
The Quantcast File System

Michael Ovsiannikov
Quantcast

movsiannikov@quantcast

Silvius Rus
Quantcast

srus@quantcast.com

Damian Reeves
Google

damianr@google.com
Paul Sutter

Quantcast
psutter@quantcast.com

Sriram Rao
Microsoft

sriramra@microsoft.com

Jim Kelly
Quantcast

jkelly@quantcast.com

ABSTRACT
The Quantcast File System (QFS) is an efficient alterna-
tive to the Hadoop Distributed File System (HDFS). QFS is
written in C++, is plugin compatible with Hadoop MapRe-
duce, and offers several efficiency improvements relative to
HDFS: 50% disk space savings through erasure coding in-
stead of replication, a resulting doubling of write through-
put, a faster name node, support for faster sorting and log-
ging through a concurrent append feature, a native com-
mand line client much faster than hadoop fs, and global
feedback-directed I/O device management. As QFS works
out of the box with Hadoop, migrating data from HDFS
to QFS involves simply executing hadoop distcp. QFS is
being developed fully open source and is available under an
Apache license from https://github.com/quantcast/qfs.
Multi-petabyte QFS instances have been in heavy produc-
tion use since 2011.

1. INTRODUCTION
Big data processing is by its nature a large-scale adven-

ture. It can create big opportunities for organizations, and
it requires big hardware, which in turn requires big capi-
tal and operating investments. A single rack of commodity
hardware costs on the order of a quarter million dollars to
buy and tens of thousands per year to power, cool and main-
tain. Designing software for big data is both a technical and
an economic challenge—the art of squeezing as much pro-
cessing out of a hardware investment as possible.

Six years ago, when Apache Hadoop launched, it maxi-
mized use of hardware by adopting a principle of data lo-
cality. Commodity hardware meant 1 Gbps network links
and cluster racks with limited bandwidth to communicate
with each other. Since moving data around the cluster was
slow, Hadoop strove to leave it where it was and ship pro-
cessing code to it. To achieve fault tolerance, the Hadoop
Distributed File System (HDFS) [13] adopted a sensible 3x
replication strategy: store one copy of the data on the ma-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 11
Copyright 2013 VLDB Endowment 2150-8097/13/09... $ 10.00.

chine writing it, another on the same rack, and a third on a
distant rack. Thus HDFS is network efficient but not par-
ticularly storage efficient, since to store a petabyte of data,
it uses three petabytes of raw storage. At today’s cost of
$40,000 per PB that means $120,000 in disk alone, plus ad-
ditional costs for servers, racks, switches, power, cooling,
and so on. Over three years, operational costs bring the
cost close to $1 million. For reference, Amazon currently
charges $2.3 million to store 1 PB for three years.

Hardware evolution since then has opened new optimiza-
tion possibilities. 10 Gbps networks are now commonplace,
and cluster racks can be much chattier. Affordable core net-
work switches can now deliver bandwidth between racks to
match disk I/O throughput, so other racks are no longer
distant. Server CPUs with vectorized instruction sets are
also readily available.

Quantcast leveraged these developments to implement a
more efficient file system. We abandoned data locality, rely-
ing on faster networks to deliver the data where it is needed,
and instead optimized for storage efficiency. The Quantcast
File System (QFS) employs Reed-Solomon erasure coding
instead of three-way replication. By default it uses a 6+3
configuration, that is, three parity chunks for every six data
chunks, which delivers comparable or better fault tolerance
vs 3x replication. To store one petabyte of data, QFS uses
only 1.5 petabytes of raw storage, 50% less than HDFS, and
therefore saves half the associated costs. It doubles the ca-
pacity of an existing cluster and saves $500,000 per petabyte
to build a new one. In addition, QFS writes large amounts
of data twice as fast, as it needs to write 50% less raw data
than HDFS, and brings other performance advantages as
well. QFS is plugin compatible with Hadoop and offers sev-
eral improvements over HDFS:

• 50% disk space savings through erasure coding.

• Corresponding 2x higher write throughput.

• Significantly faster name node.

• Written in C++, easier to connect to system software.

• Support for distributed sorting and logging through a
highly scalable concurrent append feature.

• Command line client much faster than hadoop fs.

• Global feedback-directed straggler avoidance via cen-
tralized device queue size monitoring.

• Deterministic I/O device behavior through direct I/O.

Table 1: Distribution of MapReduce sort sizes at
Quantcast in May and June 2013.
Job sort size Total sorted bytes

up to 1 TB 7%
1 TB to 10 TB 27%
10 TB to 100 TB 54%
100 TB and over 12%

QFS was developed on the frame of the Kosmos File Sys-
tem [10] an open-source distributed file system architec-
turally similar to Hadoop’s HDFS but implemented in C++
rather than Java and at an experimental level of matu-
rity. What we’ve built from it over five years is a high-
performance file system hardened on our own production
workloads, which we have shared with the big data commu-
nity [2] as a production-ready 1.0.

Throughout this paper we reference the cluster architec-
ture that we developed QFS for. It is a fairly common setup
with commodity 1U and 2U servers arranged in racks and
connected by a 2-tier Ethernet network, detailed in section 6.
While QFS will likely work well on different types of clus-
ters or supercomputers, its performance does depend on the
relative ratios of CPU, RAM, disk and network I/O capac-
ity. Section 4 provides information useful to predicting how
QFS might perform in a different environment.

2. QFS ARCHITECTURE
QFS has the same basic design goal as HDFS: to provide

a file system interface to a distributed, petabyte-scale data
store, built on a cluster of commodity servers using conven-
tional hard drives. It is intended for efficient map-reduce-
style processing, where files are written once and read multi-
ple times by batch processes, rather than for random access
or update operations. The hardware will be heterogeneous,
as clusters tend to be built in stages over time, and disk,
machine and network failures will be routine.

