Available online at www.sciencedirect.com

Journal of
sanNCE@DlRECT@ Parallel and
i Distributed
= s ¢ ti
ELSEVIER J. Parallel Distrib. Comput. 64 (2004) 10511059 omputing

www.elsevier.com/locate/jpdc

An improved, randomized algorithm for parallel selection with an
experimental study

David A. Badeft

Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA

Received 7 February 2003; received in revised form 24 June 2004

Abstract

A common statistical problem is that of finding the median element in a set of data. This paper presents an efficient randomized high-
level parallel algorithm for finding the median given a set of elements distributed across a parallel machine. In fact, our algorithm solves
the general selection problem that requires the determination of the element &, fankan arbitrarily given integek.

Our general framework is an SPMD distributed-memory programming model that is enhanced by a set of communication primitives. We
use efficient techniques for distributing and coalescing data as well as efficient combinations of task and data parallelism. The algorithms
have been coded in the message-passing standard MPI, and our experimental results from the IBM SP-2 illustrate the scalability and
efficiency of our algorithm and improve upon all the related experimental results known to the author.

The main contributions of this paper are

(1) New techniques for speeding the performance of certain randomized algorithms, such as selection, which are efficient with likely
probability.

(2) A new, practical randomized selection algorithm (UltraFast) with significantly improved convergence.
© 2004 Elsevier Inc. All rights reserved.

Keywords: Selection algorithm; Randomized algorithms; Parallel algorithms; Experimental parallel algorithmics

1. Introduction problem sequentially surely would overwhelm a single

. e . processor.
Selection and median finding in large data sets are im- Given a set of dat& with |X| = n, the selection prob-

portant statistical measures needed by a variety of high- o, requires the determination of the element with rank
performance computing applications, for example, image ¢ js thekth smallest element), for an arbitrarily given

processing for computer vision and remote Sensing, COM-jniaqerk Median finding is a special case of selection
putational aerodynamics and physics simulations, and dat ith k = 2

L L 5. In previous work, we have designed deter-
mining of large databases. In these applications, the data sef, inistic a

. . - nd efficient parallel algorithms for the selection
ftyp|cally is already evenly distributed across the process- problem on current parallel machinggs6,7]. In this paper,
ing nodes. Because of the large data volume, solving the

we discuss a new UltraFast Randomized algorithm for the
selection problem that, unlike previous research (for
* This work was supported in part by NSF Grants CAREER ACI-00- example, [10';2*_14_21)]' is not dependent on) network
93039, ITR ACI-00-81404, DEB-99-10123, ITR EIA-01-21377, Biocom- topology or limited to the PRAM model which does
plexity DEB-01-20709, and ITR EF/BIO 03-31654; and DARPA Contract not assign a realistic cost for communication. In addi-

NBCH30390004. tion, our randomized algorithm improves upon previous
* Fax: +1-505-277-1439, implementations on current parallel platforms, for example
E-mail addressdbader@ece.unm.edd.A. Bader). p' P . .p. N P'e,
URL: http:/www.ece.unm.eduidbader [2] implements both our deterministic algorithm and the

0743-7315/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2004.06.010

http://www.elsevier.com/locate/jpdc
mailto:dbader@ece.unm.edu
http://www.ece.unm.edu/~dbader

1052 D.A. Bader / J. Parallel Distrib. Comput. 64 (2004) 1051-1059

randomized algorithms due to Rajasekaran et al. (e.g.,
[15,17) on the TMC CM-5. An earlier version of this paper
appeared afp].

The main contributions of this paper are:

(1) New techniques for speeding the performance of cer-
tain randomized algorithms, such as selection, that are
efficient with likely probability.

(2) A new, practical randomized selection algorithm (Ul-
traFast) with significantly improved convergence.

The remainder of this paper is organized as follows. Our
new randomized selection algorithm is detailed in Sec2on
followed by analysis and experimental results in Sec8on (2) Aggressive convergencAs outlined in SectiorB, our
More extensive statistics from our experiments are reported algorithm converges roughly twice as fast as the best
in [4]. known previous algorithm.

