before shrinking
‖B‖2F = ‖A‖2F , the second expression in the lemma holds.

The first expression follows by Lemma 3 since B̄ only increases the squared
singular values in directions vj for j = ` − 1 and j > ` by δ, which are 0 in B̂.
And other directions vj are the same for B̄ and B and are at most 2δ larger
than in A. ut

Thus B̂ satisfies the three Facts. We can now state the following property
about B directly, setting α = (1/2), adjusting ` to ` − 1, then adding back the
at most 2δ = ∆ ≤ ‖A−Ak‖2F /(α`− α− k) to each directional norm.

Theorem 2. After obtaining a matrix B from SSD on a matrix A with param-
eter `, the following properties hold:

• ‖A‖2F = ‖B‖2F .
• for any unit vector x and for k < `/2 − 1/2, we have |‖Ax‖2 − ‖Bx‖2| ≤
‖A−Ak‖2F /(`/2− 1/2− k).
• for k < `/2− 1 we have ‖A− πkB(A)‖2F ≤ ‖A−Ak‖2F (`− 1)/(`− 1− 2k).

Setting ` = 2k+2/ε+1 yields 0 ≤ ‖Ax‖2−‖Bx‖2 ≤ ε‖A−Ak‖2F and setting
` = 2k + 1 + 2k/ε yields ‖A− πBk

(A)‖2F ≤ (1 + ε)‖A−Ak‖2F .
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2.3 Compensative Frequent Directions

In original FD, the computed sketch B underestimates Frobenius norm of stream
[22]. In Compensative FrequentDirections (abbreviated CFD), we keep
track of the total mass ∆ =

∑n
i=1 δi subtracted from squared singular values

(this requires only an extra counter). Then we slightly modify the FD algorithm.
In the final step where B = S′V T , we modify S′ to Ŝ by setting each singular

value σ̂j =
√
σ′2j +∆, then we instead return B = ŜV T .

It now follows that for any k ≤ `, including k = 0, that ‖A‖2F = ‖B‖2F , that
for any unit vector x we have |‖Ax‖2F − ‖Bx‖2F | ≤ ∆ ≤ ‖A− Ak‖2F /(`− k) for
any k < `, and since V is unchanged that ‖A−πkB(A)‖2F ≤ ‖A−Ak‖2F `/(`− k).
Also as in FD, setting ` = k+ 1/ε yields 0 ≤ ‖Ax‖2−‖Bx‖2 ≤ ε‖A−Ak‖2F and
setting ` = kk/ε yields ‖A− πBk

(A)‖2F ≤ (1 + ε)‖A−Ak‖2F .

3 Experiments

Herein we describe an extensive set of experiments on a wide variety of large
input data sets. We focus on comparing the amount of space used by each type
of sketch (measured in rows) against several error measures. We show improve-
ments over FD (and in one instance iSVD) by our proposed algorithm 0.2-FD. All
experiments are easily reproducible through a configuration we have prepared
on the APT [34] system.

Each data set is an n × d matrix A, and the n rows are processed one-by-
one in a stream. We also compare against some additional baseline streaming
techniques, exemplifying the three alternatives to techniques based on FD. We
perform a separate set of experiments to compare accuracy of our algorithms
against each other and against exemplar algorithms in hashing, random projec-
tion and column sampling line of works.

Competing algorithms. For randomized algorithms, we average over 5 trials.
Random Projection: In this method [29, 37], sketch B is constructed by

multiplying a projection matrix R into the input matrix A. R is a `× n matrix
where each entry Ri,j ∈ {−1/

√
`, 1/
√
`} uniformly. In fact matrix R randomly

projects columns of A from dimension n to dimension `. This method needsO(`d)
space and update time per row is O(`d); each column of R can be generated as
needed for each row, and then discarded.

Hashing: In this method [40], there are two hash functions h : [n]→ [`] and
s : [n]→ {−1,+1} which map each row of A to a row of sketch B and to either
+1 or −1, respectively. More precisely, B is initialized to be a `× d zero matrix,
then when we process row ai, we change B as Bh(i) = Bh(i) + s(i)ai. Again the
part of the hash function for each row of A can be generated as needed, and then
discarded; space is still O(`d), but the update time is now only O(d+ log `).