Architecturally QFS is nearly identical to HDFS, as Fig-
ure 1 shows. Data is physically stored in 64 MB chunks,
which are accessed via a chunk server running on the local
machine. A single metaserver keeps an in-memory mapping
of logical path names to file IDs, file IDs to chunk IDs, and
chunk IDs to physical locations. A client library, which im-
plements Hadoop’s FileSystem interface and its equivalent
in C++, calls the metaserver to locate the chunks of a file to
be read or to allocate a new chunk to be written. Thereafter
it reads/writes data directly from/to the chunk server.

2.1 Erasure Coding and Striping
Storing and operating on petabytes of data takes thou-

sands of disks and costs millions. Erasure coding enables
QFS not only to reduce the amount of storage but also to ac-
celerate large sequential write patterns common to MapRe-
duce workloads. Moreover, unlike the MapReduce algorithm
described by [4], our proprietary MapReduce implementa-
tion uses QFS not only for results but also for intermediate
sort spill files. As Table 1 shows, almost all our MapReduce
workload comes from large jobs. Erasure coding is critical
to getting these large jobs to run quickly while tolerating
hardware failures without having to re-execute map tasks.

Figure 2 illustrates how a data stream is stored physi-
cally using Reed-Solomon 6+3 encoding. The original data

is striped over six chunks plus three parity chunks. The
QFS client collects data stripes, usually 64 KB each, into
six 1 MB buffers. When they fill, it calculates an additional
three parity blocks and sends all nine blocks to nine differ-
ent chunk servers, usually one local and the other eight on
different racks. The chunk servers write the 1 MB blocks to
disk, until the chunks on disk reach a maximum 64 MB. At
this point the client will have written six full data chunks
(384 MB total) and three parity chunks. If it has additional
data, it will open connections to nine new chunk servers and
continue the process.

To read the data back, the client requests the six chunks
holding original data. If one or more chunks cannot be re-
trieved, the client will fetch enough parity data to execute
the Reed-Solomon arithmetic and reconstruct the original.
Three losses can be tolerated; if any six chunks remain read-
able the request succeeds. The client will not persist recov-
ered data back to disk but will leave that to the metaserver.

2.2 Failure Groups
To maximize data availability, a cluster must be parti-

tioned into failure groups. Each represents machines with
shared physical dependencies such as power circuits or rack
switches, which are therefore more likely to fail together.
When creating a file with Reed-Solomon 6+3 encoding, the
metaserver will attempt to assign the nine chunks into nine
different failure groups.

Reed-Solomon 6+3 requires at least nine failure groups.
With 10 or more one can go offline and still leave a full nine
available for writes. With around nine failure groups, they
should have about the same raw storage capacity so that
one doesn’t fill up early. Larger numbers of failure groups
will give the chunk placement algorithm more choices, so
equal sizing becomes less important. Racks make good fail-
ure groups, but for a smaller setup each machine could be
its own.

2.3 Metaserver
The QFS metaserver holds all the directory and file struc-

ture of the file system, though none of the data. For each
file it keeps the list of chunks that store the data and their
physical locations on the cluster. It handles client requests,
creates and mutates the directory and file structure on their
behalf, refers clients to chunk servers, and manages the over-
all health of the file system.

For performance the metaserver holds all its data in RAM.
As clients change files and directories, it records the changes
atomically both in memory and to a transaction log. It
forks periodically to dump the whole file system image into
a checkpoint. In our setup this uses little extra RAM due
to the copy-on-write behavior of fork on Linux. On a server
crash the metaserver can be restarted from the last check-
point and the subsequent transaction log.

In the current implementation the metaserver is a sin-
gle point of failure. This has not been a problem for our
batch oriented workload, which can tolerate more down-
time than we see. Table 4 shows typical uptimes for our
large metaservers. We are planning to implement a high-
availability metaserver solution, thus making QFS usable
with guaranteed availability in realtime environments as well.

2.3.1 Chunk creation
Spreading load evenly around the cluster is important for

Rack 1

Client

Metaserver
Rack 2

Chunk servers

Chunk servers

Chunk Server
Handles I/O to locally stored
64MB chunks
Monitors host file system
health
Replicates and recovers
chunks as metaserver directs

Metaserver
Maps /file/paths to
chunk IDs
Manages chunk locations
Directs clients to chunk
servers
Manages file system health

Client
Implements high-level file
interface (read/write/delete)
On write, RS encodes
chunks and distributes
stripes to nine chunk
servers.
On read, collects RS stripes
from six chunk servers and
recomposes chunk.
Reads parity chunks as
needed to recreate missing
data.

Locate or
allocate chunks

Read/write
RS encoded
data from/to

chunk servers

Chunk replication
and rebalancing

instructions

Copy/Recover
chunks

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)Figure 1: QFS architecture.

scalability. To help do so, chunk servers continuously report
to the metaserver the size of I/O queues and available space
for each disk they manage. The metaserver dynamically de-
cides where to allocate new chunks so as to keep disks evenly
filled and evenly busy. It proactively avoids disks with prob-
lems, as they usually have larger I/O queues. This is par-
ticularly important in heterogeneous environments, where
the throughput ratios of disk I/O to CPU and network vary
across machines.

2.3.2 Space Rebalancing and Re-replication
QFS rebalances files continuously to maintain a predefined

measure of balance across all devices. The rebalance takes
place when one or more disks fill up over a ceiling threshold,
and moves chunks to devices with space utilization below a
floor threshold. The rebalance algorithm is aware of failure
groups and will keep each encoding tuplet spread over nine
different failure groups.