(3) Algorithmic reductionAt each iteration, we use “selec-
tion” to choose the splitters instead of sorting, a com-
putationally harder problem.

(4) Communication aggregationSimilar collective com-

measure of problem size per node, because communi-
cation is typically an order of magnitude slower than
local computation. In addition, machine configurations
tend to be small to moderate in terms of number of
processorsp). Thus, a stopping criterion of problem
size < p? is much too fine grained for current ma-
chines, and we suggest, for instance, a stopping size
of max(p?, 4096. Whenp is small andn = O(p?), a
second practical reason for increasing the stopping size
is that the sample is very limited and might not yield
splitters that further partition the input.

2. Parallel selection

The selection algorithm for rank assumes that input
dataX of sizen are initially distributed evenly across tipe
processors, such that each processor hbléégements. The
output, namely the element frodkwith rankk, is returned

munication steps are merged into a single operation.
For instance, instead of calling th@ombine primi-
tive twice to find the size of group&o and G1 (|G2|
can be calculated from this information and the prob-

on each processor. lem size), we aggregate these operations into a single
The randomized selection algorithm locates the element step.

of rankk by pruning the set of candidate elements using the (5) “Min/Max” selection algorithmWhen the selection in-

following iterative procedure. Tweplitter elementgk, k2) dex is relatively close to 1 am, our approach switches

are chosen that partition the input into three growps,G1, to a faster algorithm for this special case.

and G, such that each element @y is less tharky, each Next we outline our new UltraFast randomized selection

element inG1 lies in [k1, k2], and each inG, is greater algorithm (see Algorithm 1).

thanky. The desire is to have the middle grogi much

smaller than the outer two groupkG1| <|Gol, |G2|) with

the conditionthat the selection index lies within this mid-

dle group. The process is repeated iteratively on the group3- Analysis

holding the selection index until the size of the group is

“small enough,” whereby the remaining elements are gath- The following sampling lemma from Rajasekaran (see

ered onto a single processor and the problem is solved[17]) will be used in the analysis.

sequentially. Let S = {v1, v2, ..., vs} be a random sample from a set
The key to this approach is Choosing Sp“tteisand k2 X of Cardina”tyn. AlSO, let U&, 'U/Z, ey U; be the sorted or-

that minimize the size of the middle group while maximiz- der of this sample. If; is the rank ofk} in X, the follow-

ing the probability of theconditionthat the selection index iNg lemma provides a high probability confidence interval

lies within this group. Splitters are chosen from a random for ri.

sample of the input, by finding a pair of elements of certain

rank in the sample (see SectiBp The “Fast Randomized” Lemma 1. For everyo, Pr <|ri —i%] > \/@\%\/In n) <

algorithm of Rajasekaran and Reif (§d%,17] and imple- n—".

mented in2]) takes a conservative approach that guarantees

the condition _/vith high_probability. We have_discovered & Thus, ifk; andk, are chosen as the splitters from sample
more aggressive technique for pruning the input space bysetSby selecting the elements with raélk—d /s In n and

_choosmg sp]l_tters f:loger together n the samp_le while hold- ;s +d+/s In n, respectively, and = /4o, then the element
ing the condition with likely probability. In practice, the con- ”

It X . of desired rank will lie in the middle partitiottiess Cless+
dition almost always holds, and in the event of a failure, new cmial with high probability(1 — n=%).

splitters are_chosen fr(_)_m the sa_mple with a greater spread " tradeoff occurs between the size of the middle partition
of Iranléz.t'.m" the (_sondltlon IS Sat'Sf'e.d‘ laorithms in th (r) and the confidence that the desired element lies within
n addition, we Improve upon previous aigorthms in the ;. partition. Note that in the Fast Randomized algorithm,

following ways. . . S _1 n
(1) Stopping criterion For utmost performance, current with d = 1, this probability is -n"4, andr<87§ In n.

parallel machines require a coarse granularity, the Sinces ~ n?, this can be approximated by< 81 2/In n.