Sampling: Column Sampling [16, 17, 36] (which translates to row sampling
in our setting), samples ` rows ai of matrix A with replacement proportional
to ‖ai‖2 and rescales each chosen rows to have norm ‖A‖F /

√
`. This method

requires O(d`) space and the amortized update time per row is O(d + `) when
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DataSet # Datapoints # Attributes Rank Numeric Rank

Random Noisy 10000 500 500
m=50

21.62,
m=30

15.39,
m=20

11.82,
m=10

8.79

Adversarial 10000 500 500 1.69

Birds [2] 11788 312 312 12.50

Spam [1] 9324 499 499 3.25

connectUS 394792 512 512 4.83

Table 1. Datasets; numeric rank is defined ‖A‖2F /‖A‖22.

implemented as ` independent reservoir sampler. We do not consider other col-
umn sampling techniques with better leverage score-based error guarantees since
they are quite complex [18] to operate in a stream.

FD and iSVD are described in detail in Section 2.

Datasets. We compare performance of our algorithms on both synthetic and real
datasets; see a summary in Table 1. We also generate adversarial data to show
that iSVD performs poorly under specific circumstances, this explains why there
is no theoretical guarantee for them.

For Random Noisy, we generate the input n× d matrix A synthetically, mim-
icking the approach by Liberty [28]. We compose A = SDU +F/ζ, where SDU
is the m-dimensional signal (for m < d) and G/ζ is the (full) d-dimensional noise
with ζ controlling the signal to noise ratio. Each entry Fi,j of F is generated i.i.d.
from a normal distribution N(0, 1), and we set ζ = 10. For the signal, S ∈ Rn×m
again with each Si,j ∼ N(0, 1) i.i.d; D is diagonal with entries Di,i = 1−(i−1)/d
linearly decreasing; and U ∈ Rm×d is just a random rotation. We use n = 10000,
d = 500, and consider m ∈ {10, 20, 30, 50} (the default is m = 50).

In order to create Adversarial data, we constructed two orthogonal subspaces
S1 = Rm1 and S2 = Rm2 (m1 = 400 and m2 = 4). Then we picked two separate
sets of random vectors Y and Z and projected them on S1 and S2, respectively.
Normalizing the projected vectors and concatenating them gives us the input
matrix A. All vectors in πS1

(Y ) appear in the stream before πS2
(Z); this rep-

resents a very sudden and orthogonal shift. As the theorems predict, FD and
our proposed algorithms adjust to this change and properly compensate for it.
However, since m1 ≥ `, then iSVD cannot adjust and always discards all new
rows in S2 since they always represent the smallest singular value of B[i].

We consider three real-world datasets. Birds [2] has each row represent an
image of a bird, and each column a feature. PCA is a common first approach in
analyzing this data, so we center the matrix. Spam [1] has each row represent
a spam message, and each column some feature; it has dramatic and abrupt
feature drift over the stream, but not as much as Adversarial. ConnectUS is from
University of Florida Sparse Matrix collection [9], representing a recommenda-
tion system. Each column is a user, and each row is a webpage, tagged 1 if
favorable, 0 otherwise. It contains 171 users that share no webpages preferences
with any other users.
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Fig. 1. Covariance Error: Random Noisy(50) (left), Birds (middle), and Spam (right).
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Fig. 2. Projection Error: Random Noisy(50) (left), Birds (middle), and Spam (right).

Approximation error vs. sketch size. We measure error for all algorithms as we
change the parameter ` (Sketch Size) determining the number of rows in matrix
B. We measure covariance error as err = ‖ATA−BTB‖2/‖A‖2F (Covariance Error);
this indicates for instance for FD, that err should be at most 1/`, but could be
dramatically less if ‖A − Ak‖2F is much less than ‖A‖2F for some not so large
k. We also consider proj-err = ‖A− πBk

(A)‖2F /‖A− Ak‖2F , always using k = 10
(Projection Error); for FD we should have proj-err ≤ `/(`− 10), and ≥ 1 in general.