The rebalance process has a throttle, a maximum number
of replications in flight, to avoid taking over the I/O entirely
during a large event and to enforce an implicit recovery de-
lay. Most outages resolve within minutes, so replication gets
stopped before it uses I/O unnecessarily.

Similar to rebalance, the metaserver also performs asyn-
chronous replication at a client’s request.

2.3.3 Maintaining Redundancy
In a large cluster, components are failing constantly. Due

to such failures, replication target changes, or other causes,
the file system can be caught with less redundancy than it
should have. Data loss will occur given sufficient simulta-
neous failures, with a probability dependent on how long it
takes the system to restore a missing replica or parity chunk.
So it’s important to restore missing data promptly.

The metaserver continuously monitors redundancy and
recreates missing data. For a replicated chunk this means
copying a healthy replica. For an erasure-coded chunk it
means reading six of the corresponding chunks and running
either the Reed-Solomon encoding (for a lost parity chunk)
or decoding (for a lost original data chunk). RS recovery
thus involves 250% more I/O than a copy, and some CPU
as well. Using vector instructions on an Intel X5670 Ne-
halem core, encoding runs at about 2.1 GB/s and decoding
at 1.2 GB/s. Without vector instructions decoding speed
drops significantly, to about 0.7 GB/s.

A terabyte of data represents thousands of chunks, so re-
dundant information for a drive will generally be spread
throughout the cluster, and the whole cluster will partici-
pate in restoring it. Our cluster recovers a lost drive in a
matter of minutes.

2.3.4 Evicting Chunks
Eviction is a request to recreate a chunk server’s data

elsewhere so that its machine can be safely taken down, for
example for repairs or upgrades. Simply copying the data off
would use the least bandwidth but a good bit of time: for a
12-disk machine with 21.6 TB of data and a 4 Gbps network
interface, a copy takes at least 12 hours. The metaserver
speeds eviction with RS recovery, allowing quick machine
power-downs at the expense of greater network load.

In our setup, draining a rack with 520 TB of data takes
about 8 to 10 hours using 500 to 600 Gbps of core network
bandwidth. We have evicted full racks while MapReduce
jobs were running at full speed without increasing the num-
ber of task failures significantly.

2.3.5 Hibernation
For quick maintenance such as an operating system kernel

Incoming
Data Stream

6
4

K
 S

tr
ip

es

64 MB
Data Chunk

64 MB
Parity Chunk

Chunk Server 1

1 MB

Chunk Server 9

1 MB

QFS Client

Six 1 MB
Data Buffers

Three 1 MB
Parity Blocks

Reed Solomon
6+3 Calculation

Figure 2: Reed-Solomon encoding for six-way stripes with three parity blocks.

upgrade, chunks are not evicted. Instead, the metaserver
is told that chunk server directories are being hibernated.
This will set a 30-minute window during which the meta-
server will not attempt to replicate or recover the data on
the servers being upgraded. Reads from data on the hi-
bernated chunk servers will be serviced through temporary
recovery for Reed-Solomon encoded files. Several nodes can
be hibernated at once but, to ensure data availability, only
within the same failure group.

2.4 Chunk server
Each chunk server stores chunks as files on the local file

system. The chunk server accepts connections from clients
to write and read data. It verifies data integrity on reads
and initiates recovery on permanent I/O errors or checksum
mismatches. For replicated files, the chunk server also co-
ordinates synchronous writes to daisy-chained replica chunk
servers. It forwards data to the next chunk server at the
same time it writes it locally, and reports a successful write
only after the rest of the chain has written successfully.

2.5 Interoperability
QFS is plugin compatible with Hadoop, so running in a

Hadoop environment involves setting up appropriate bind-
ings to the client library. Migrating data from HDFS to QFS
is a matter of running a trivial MapReduce job, for example
Hadoop’s distcp utility. QFS does not depend on Hadoop,
though, and can be used in other contexts. The open-source
distribution includes FUSE bindings, command-line tools,
and C++/Java APIs.

3. QFS IMPLEMENTATION
In this section, we discuss various implementation deci-

sions and optimization specifics in QFS.

3.1 Direct I/O for MapReduce Workloads
By default QFS uses direct I/O rather than the system

buffer cache, for several reasons. First, we wanted to en-
sure that data is indeed written contiguously in large blocks.
The kernel would otherwise choose the block size based on a

number of local factors that might be globally suboptimal.
The kernel does still manage the disk layout, however QFS
uses the space reservation feature of the underlying host
file system to make it highly likely that data gets written
contiguously. Our production file systems use XFS [3] as an
underlying file system. However, QFS can run on other host
file systems, such as ext4.

Second, we wanted RAM usage to be predictable. Our
distributed nodes run principally chunk servers, sorter pro-
cesses, and MapReduce JVMs. If their memory footprints
can be kept fixed, we can configure them to make maxi-
mal use of available RAM without the risk of paging, which
would create a sudden performance bottleneck and degrade
cluster throughput. Using direct I/O prevents variable RAM
usage due to the buffer cache.

Third, the QFS metaserver makes chunk allocation de-
cisions based on global knowledge of the queue sizes of all
the I/O devices it manages, as discussed in Section 2.3.1.
Using direct I/O shortens the feedback loop and keeps its
size deterministic and feedback-driven decisions timely. If
the buffer cache were turned on, by the time the metaserver
learned that the I/O on a particular machine was slow, a
large amount of data would have already been passed to the
buffer cache, prolonging a performance problem.