D.A. Bader / J. Parallel Distrib. Comput. 64 (2004) 1051-1059 1053

Algorithm 1. UltraFast Randomized Selection Algorithm for procespr

Input
{n} - Total number of elements {p} - Total number of processors, labeled from Opte- 1
{L;}- List of elements on processat;, where|L;| = %
{C}-A constant~ max(p2,409© {e}- log, of the sample size (e.g. 0.6)
{A*}-selection coefficient (e.g. 1.0) {x}-selection coefficient multiplier (e.g. 2.25)
{n}- Min/Max constant (e.g. 2) rank-desired rank among the elements
begin

Step Q Setn; = %
While (n > C) and (|n — rank| > n)
Step 1 Collect a samples; from L; by picking n; ’jli elements at random oR;.
Step 2 S = Gather(S;, p).
Setz = TRUE and4 = A*.
While (z = TRUE)
On Py
Step 3.Selectky, k» from S with ranks {% - AJWJ and L"% + AJWJ.
Step 4.Broadcastc; and k.
Step 5. Partition L; into < k1 and[k1, k2], and > kp, to give countdess middle
(and high). Only save the elements that lie in the middle partition.
Step 6. c¢j5s = Combine(less +); ¢,,;¢ = Combine(middle +);
Step 7.1f (rank € (cjess. Cless + Cmial)
n = Cpid; ni = middle; rank = rank — cj.55; 7 = FALSE
Else
OnPy:d=x-4
Endif
Endwhile
Endwhile
If (Jn — rank| <n) then
If rank <n then we use the “minimum” approach, otherwise, we use the “maximum”
approach in parentheses, as follows.
Step 8. Sequentially sort our; elements in nondecreasing (nonincreasing) order using a
modified insertion sort with output sizé; | = min(rank, n;) (|IL;| = min(n—rank+1, n;)).
An element that is greater (less) than the minimum (maximum) elements is discarded.
Step 9. Gatherthe p sorted subsequences onfg.
Step 10.Using ap-way tournament tree of losefd3] constructed from the sorted
subsequencesrank) (n — rank + 1) elements are extracted, to find the elemgniith
selection indexank
Else
Step 11.L = Gather(L;).
Step 12.0n Py
Perform sequential selection to find elemendf rank in L;
Endif
result = Broadcast(q).
end

Suppose now the bound is relaxed with probability no 3.1. Complexity
less than 1- n=* = p. Thena = —'3?%, and the . .
splitters k1, k» can be chosen with rank‘;;} — AJs and We use a simple model of parqllel computatlon.to_ ana-
B4 AJs for A = ZW (see Tablel). Then lyze the performanpe of the selection algorithms, similar to
n AV, . P e the message-passing models (e.g., BSP, LogP, etc.). Current
the size 0,5 the middle partltl_on can be bound_ed similarly hardware platforms can be viewed as a collection of power-
by r < 167§V —In(— p). This can be approximated by processors connected by a communication network that
<12, /“In(1— p). Thus, the middle partition size can be modeled as a complete graph on which communica-
of the UltraFast algorithm is typically smaller than that of tion is subject to the restrictions imposed by the latency and
the Fast algorithm, whenever the condition- (1 — p) 2. the bandwidth properties of the network. We view a parallel
A large value fok increases running time since the sample algorithm as a sequence of local computations interleaved
(of sizen®) must be either sorted (in Fast) or have elements with communication steps, and we allow computation and
selected from it (in UltraFast). A small value ofncreases communication to overlap. We account for communication
the probability that both of the splitters lie on one side of costs as follows.
the desired element, thus causing an unsuccessful iteration. The transfer of a block consisting ofcontiguous words,
In practice, 06 is an appropriate value far[2]. assuming no congestion, take$t&- om) time, wherer is

1054 D.A. Bader / J. Parallel Distrib. Comput. 64 (2004) 1051-1059

Table 1 [I]—Identical elementd0, 1, ..., 2 — 1} on each proces-
Lower bound of the capture probabilitp) that the selection index is in sor. 4

the middle partition, where = 1 — ¢~ 4 [S]—Sorted element$0, 1, ...,n — 1} distributed inp

A Lower bound of capturep(in %) blocks across the processors.