We see in Figure 1 for Covariance Error and Figure 2 for Projection Error that all
baseline algorithms Sampling, Hashing, and Random Projections perform much worse
than FD and the variants we consider. Each of Sampling, Hashing, and Random

Projections perform about the same. Moreover, FD typically is out-performed by
iSVD and our best proposed method 0.2-FD. Thus, we now focus only on FD,
iSVD, and the new proposed methods which operate in a smaller error regime.
For simplicity now we only examine Covariance Error, Projection Error acts similarly.

Next we consider Parametrized FD; we denote each variant as α-FD in Fig-
ure 3. We explore the effect of the parameter α, and run variants with α ∈
{0.2, 0.4, 0.6, 0.8}, comparing against FD (α = 1) and iSVD (α = 0). Note that
the guaranteed error gets worse for smaller α, so performance being equal, it is
preferable to have larger α. Yet, we observe empirically that FD is consistently
the worst algorithm, and iSVD is fairly consistently the best, and as α decreases,
the observed error improves. The difference can be quite dramatic; for instance
in the Spam dataset, for ` = 20, FD has err = 0.032 while iSVD and 0.2-FD have
err = 0.008. Yet, as ` approaches 100, all algorithms seems to be approaching
the same small error. We also explore the effect on α-FD in Figure 4 on Random

Noisy data by varying m ∈ {10, 20, 30}, and m = 50 in Figure 3. We observe
that all algorithms get smaller error for smaller m (there are fewer “directions”
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Fig. 3. Parametrized FD on Random Noisy(50) (left), Birds (middle), and Spam (right).
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Fig. 4. Parametrized FD on Random Noisy for m = 30 (left), 20 (middle), 10 (right).
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Fig. 5. SpaceSaving algos on Random Noisy(50) (left), Birds (middle), and Spam (right).

to approximate), but that each α-FD variant reaches 0.005 err before ` = 100,
sooner for smaller α; eventually “snapping” to a smaller 0.002 err level.

In Figure 5, we compare iSVD, FD, and 0.2-FD with the other variants based
on the SS streaming algorithm: CFD and SSD. We see that these typically per-
form slightly better than FD, but not nearly as good as 0.2-FD and iSVD. Perhaps
it is surprising that although SpaceSavings variants empirically improve upon
MG variants for frequent items, 0.2-FD (based on MG) can largely outperform
the all SS variants on matrix sketching.

Finally, we show that iSVD is not always better in practice. Using the Adver-

sarial construction in Figure 6, we see that iSVD can perform much worse than
the other techniques. Although at ` = 20, iSVD and FD roughly perform the
same (with about err = 0.09), iSVD does not improve much as ` increases, ob-
taining only err = 0.08 for ` = 100. On the other hand, FD (as well as CFD and
SSD) decrease markedly and consistently to err = 0.02 for ` = 100. Moreover,
all version of α-FD obtain roughly err=0.005 already for ` = 20. The large-norm
directions are the first 4 singular vectors (from the second part of the stream)
and once these directions are recognized as having the largest singular vectors,
they are no longer decremented in any Parametrized FD algorithm.

To conclude we demonstrate the scalability of these approaches on a much
larger real data set ConnectUS. Figure 7 shows variants of Parameterized FD,
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Fig. 6. Demonstrating dangers of iSVD on Adversarial data.
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Fig. 7. Parameterized FD (left), SpaceSaving-based (middle), and all leading (right)
algorithms on ConnectUS dataset.

those compared against SpaceSaving variants, and all leading algorithms on this
dataset. As the derived bounds on covariance error based on sketch size do not all
depend on n, the number of rows in A, it is not surprising that the performance
of most algorithms is unchanged. There are just a couple differences to point
out. First, no algorithm converges as close to 0 error as with the other smaller
data sets; this is likely because with the much larger size, there is some variation
that can not be captured even ` = 100 rows of a sketch. Second, iSVD performs
noticeably worse than the other FD-based algorithms (although still significantly
better than the leading randomized algorithms). This likely has to do with the
sparsity of ConnectUS combined with a data drift. After building up a sketch
on the first part of the matrix, sparse rows are observed orthogonal to existing
directions. The orthogonality, the same difficult property as in Adversarial, likely
occurs here because the new rows have a small number of non-zero entrees, and
all rows in the sketch have zeros in these locations; these correspond to the
webpages marked by one of the unconnected users.