3.2 Scalable Concurrent Append
QFS implements a concurrent append operation similar to

the one described in [7], which scales up to tens of thousands
of concurrent clients writing to the same file at once. This
feature has been used by Quantsort [12] and Sailfish [11].

The client declares the maximum size of the block it will
write, and the metaserver directs it to a chunk server also
being written by other clients. The metaserver creates new
chunks as needed to keep the chunk size and the number of
simultaneous writers constrained and takes locality into ac-
count. The chunks thus created will have gaps, since clients’
request sizes do not add up exactly to 64 MB, but the client
code knows how to read these logical files sequentially. Cur-
rently concurrent append is implemented only for replicated
(not erasure-coded) files.

3.3 Metaserver Optimization
The metaserver is the most performance-critical part of

the file system and has been carefully optimized for fast,
deterministic response at large scale.

The metaserver represents the file system metadata in a
B+ tree to minimize random memory access, for similar
reasons that conventional file systems use such trees to min-
imize random disk access. The tree has four types of nodes:
internal, file or directory (i-node) attribute, directory entry,
and chunk info. All keys in the tree are 16-byte integers
consisting of a 4-bit node type, a 64-bit key that holds the
i-node number (directory id), and a 60-bit subkey holding
either a chunk position within a file or a hash of a directory
name. See statistics in Table 4.

The keys are constructed such that directory entry nodes
immediately follow a directory attribute node to optimize
directory listings, and chunk info nodes immediately fol-
low a file attribute node to optimize opening and reading
files. The directory entry name hash is used to avoid a lin-
ear search with i-node number lookups, where the search
key is a parent directory ID and an i-node name. Use of
the name hash permits an arbitrarily large number of direc-
tory entries within the same directory with no performance
penalty, keeping access cost logarithmic.

The metaserver uses its own pool allocators for metadata
nodes, to avoid the performance and space overhead of many
small OS allocations. It allocates new pools with the OS as
necessary, doubling the size of each new allocation up to a
limit, and never frees the memory. So the process footprint
can grow with the file system size but will not shrink.

A sorted linear hash table allows looking up chunk info by
chunk ID, which chunk servers need to do. The hash table
implementation delivers constant insertion, lookup, and re-
moval time from few entries to a half billion, while keeping
space, RAM access, and CPU overhead to a minimum.

3.4 Client
The QFS client library is designed to allow concurrent

I/O access to multiple files from a single client. The li-
brary consists of non-blocking, run-until-completion proto-
col state machines for handling a variety of tasks. One
manages a generic QFS protocol for communicating with
chunk servers and metaservers, and specialized state ma-
chines handle basic reading and writing, write-append, and
RS-encoded reading and writing. The latter is implemented
as plugins to the basic reading and writing state machines,
simplifying the implementation of other encoding schemes
in the future.

The state machines can be used directly to create highly
scalable applications. For example the Quantsort [12] radix
sorter is implemented by using the write append state ma-
chine directly. The file read and Reed-Solomon read state
machines are used to implement chunk recovery in the chunk
server.

The QFS library API is implemented by running the pro-
tocol state machines in a dedicated protocol worker thread.
All file I/O processing including network I/O, checksum-
ming, and recovery information calculation are performed
within this thread. The invoking thread enqueues the re-
quests into the protocol worker thread queue and waits for
responses.

The file system meta information manipulations such as
move, rename, delete, stat, or list require communication

only with the metaserver. These operations are serialized
by the QFS client library and block the caller thread until
the metaserver responds. Meta operations don’t use the
protocol worker thread, which is used only for actual file
I/O, which means only a single meta operation can be in
flight at at a time on one client instance. Since a client
can communicate with only one metaserver, parallel meta
operations wouldn’t execute faster assuming a low latency
network and could create undesirably high contention for
the metaserver. On the other hand, if required, it is always
possible to create more than one QFS client instance per
application or OS task process.

The QFS client library implements file and directory at-
tribute caching to reduce the metaserver load from redun-
dant attribute lookup operations. The main source of such
operations is file path traversal, stat, and glob (name pat-
tern search) calls. The cached file attribute entries can be
accessed by directory id (i-node number) and file or directory
name, or by full path name. Using full path names avoids
path traversal and reduces CPU utilization. The Hadoop
Java shim always uses full path names.

The use of read ahead and write behind keeps disk and
network I/O at a reasonable size. The default read-ahead
and write-behind parameters are based on the number of
data stripes to keep disk I/O requests around 1 MB. The
buffer size can be changed per file through the QFS client
API. The buffering implementation leverages scatter-gather
optimization in the kernel to keep buffer copying to a mini-
mum. The protocols are detailed in the Appendix.

4. PERFORMANCE IMPLICATIONS
A high-performing cluster requires a complex, dynamic

balance between resources such as storage, CPU, and net-
work, under different types of load. This section presents
a somewhat theoretical exploration of how QFS’s erasure
coding shifts the balance relative to 3x replication. Note
that QFS supports either on a per-file basis, so what follows
is a comparison not so much of file systems as of different
optimization approaches.

Our hypothetical cluster contains nine or more racks of
hardware and a two-tier network, in which a top-of-rack
switch handles each rack’s internal traffic, and racks com-
municate with each other via a layer of core switches. The
servers contain only spinning disks, gigabit or faster Eth-
ernet, and relatively modern CPUs—Intel Core, Nehalem
and Sandy Bridge. We further assume default QFS alloca-
tion policy: one chunk is written to the client’s host and
the other eight to hosts on eight different racks. For three-
way replication we assume the default HDFS policy, which
places one replica on the client’s host, another in the same
rack and the third in a different rack.