6.07 99.99 [Rl—Random, uniformly-distributed, elements, wif};l

5.26 99.9 elements per processor.

4.29 99.0 [N]— This input is taken from the NAS Parallel Bench-
3.03 90.0 mark for Integer Sorting9]. Keys are integers in the range
g'ig ?g'g [0,219), and each key is the average of four consecutive
101 60.0 uniformly—_distributed pseudo-random numbers generated by
1.50 43.0 the following recurrence:

1.00 221 5

0.50 6.05 xk41 = axg(mod 26),

. _ wherea = 5' and the seedy = 314159265. Thus, the
an bound on the latency of the network anis the time per gjstribution of the key values is a Gaussian approximation.
word at which a processor can inject or receive data from on g p-processor machine, the firgt generated keys are

the network. _ _ _assigned taPp, the next to P;, and so forth, until each
One iteration of the Fast randomized selection algorithm P
processor ha% keys.

takes Gn) + (1 + o) log p) time, wheren/) is the maxi- o _
Q ¢)1og p) [K]—This input contalns% randomly generated ele-

mum number of elements held by any processor during iter-
ments per processor, sampled from the skewed log-normal

ationj. From the bound on the size of the middle partition, .= = M= L0 o
we find a recurrence on the problem size during iteration distribution,” in the range of positive integefs, INTMAX]
(where INTMAX, for example, is & — 1 on a 32-bit

no =n, machine). We generate each pseudo-random integer
ni +1< 8nl(-)‘7\/|n n;, (1) 1

which shows a geometric decrease in problem size per iter- ({eXp<1_2 In INTMAX - normRando, 1)

ation, and thus, Qog log n) iterations are required. Since 1

n) — o(%), Fast selection requires +§ In INTMAX)J)

by taking the largest integer less than or equal to the expo-
O(% log logn + (7 + 0) log p log log ") @) n)e/ntial (?f a mea% 0, stang(]jard deviation 1 gaussian rande)m
time. Assuming random data distribution, the running time number (found by adding together twelve uniformly dis-
reduces to the following2]: trlbuted random numbers from the rar{géJ.S, 0.5)) that_|s
first scaled byll—2 In INTMAX and then displaced to the right
o <ﬁ + (t+ o) log p log log n) . 3) by 3 In INTMAX. For a given INTMAX, the mean and stan-
p dard deviation of this skewed distribution are computable.

Each iteration of the UltraFast algorithm is similar to Fast,
except sorting is replaced by sequential selection, which 3 3. Empirical results
takes linear tim§l1]. Also, the problem size during iteration

i is bounded with the following recurrence: Results for a previous implementation of the Fast random-
no = n, ized selection algorithm on the TMC CM-5 parallel machine
Mit1 < 16”517 I = p), (4) appear in2]. However, this machine is no longer available

o)) and does not support the current message-passing standard
and similar to the Fast algorithm, UltraFast requires yip| Therefore, we have recoded this algorithm into MPI.
O(log log n) iterations. Thus, UltraFast randomized selec- 1gpje2 compares the execution time of the Fast random-

tion has a similar complexity, with a worst case running ;a4 algorithm on both the CM-B,2] and the I1BM SP-2.
time given in Eq.). As we will show later by empirical

results in Table_& thQUgha. the_ constant associated With — 17ne og-normal is a distribution whose natural logarithm is a normal
the number of iterations is significantly smaller for the distribution. Given a normal distribution with meanand standard devi-

UltraFast algorithm. ation o, the log-normal distribution exporm(u, #)) has meare#+7"/2
and varianca:24+7° (¢7 — 1),
3.2. Experimental data sets 2 For our generator, a log-normal distribution with mgaand standard

deviationg, the scale ilz In INTMAX) of the mean 0, s.d. 1, Gaussian
Empirical results for the selection algorithm use the fol- random number equalgin (#) the displacement}(In INTMAX)
u

lowing five input classes. Given a problem of sizandp L p
processors, equals; In <7Hz+gz>-