Reproducibility. All experiments are conducted on a Linux Ubuntu 12.04 machine
with 16 cores of Intel(R) Xeon(R) CPU(2.10GHz) and 48GB of RAM. We pro-
vide public access to all of our results using a testbed facility APT [34]. APT
is a platform where researchers can perform experiments and keep them public
for verification and validation of the results. We provide our code, datasets, and
experimental results in our APT profile with detailed description on how to re-
produce, available at: http://aptlab.net/p/MatrixApx/FrequentDirection.
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A Appendix

Consider any algorithm that takes an input matrix A ∈ Rn×d and outputs a
matrix B ∈ R`×d which follows three facts below (for some parameter α ∈ (0, 1]
and some value ∆):

– Fact 1: For any unit vector x we have ‖Ax‖2 − ‖Bx‖2 ≥ 0.

– Fact 2: For any unit vector x we have ‖Ax‖2 − ‖Bx‖2 ≤ ∆.

– Fact 3: ‖A‖2F − ‖B‖2F ≥ α∆`.

Lemma 5. In any such algorithm, for any unit vector x:

0 ≤ ‖Ax‖2 − ‖Bx‖2 ≤ ‖A−Ak‖2F /(α`− k)

Proof. In the following, yi correspond to the singular vectors of A ordered with
respect to a decreasing corresponding singular value order.

α∆` ≤ ‖A‖2F − ‖B‖2F via Fact 3

=

k∑
i=1

‖Ayi‖2 +

d∑
i=k+1

‖Ayi‖2 − ‖B‖2F ‖A‖2F =

d∑
i=1

‖Ayi‖2

=

k∑
i=1

‖Ayi‖2 + ‖A−Ak‖2F − ‖B‖2F

≤ ‖A−Ak‖2F +

k∑
i=1

(
‖Ayi‖2 − ‖Byi‖2

) k∑
i=1

‖Byi‖2 < ‖B‖2F

≤ ‖A−Ak‖2F + k∆. via Fact 2

Solving α∆` ≤ ‖A−Ak‖2F +k∆ for ∆ to obtain ∆ ≤ ‖A−Ak‖2F /(α`−k), which
combined with Fact 1 and Fact 2 proves the lemma. ut

Lemma 6. Any such algorithm described above, satisfies the following error
bound

‖A− πBk
(A)‖ ≤ α`/(α`− k)‖A−Ak‖2F

Where πBk
(·) represents the projection operator onto Bk, the top k singular

vectors of B.
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Proof. Here, yi correspond to the singular vectors of A as above and vi to the
singular vectors of B in a similar fashion.

‖A− πBk
(A)‖2F = ‖A‖2F − ‖πBk

(A)‖2F = ‖A‖2F −
k∑
i=1

‖Avi‖2 Pythagorean theorem

≤ ‖A‖2F −
k∑
i=1

‖Bvi‖2 via Fact 1

≤ ‖A‖2F −
k∑
i=1

‖Byi‖2 since

j∑
i=1

‖Bvi‖2 ≥
j∑
i=1

‖Byi‖2

≤ ‖A‖2F −
k∑
i=1

(‖Ayi‖2 −∆) via Fact 2

= ‖A‖2F − ‖Ak‖2F + k∆

≤ ‖A−Ak‖2F +
k

α`− k
‖A−Ak‖2F by ∆ ≤ ‖A−Ak‖2F /(α`− k)

=
α`

α`− k
‖A−Ak‖2F .

This completes the proof of lemma. ut
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