Table 2 shows a high-level summary of how erasure cod-
ing affects resource usage. The space required is cut in half,
three host failures are tolerated rather than two, and three
rack failures rather than one. You can take any rack down
for maintenance and the system is still more resilient to fail-
ures than a mint HDFS installation. A different replication
policy that kept all replicas on different racks would improve
resilience at a cost of doubling core network consumption.

It is important to note that erasure coded files can ac-
tually use more space than replicated files. When the file
size is smaller than the stripe block size, the effective space
use factor will be 4x with Reed-Solomon 6+3 because each

Table 2: Fundamental tradeoffs when storing
384 MB with erasure coding vs. replication.

RS 6+3 3-way repl
Disk space used 576 MB 1,152 MB

Write Disk I/O 576 MB 1,152 MB
Write Host NIC I/O 512 MB 768 MB
Write Intra-rack I/O 0 MB 384 MB
Write Core Switch I/O 512 MB 384 MB

Read Disk I/O 384 MB 384 MB
Read Host NIC I/O 384 MB 0–384 MB
Read Intra-rack I/O 0–64 MB 0–384 MB
Read Core Switch I/O 320–384 MB 0–384 MB

Host failures tolerated 3 2
Rack failures tolerated 3 1

parity stripe is the same size as the original. Across our pro-
duction file systems the effective space use factor is between
1.5x and 1.53x, as Table 4 shows. We use a block size of
64 KB.

4.1 Sequential Write Performance
A 6+3 erasure-coded cluster can theoretically write twice

as fast as a 3x replicated one, since it has only half as much
physical data to write, assuming disk I/O is the bottleneck.
Erasure coding will similarly reduce overall network load for
writing about 33%, since it will transmit 1.3x the original
data versus 2x for replication. It will also increase CPU load
on clients somewhat to calculate parity information.

From the point of view of a single client, a replicated file
can be written only as fast as a single disk, on the order
of 50 MB/s. An erasure-coded file can be written six times
faster since it is striped in parallel across multiple disks,
assuming other resources permit. A 1 Gbps network link
would throttle writes near 94 MB/s, since parity data will
need an additional 47 MB/s, and 1/9 of the total will be
written locally. This highlights the benefit of 10 Gbps NICs.
And those parallel spindles must be free: although the client
can benefit from having six drives to write to, every drive will
serve six times as many clients. This parallelism will speed
writes only to the extent the cluster has idle drives that
can be put to work. Due to load variations and imperfect
scheduling, even a busy cluster often will.

Note that strictly speaking the parallelism boost comes
from striping, not from erasure coding, and will vary with
the striping parameter. A similar effect could be achieved by
using replication with a very small chunk size and writing to
multiple chunks at once. For example, a chunk size of 1 MB
would come close, though it would increase memory use on
the name node, which would have to keep track of 64 times
as many chunks.

4.2 Sequential Read Performance
Peak system read throughput will be comparable between

erasure-coded and replicated clusters. Both schemes must
read the same amount of physical data, and both will bot-
tleneck on disk I/O throughput, again assuming adequate
core network bandwidth.

For a single client, reading from erasure-coded (or simply
striped) files is up to six times faster, network and spindles
permitting, for the same reasons discussed above.

4.3 Random Read Performance
Regardless of the redundancy scheme, random read per-

formance is generally poor on spinning disks, which can-
not generally perform more than 50 operations per second
(IOPS). To maximize performance, block size on disk must
be larger than requested read size so the request can be done
in a single operation. Erasure coding will not affect perfor-
mance one way or the other as long as the stripe size is
significantly larger than the average read. When stripes are
smaller a read will have to merge data from multiple chunk
servers. Although this wouldn’t slow down a single client,
it increases the system IOPS load by up to 6x, potentially
creating a system bottleneck.

The stripe block size is a file attribute which can be set
according to each file’s access pattern. We use 1 MB for files
intended for random reads and 64 KB otherwise.

4.4 Broadcast Performance
Another common access pattern in distributed data pro-

cessing is broadcasting data via the file system. For example,
thousands of workers may need to receive some common con-
figuration data before they can begin, so Hadoop writes the
data to the file system and they all read it from there. The
reads can create local network bottlenecks, since although
the configuration data is replicated across several hosts, each
has too many clients to serve it to.

Although a specialized peer-to-peer system would solve
the problem well, broadcasts via the file system have the
advantage of simplicity, and striping allows them to scale
well. A large striping factor (we use 128) and small replica-
tion count (we use 2) distributes the data and therefore the
read load much more widely around the cluster, avoiding
network bottlenecks. Even without striping, a small chunk
size will have a similar effect, though at the cost of additional
RAM pressure on the name node.

4.5 MapReduce Performance on QFS
MapReduce processing involves primarily large sequential

reads and writes, so the discussion above applies, but a spe-
cific MapReduce pattern merits focus. A key determinant
of MapReduce job run time, which is to say how long users
must wait for results, is the long tail of “straggling” workers.
[4] Inevitably a few of the hundreds or thousands of devices
a job reads from will be suffering problems or will host data
in high demand from other jobs, and will run slowly as a
result. The slowest 1% of workers can account for 50% of
the elapsed job time.

Timely job output therefore depends on good straggler
management. With replication, a strategy for handling strag-
glers is to start redundant speculative tasks and assign them
to replicas in order to avoid whatever problem affects the
slow device. It’s a gamble that pays off when the source of
the slowness is, for example, CPU contention. In that case,
a redundant worker is likely to be able to read the data
quickly and finish it quickly. The payoff is even bigger using
erasure coding, since the worker can read from six devices
in parallel.