D.A. Bader / J. Parallel Distrib. Comput. 64 (2004) 1051-1059 1055

Table 2
Comparison of the execution time of the Fast randomized selection algorithm on TMC CM-5 and IBM SP-2-TN (in ms)
n p [R]andom Input [Slorted Input
CM-5 SP-2 SP-2 CM-5 SP-2 SP-2
33 66 P2 160 P2SC 33 66 P2 160 P2SC
4 174 68.0 23.5 194 104 25.6
512K 8 105 62.7 17.2 119 79.6 21.7
16 69.5 39.5 10.8 86.7 61.9 15.6
4 591 153 56.6 601 229 67.3
2M 8 318 108 37.6 359 182 48.0
16 193 74.4 23.7 237 136 34.6
Table 3

Since selection is computation-bound, we would expect the

Total number of iterations of the Fast and UltraFast randomized selection
performance to be closely related to the node performance

of these two machines. The SP-2-TN 66 MHz Power2 (66- é:gomhms Input Fast UltraFast
P2) processor is roughly twice as fast as the CM-5 33 MHz

RISC processor. As expected, this factor of two performance 512K !:, ig ;
improvement is apparent in the execution time comparison R 29 5

for equivalent machine and problem sizes. In actuality, the N 19 2

SP-2 is more than twice as powerful, since communication K 18 2

latency and bandwidth are improved roughly by a factor

of three. The newer SP-2-TN 160 MHz Power2 SuperChip M 5 - 2
(160-P2SC) nodes are roughly three times faster than the 66- R 29 >
P2 nodes, and we see a similar performance improvement. N 32 2
We conducted experiments with our UltraFast and the K 22 2
known Fast randomized selection algorithms on an IBM SP-
2 (with 160-P2SC nodes) with four, eight, and sixteen pro- M 'S 2262 23
cessors, by finding the median of each input in the previous R 21 2
section for various problem sizes (ranging betweeK 16 N 38 3
16M elements)® A comparison of the empirical execution K 20 3
times for machine configurations of = 4, 8, and 16 pro-
cessors are graphed using log—log plots in Fig&, and3, 'S 3;73 3;
respectively. In all cases, the UltraFast algorithm is substan- R 21 3
tially faster than the Fast randomized selection algorithm, N 4095 3
typically by a factor of 2. Running time can be characterized K 90 3
mainly by % log p and is only slightly dependent on input o | - 3
distribution. In addition, we have included the performance s " 5
of several variations as follows: R 21 3
FR—the Fast Randomized algorithm frd2)15,17] N 866 3
FT—the modified (and improved) Fast Randomized with K e 3

the while loop stopping criterion ofi < max(p2, 4096 in- For this table, eight processors are used.
stead ofn < p?;
R2—the modified UltraFast Randomized algorithm with-
out the “Min/Max” selection improvement whefin —
rank| <n); and L
R3—the UltraFast randomized algorithm (Alg. (1)). par_t|t|ons the e_Iements. On the other hapd, the U_Itr_aFast al-
For p = 8, Table3 provides a summary of the number of gorithm never |.terates more then three times. Th|§ is due to
times each algorithm iterates. While the Fast algorithm typi- tWO reasons. First, UltraFast converges roughly twice as fast
cally iterates in the neighborhood of about 25 times, there are@S the Fast algorithm. Second, the algorithm stops iterating
some cases when it iterates hundreds or even thousands d#y Using a more realistic stopping criterion matched to the
times. For some other problem instances, the Fast algorithmcoarse _granularlty of current parallel machlrjes. In addition,
may encounter an infinite loop when the number of elements Whenp is small and: = O(p?), the Fast algorithm’s sample

in a step is larger thap?, and no choice of splitters further 1S very limited and sometimes does not yield splitters that
further partition the input. Thus, in this situation, the Fast al-

gorithm may iterate from tens to thousands of times before
3 Throughout this papek and M refer to 20 and 20, respectively. pruning any additional elements from the solution space.