But when the slowness was due to a disk I/O bottle-
neck, speculative re-execution can make a straggler even
slower. A large cluster will often have three slow nodes,
so often some unlucky chunks will have all three replicas
bottlenecked. The redundant tasks will then pile additional
load on those nodes, slowing them even further. Pile-on is a

0 50 100 150 200 250 300

ls

mkdir

rmdir

stat

Operations per second (thousands)

QFS HDFS

Figure 3: Metaserver operation performance.

certainty using erasure coding, since there is only one copy
of the original data. But QFS has an alternate recovery
mechanism. If a chunk server takes more than 20 seconds to
respond, the client will read parity blocks and reconstruct
the data it needs. This adds a delay but avoids rereading
the full data, and the three parity stripes reduce the odds
of stragglers delaying the job. Replication can tolerate two
slow nodes, 6+3 RS can tolerate three. In our environment
this timeout approach appears to work better than specula-
tive re-execution plus replication.

Writing to the distributed file system could also stall due
to a slow device, which can mean a whole stalled MapReduce
job. Reed-Solomon 6+3 is theoretically more vulnerable to
slow drives, since a write involves three times as many drives.
On the other hand, QFS’s chunk allocation avoids drives
with long I/O queues.

5. BENCHMARKS
We conducted two tests of QFS relative to HDFS at scale,

designed to compare performance under controlled condi-
tions that approximate real-life load patterns. Of course, a
cluster is a multi-user system, and our real-life MapReduce
jobs run concurrently with scores of other jobs, so “con-
trolled” and “real-life” are conflicting goals. We neverthe-
less offer these as our results and invite others to conduct
their own tests. The metaserver benchmark in particular is
fairly environment independent, and we’ve shared its test
scripts on Github [2].

5.1 Metaserver/Name Node Performance
Our first test compared the performance of the QFS meta-

server vs. the HDFS name node. The test setup involved
one QFS metaserver and one HDFS name node running (not
at the same time) on a dual Xeon E5-2670 machine with
64 GB RAM, loaded by 512 client processes running across
16 machines. Each client process built, queried, or disman-
tled a balanced directory structure of 384 directories each
with 384 subdirectories. In other words the tests executed
75.7 million operations on a file system with 75.7 million di-
rectories at its peak. We focused on directories rather than
files because although creating a file in QFS involves only the

0

2

4

6

8

10

12

14

16

18

Write Read

E
nd

-to
-e

nd
 ti

m
e

(m
in

ut
es

)

HDFS 64 MB

HDFS 2.5 GB

QFS 64 MB

(a) 20 TB MapReduce job performance.

	

QFS
write

HDFS
write

QFS
read

HDFS
read

(b) Network usage across whole cluster.

Figure 4: MapReduce performance, QFS vs. HDFS.

metaserver, in HDFS it involves extra overhead to communi-
cate with a data node, which seemed an unfair comparison.
We used as a reference HDFS version 2.0.0-cdh4.0.0.

As Figure 3 shows, QFS’s lean native implementation and
optimizations pay off consistently, from a 30% edge for a sim-
ple directory listing to nearly 4x improvement in directory
creation.

5.2 MapReduce Read/Write Job Throughput
To test the performance of the file system as a whole, we

ran simple MapReduce jobs that either wrote or read 20 TB
of data on our production cluster, described in section 6. We
used the teragen program shipped with the Hadoop 1.0.2
distribution, configured it to use 8,000 MapReduce workers,
and ran it on an otherwise idle cluster. We compared its
performance using QFS 1.0 as the data store and using the
Apache HDFS 1.0.2 distribution. We tried two block sizes
for HDFS, 64 MB and 2.5 GB, and 64 MB for QFS. We much
prefer to keep the chunk size small so that MapReduce tasks
can be kept short, thus easier to schedule.

Figure 4(a) shows the end-to-end job execution times.
The write times show the expected speed-up due to 50% less
I/O volume. Figure 4(b) shows the network use measured
as sum of bandwidth used at host network interface across
all hosts while these benchmarks were run. The QFS write
volume (the area under the first peak) was clearly smaller
than the HDFS volume (the area under the second). HDFS
used more disk I/O than the graph suggests, since it writes
a third of its data locally.

Neither file system had a data volume advantage for the

Table 3: Quantcast MapReduce cluster setup.
Network per host

CPU RAM Disks in rack to core
1 Intel x32xx 8 GB 4 1 Gbps 0.9 Gbps
2 Intel x56xx 48 GB 12 4 Gbps 3.3 Gbps
2 Intel E5-26xx 64 GB 12 10 Gbps 6 Gbps

read test: both had to read the same 20 TB of physical
data. The third and fourth peaks of Figure 4(b) show that
QFS loaded the network significantly more, while HDFS was
able to read more data locally, but both took about five
minutes of active time to read most of the data. However
on QFS the job ran for another five minutes, and on HDFS
for another 10, waiting for straggling workers to finish. The
cluster was mostly idle in the straggler phase, and QFS’s
read parallelism delivered a significant advantage. While
straggling tasks using replication were bound by single-disk
read speed around 50 MB/s, QFS’s striping allowed them
to read up to six times faster. Figure 4 shows QFS finished
significantly faster when both systems used the same 64 MB
block size, though using 2.5 GB blocks for HDFS brought it
closer to QFS performance. The read experiment was run
with default Hadoop settings, including speculative tasks.
A similar number of speculative tasks was run both with
QFS and HDFS.

6. QFS USE IN PRODUCTION
Quantcast has run QFS in production contexts through-

out its development since 2008, and exclusively since 2011.
We rely on several QFS instances, as Table 4 describes. One
is used to store several petabytes of log data. Another, also
holding several petabytes of data, is used as our MapReduce
input/output store. Other instances are used to store sort
spills or backup data.

These different file system instances run across the whole
cluster, and every machine runs a chunk server for each. The
file systems are configured with different fill and rebalance
thresholds, which allows us to provision space evenly for the
sort spill file system by setting its fill threshold higher than
the other file systems. They may run different versions of
QFS, which allows us to perform gradual upgrades, start-
ing with the least-sensitive-to-loss sort spill file system and
ending with the most sensitive backup file system.

Table 3 shows the cluster composition, which totals about
7,000 disks, 9,000 CPU cores, 25 TB of RAM, and 10 PB
of disk. On a typical day we run about 3,000 MapReduce
jobs, and QFS handles about 5 to 10 PB of compressed data
I/O. We’re satisfied with QFS uptime; though individual
nodes fail constantly, the system as a whole runs reliably for
months at a time between maintenance activity.

Shortly after QFS’s open-source launch in September 2012,
Neustar [9] reported adopting it for a 3.6 PB store, and that
it allowed them to double their data retention with no ad-
ditional hardware cost.

7. RELATED WORK
Comparison to HDFS. Much of the paper was about

this. To sum it up, QFS offers 50% storage savings by em-
ploying erasure coding rather than replication as a fault tol-
erance mechanism. Note that HDFS offers a RAID imple-
mentation [5] layered on top of an HDFS file system, which

makes it harder to use. At the time of this writing there was
no mention of HDFS RAID being used for anything other
than large backups. Beyond the hardware savings, QFS of-
fers significant speed improvements out of the box, simply
by using QFS instead of HDFS. The QFS MapReduce im-
plementation, Quantsort [12], was developed in tandem with
QFS and makes use of the QFS scalable concurrent append
feature to speed up MapReduce significantly and make it
easier to operate. Also, sort spills are written only to QFS,
never to the local file system. This makes it easier to work
around hardware failures, as write workload can be diverted
to another host. It also makes it easier to tolerate CPU /
I/O imbalance in heterogeneous clusters.

Comparison to GFS. Both HDFS and QFS follow the
GFS [7] architecture. However, the original GFS design suf-
fered from the same 3x storage expansion ratio as HDFS.
We found limited information online [6] on an upgrade to
GFS that provided distributed metadata as well as small
block size and Reed-Solomon encoding. GFS is proprietary,
thus we could not compare its performance head-to-head.

Table 5 presents a brief comparison of features of different
large-scale distributed file systems. QFS, HDFS, and GFS
are fully fault tolerant, while GPFS generally relies on the
hosts not to fail. However, GPFS tolerates drive failures
by using single-machine RAID. GPFS is the only one sup-
porting POSIX semantics. Only QFS and HDFS are open
source and support Hadoop MapReduce.

DFS [8] is a high performance distributed blob store. It
uses striping and works well on clusters with balanced disk
and network throughput. Unlike QFS, it replicates not only
chunk data but metadata as well. It has a single point of
failure, does not offer a file system interface, and requires
space comparable to HDFS as it employs 3x or higher repli-
cation. DFS is currently at an advanced experimental ma-
turity level.

7.1 Limitations and Future Work
A notable QFS limitation is the single point of failure in

the metaserver. In many MapReduce environments, includ-
ing our own, a highly available central node would be nice
to have but isn’t critical, as temporary outages could be tol-
erated if they occurred. As table 4 suggests, outages tend to
be rare and deliberate. High availability is on our roadmap
but may have more business impact in other environments.

Additional improvements on our roadmap include feder-
ation capability and secure authentication, improving on
QFS’s existing POSIX-like user and group structure.

8. CONCLUSIONS
It is the nature of big data that it tends to become bigger,

with hardware and operating costs scaling to match, quickly
into the millions for many organizations. By reducing disk
space requirements by 50%, QFS offers data-bound organi-
zations dramatically better economics. It allows them to
squeeze twice as much data into their existing hardware, to
put off their next data center expansion for a year or two,
and to spend half as much when they finally do expand.

QFS integrates easily with Hadoop but does not require
it and may provide a benefit in environments that read and
write large, sequential blocks of data through other means.
As an open-source project, it’s free of license fees that could
undermine its economics and is positioned to benefit from
community scrutiny and collaboration. It has also been

Table 4: Some of the QFS instances currently in production at Quantcast. The third column shows the
effective replication factor.

Metaserver
Purpose Size Repl. Files Blocks Clients RAM Uptime Last Restart
MapReduce input & output 3.6 PB 1.506 31 ∗ 106 240 ∗ 106 40,000 45 GB 197 days HW upgrade
Logs 3.1 PB 1.500 46 ∗ 106 398 ∗ 106 10,000 74 GB 111 days Increase RAM
Backups 406 TB 1.530 8 ∗ 106 45 ∗ 106 400 9 GB 156 days Can’t remember
Column store 21 TB 1.509 2 ∗ 106 11 ∗ 106 115,000 10 GB 197 days Can’t remember
Sort spill file system 0-400 TB N/A 0.5 ∗ 106 2.7 ∗ 106 25,000 6 GB 50 days SW Optimization

Table 5: Comparison of a selection of distributed file systems.
Feature QFS HDFS [13] GFS [7] GPFS [1] DFS [8]
Raw space needs +50% +200% +200% +100% (flexible) +200%
Tolerate disk failures yes yes yes yes yes
Tolerate host failures yes yes yes no yes
Scale PBs PBs PBs PBs 100s of TB
Open source Apache License Apache License no no no
Hadoop compatible yes yes no no no
Federated namespace no yes yes yes yes
High availability name node no yes yes no no
Small blocks stripes no yes no possible
POSIX compliant no no no no no
Implementation language C++ Java C++ unknown unknown

severely tested over five years in Quantcast’s production en-
vironment.