1056 D.A. Bader / J. Parallel Distrib. Comput. 64 (2004) 1051-1059

Execution Time for Randomized Selection Algorithms Execution Time for Randomized Selection Algorithms
on 4 IBM SP-2 processors on 4 IBM SP-2 processors
—| == FR []] | mmm FR[S]
= :IFT%I]] 3 FT[S]
. R2 I . R2 [S]
01 - mmR3(] 0.1 +— mm R3 5]

14 15 16 17 8 19 20 21 22 4 15 16 17 18 19 20 21 22
Log, (Problem Size) Log, (Problem Size)
Execution Time for Randomized Selection Algorithms Execution Time for Randomized Selection Algorithms
on 4 IBM SP-2 processors on 4 IBM SP-2 processors
. FR [R] = FR [N]
CIFT[R] T3 FT[N]
mm R2 [R] = R2 [N]
0.1 {mm R3[R] 0.1 +— mmm R3 [N]

14 15 16 17 18 19 20 21 22
Log, (Problem Size) Log, (Problem Size)

Execution Time for Randomized Selection Algorithms
on 4 IBM SP-2 processors

= FR K]
CFT K]
= R2 K]
0.1 +——mm R3[K]

0.001 -

Log, (Problem Size)

Fig. 1. Empirical performance of Fast versus UltraFast randomized selection algorithmp withnodes of an IBM SP-2-TN. Each of the five graphs
represents one input class ([l], [S], [R], [N], and [K]) and increasing problem sizes ox-die&s. For each input class and problem size, there are four
algorithms/variations reported: FR—the Fast randomized; FT—the modified Fast randomized with stopping criterioripSt 4026 instead of p2;
R2—the UltraFast randomized without the “Min/Max” selection improvement; and R3—the UltraFast randomized algorithm.

Extended tables of statistics for various inputs and ma- 4. Future directions
chine sizes are provided for both algorithms in our technical
report[4] that show for each iteration the sample sigg (We are investigating other combinatorial algorithms that
partitioning information, and a ternt, defined as half of may have significant practical improvement by relaxing the
the difference between the ranks of the two splitters selec- probabilistic bounds, as demonstrated by our UltraFast ran-
tion from the sample. domized selection.

D.A. Bader / J. Parallel Distrib. Comput. 64 (2004) 1051-1059 1057

Execution Time for Randomized Selection Algorithms Execution Time for Randomized Selection Algorithms
on 8 IBM SP-2 processors on 8 IBM SP-2 processors
— m—FR 1] — - FR [S]
= FT] I FT[S]
R2 I R2[S
0.1 = R3 H 01—~ = R3 {s}
D)
Q
g £
F o001 oo —p—1 1 T
0.001 0.001
15 16 17 18 19 20 21 22 23 15 16 17 18 19 20 21 22 23
Log, (Problem Size) Log, (Problem Size)
Execution Time for Randomized Selection Algorithms Execution Time for Randomized Selection Algorithms
on 8 IBM SP-2 processors on 8 IBM SP-2 processors
—| mm FR [R]
3 FT[R]
R2 [R
0.1 1 mmm 3 11 0.1
) D
Q ()
E £
= 0.01 = 0.01]
0.0014 0.001
15 16 17 18 19 20 21 22 23 15 16 17 18 19 20 21 22 23
Log, (Problem Size) Log, (Problem Size)

Execution Time for Randomized Selection Algorithms
on 8 IBM SP-2 processors

| PR K]
L = FT K]
== R2 K
O-l-f-R3{K}
©
£
Eoooligp—p o B B
0.001

15 16 17 18 19 20 21 22 23
Log, (Problem Size)

Fig. 2. Empirical performance of Fast versus UltraFast randomized selection algorithmp withnodes of an IBM SP-2-TN. Each of the five graphs
represents one input class ([l], [S], [R], [N], and [K]) and increasing problem sizes ox-dR&s. For each input class and problem size, there are four
algorithms/variations reported: FR—the Fast randomized; FT—the modified Fast randomized with stopping criteriomfﬁtmm{‘) instead Ofpz;
R2—the UltraFast randomized without the “Min/Max” selection improvement; and R3—the UltraFast randomized algorithm.

In addition, our UltraFast parallel, randomized selection writes the sample to a shared-memory array. TISisp 2
algorithm, here designed and analyzed for a message-the Gather communication, is eliminated. After a single
passing platform, would also be suitable for shared-memory processor determines the splittéssand ko from the sam-
multiprocessors (SMPs) and SMP Clustf8k In the SMP ple, theBroadcastcommunication irStep 4simplifies into
UltraFast selection algorithm, each communication step a memory read by each processor. T@mbine in Step
can be eliminated, simplified, or replaced with a shared- 6 may be replaced by the corresponding shared-memory
memory primitive. For instance, the SMP algorithm would primitive. The Gather in Step 11can be replaced with a
be as follows. Each processor collects its portion of the shared-memory gather. We are currently investigating the
sample from the corresponding block of the input and performance of this SMP approach.

1058 D.A. Bader / J. Parallel Distrib. Comput. 64 (2004) 1051-1059

Execution Time for Randomized Selection Algorithms Execution Time for Randomized Selection Algorithms
on 16 IBM SP-2 processors on 16 IBM SP-2 processors
N FR [S]
— C3 FT[S]
. R2[S]
0.1 0.1 || =mR3[s]
z z
Q 3]
£ £
= 0.01 ; = 0.01] !
5
]
||
0.001 | 0.001 | .
16 17 18 19 20 21 22 23 24 16 17 18 19 20 21 22 23 24
Log, (Problem Size) Log, (Problem Size)
Execution Time for Randomized Selection Algorithms Execution Time for Randomized Selection Algorithms
on 16 IBM SP-2 processors on 16 IBM SP-2 processors
0.1 4 0.1
) z
Q
]
E £
0.01 | = 0.01]
0.001 | 0.001 |
16 17 18 19 20 21 22 23 24 16 17 18 19 20 21 22 23 24
Log, (Problem Size) Log, (Problem Size)

Execution Time for Randomized Selection Algorithms
on 16 IBM SP-2 processors

| —FR K]
H CIFTK
= R [K]
0.1+ =mr3[K]
@
©
£
= 0.014
0.001+

16 17 18 19 20 21 22 23 24
Log, (Problem Size)

Fig. 3. Empirical performance of Fast versus UltraFast randomized selection algorithms wit6é nodes of an IBM SP-2-TN. Each of the five graphs
represents one input class ([l], [S], [R], [N], and [K]) and increasing problem sizes ox-dR&s. For each input class and problem size, there are four
algorithms/variations reported: FR—the Fast randomized; FT—the modified Fast randomized with stopping criterioripGt 4026 instead of p2;
R2—the UltraFast randomized without the “Min/Max” selection improvement; and R3—the UltraFast randomized algorithm.

References [4] D. A. Bader, An improved randomized selection algorithm
with an experimental study, Technical Report, Electrical and
[1] I.S. Al-Furaih. Timings of selection algorithm. Personal Computer Engineering Department, The University of New Mexico,

communication, April 1996. Albuquerque, NM, September 1999.
[2] I. Al-furiah, S. Aluru, S. Goil, S. Ranka, Practical algorithms for [5] D.A. Bader. An improved randomized selection algorithm with

selection on coarse-grained parallel computers, IEEE Trans. Parallel an experimental study. In Proceedings of the Second Workshop

Distributed Systems 8 (8) (1997) 813-824. on Algorithm Engineering and Experiments (ALENEX00), San
[3] D.A. Bader, On the design and analysis of practical parallel Francisco, CA, January 2000, pp. 115-129.

algorithms for combinatorial problems with applications to image [6] D. A. Bader, J. J4J&, Practical parallel algorithms for dynamic

processing, Ph.D. Thesis, Department of Electrical Engineering, data redistribution, median finding, and selection, Technical Report