QFS will not meet everyone’s needs but has met ours, and
we believe it will add a great deal of value for other orga-
nizations working with big data. We’re pleased to be able
to offer it back to the open-source community and welcome
collaboration on its continued development.

9. ADDITIONAL AUTHORS

• Chris Zimmerman (Quantcast, zim@quantcast.com)

• Dan Adkins (Google, dadkins@google.com)

• Thilee Subramaniam (Quantcast, thilee@quantcast.com)

• Jeremy Fishman (Quantcast, jfishman@quantcast.com)

10. REFERENCES
[1] GPFS. http://en.wikipedia.org/wiki/GPFS.

[2] QFS Repository. http://quantcast.github.com/qfs.

[3] XFS. http://en.wikipedia.org/wiki/XFS.

[4] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI, pages
137–150. USENIX Association, 2004.

[5] H. K. et al. HDFS RAID.
http://wiki.apache.org/hadoop/HDFS-RAID, 2010.

[6] A. Fikes. Storage architecture and challenges (google).
http://tinyurl.com/6vbhgzn.

[7] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
google file system. In M. L. Scott and L. L. Peterson,
editors, SOSP, pages 29–43. ACM, 2003.

[8] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann,
J. Howell, and Y. Suzue. Flat datacenter storage. In
Proceedings of the 10th USENIX conference on

Operating Systems Design and Implementation,
OSDI’12, pages 1–15, Berkeley, CA, USA, 2012.
USENIX Association.

[9] M. Peterson. Using hadoop to expand data
warehousing (neustar). http://tinyurl.com/cpjc7ko,
2013.

[10] S. Rao et al. The kosmos file system.
https://code.google.com/p/kosmosfs, 2010.

[11] S. Rao, R. Ramakrishnan, A. Silberstein,
M. Ovsiannikov, and D. Reeves. Sailfish: A framework
for large scale data processing. In ACM Symposium on
Cloud Computing, 2012.

[12] S. Rus, M. Ovsiannikov, and J. Kelly. Quantsort:
Revolution in map-reduce performance and operation.
http://tinyurl.com/c4hkftm, 2011.

[13] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The hadoop distributed file system. In M. G. Khatib,
X. He, and M. Factor, editors, MSST, pages 1–10.
IEEE Computer Society, 2010.

APPENDIX
A. QFS CLIENT PROTOCOLS
Write protocol for replicated files

1. The client requests metaserver to allocate a chunk by
specifying a file ID and chunk position within the file.

2. The metaserver creates a chunk write lease, if no cor-
responding read leases exist.

3. When the metaserver creates a new chunk it chooses
chunk servers to host replicas, based on rack, host, and
load constraints, and forwards an allocation request to
the chosen chunk severs.

4. Once all chunk servers respond the metaserver returns
a list of chosen chunk servers to the client.

5. The client requests the chunk servers hosting replicas
to allocate a write ID.

6. The client computes the data checksum and sends the
data along with the checksum to the first chunk server
in the chosen chunk server list (the write master).

7. The write master receives the data, validates the data
checksum, write ID, and write lease. If successful, it
issues the corresponding chunk write, forwards the data
to the chunk server hosting the next replica (if any),
and waits for it to return a write status. This process
repeats on all chunk servers hosting chunk replicas.

8. When the write master receives a write status from the
last chunk server in the synchronous replication chain,
it forwards its status to the client.

9. If successful, the client returns the status to the caller,
otherwise it retries the write starting from step 1.

Read protocol for replicated files

1. The client gets a list of the chunk servers hosting chunk
replicas for a given file ID at a specified position within
the file.

2. The client acquires a chunk read lease.

3. The client chooses one of the chunk servers hosting
replicas and issues a read request to this server.

4. The chunk server fetches data from disk, verifies the
checksum, and returns the response to the client.

5. The client verifies the data checksum and if successful
returns the response to the caller. Otherwise it retries
the read with a different chunk server if available.

Write protocol for striped files (with and without
erasure coding)

1. The client computes data and recovery chunk data. Ev-
ery chunk corresponds to a single stripe.

2. For each chunk the replicated write protocol described
the above is used. All chunks writes are issued in par-
allel. The client can invalidate a chunk if all replicas
(single replica with replication 1) of the chunks are lost
during the write. The metaserver will schedule chunk
recovery once the client relinquishes the write lease.

Read protocol for striped files (with and without
erasure coding)

1. The client issues reads of the appropriate chunks and
stripes using the replicated file write protocol in paral-
lel.

2. If the reads are successful, the client assembles the re-
sponse and returns the data to the caller. If one of the
reads fails the client issues a read of one of the parity
stripes, and if successful recomputes the missing data.

Reliable concurrent write append protocol. The write
append protocol at the high level is similar to replicated files
write protocol. The main difference is that with multiple
writers appending to a chunk, clients do not know the final
chunk that the data will end up in. This decision is ulti-
mately deferred to the metaserver. Under normal circum-
stances the first chunk in the synchronous replication chain
(write master) makes this decision and notifies the meta-
server. Should the write master become unavailable, the
metaserver makes this decision. With write append each
chunk server keeps in memory the status of the last request
for every client / write ID. In case of a timeout (chunk server
failure or communication outage) the client can recover the
state of the last append operation by querying the (remain-
ing) chunk servers in the synchronous replication chain.