University of Maryland, College Park, April 1996. CS-TR-3494 and UMIACS-TR-95-74, UMIACS and Electrical

D.A. Bader / J. Parallel Distrib. Comput. 64 (2004) 1051-1059 1059

Engineering, University of Maryland, College Park, MD, July [13] E. Horowitz, S. Sahni, Fundamentals of Computer Algorithms,

1995. Computer Science Press, Inc., Potomac, MD, 1978.

[7] D. A. Bader, J. JaJ&. Practical parallel algorithms for dynamic data [14] D. Krizanc, L. Narayanan, Optimal algorithms for selection on a
redistribution, median finding, and selection. Proceedings of the 10th mesh-connected processor array, Proceedings of the Fourth IEEE
International Parallel Processing Symposium, Honolulu, HI, April Symposium Parallel and Distributed Processing. Arlington, TX,
1996, pp. 292-301. December 1992, pp. 70-76

[8] D.A. Bader, J. JaJa, SIMPLE: a methodology for programming high [15] S. Rajasekaran, Randomized selection on the hypercube, J Parallel
performance algorithms on clusters of symmetric multiprocessors Distributed Comput. 37 (2) (1996) 187-193.

SMPs, J. Parallel Distributed Comput. 58 (1) (1999) 92—-108. [16] S. Rajasekaran, W. Chen, S. Yooseph, Unifying themes for network

[9] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, selection, Proceedings of the Fifth International Symposium on
R. Fatoohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, Algorithms and Computation (ISAAC’'94), Beijing, China, August
H. Simon, V. Venkatakrishnan, S. Weeratunga. The NAS parallel 1994, Springer, Berlin, pp. 92-100.
benchmarks, Technical Report RNR-94-007, Numerical Aerodynamic [17] S. Rajasekaran, J.H. Reif, Derivation of randomized sorting and
Simulation Facility, NASA Ames Research Center, Moffett Field, selection algorithms, in: R. Paige, J. Reif, R. Wachter (Eds.),
CA, March 1994. Parallel Algorithms Derivation and Program Transformation, Kluwer

[10] P. Berthomé, A. Ferreira, B.M. Maggs, S. Perennes, C.G. Academic Publishers, Boston, MA, 1993, pp. 187-205 (Chapter 6).
Plaxton. Sorting-based selection algorithms for hypercubic networks. [18] S. Rajasekaran, S. Sahni, Sorting, selection and routing on the array
In Proceedings of the Seventh International Parallel Processing with reconfigurable optical buses, IEEE Trans. Parallel Distributed
Symposium, Newport Beach, CA, IEEE Computer Society Press, Systems 8 (11) (1997) 1123-1132.
Silver Spring, MD, April 1993, pp. 89-95. [19] S. Rajasekaran, S. Sahni, Selection, Randomized routing, and sorting
[11] M. Blum, R.W. Floyd, V.R. Pratt, R.L. Rivest, R.E. Tarjan, on the OTIS-mesh, IEEE Trans. Parallel Distributed Systems 9 (9)
Time bounds for selection, J. Comput. System Sci. 7 (4) (1973) (1998) 833-840.
448-461. [20] S. Rajasekaran, D.S.L. Wei, Selection, routing and sorting on the

[12] E. Hao, P.D. MacKenzie, Q.F. Stout, Selection on the reconfigurable star graph, J. Parallel Distributed Comput. 41 (1997) 225-233.
mesh, In Proceedings of the Fourth Symposium on the Frontiers [21] R. Sarnath, X. He, On parallel selection and searching in partial
of Massively Parallel Computation, McLean, VA, IEEE Computer orders: sorted matrices, J. Parallel Distributed Comput. 40 (1997)
Society Press, Silver Spring, MD, October 1992, pp. 38-45. 242-247.

	An improved, randomized algorithm for parallel selection with an experimental study62626262
	Introduction
	Parallel selection
	Analysis
	Complexity
	Experimental data sets
	Empirical results

	Future directions
	References

