
J. Parallel Distrib. Comput. 64 (2004) 1051 – 1059
www.elsevier.com/locate/jpdc

An improved, randomized algorithm for parallel selection with an
experimental study�

David A. Bader∗

Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA

Received 7 February 2003; received in revised form 24 June 2004

Abstract

A common statistical problem is that of finding the median element in a set of data. This paper presents an efficient randomized high-
level parallel algorithm for finding the median given a set of elements distributed across a parallel machine. In fact, our algorithm solves
the general selection problem that requires the determination of the element of rankk, for an arbitrarily given integerk.

Our general framework is an SPMD distributed-memory programming model that is enhanced by a set of communication primitives. We
use efficient techniques for distributing and coalescing data as well as efficient combinations of task and data parallelism. The algorithms
have been coded in the message-passing standard MPI, and our experimental results from the IBM SP-2 illustrate the scalability and
efficiency of our algorithm and improve upon all the related experimental results known to the author.

The main contributions of this paper are
(1) New techniques for speeding the performance of certain randomized algorithms, such as selection, which are efficient with likely

probability.
(2) A new, practical randomized selection algorithm (UltraFast) with significantly improved convergence.

© 2004 Elsevier Inc. All rights reserved.

Keywords:Selection algorithm; Randomized algorithms; Parallel algorithms; Experimental parallel algorithmics

1. Introduction

Selection and median finding in large data sets are im-
portant statistical measures needed by a variety of high-
performance computing applications, for example, image
processing for computer vision and remote sensing, com-
putational aerodynamics and physics simulations, and data
mining of large databases. In these applications, the data set
typically is already evenly distributed across the process-
ing nodes. Because of the large data volume, solving the

� This work was supported in part by NSF Grants CAREER ACI-00-
93039, ITR ACI-00-81404, DEB-99-10123, ITR EIA-01-21377, Biocom-
plexity DEB-01-20709, and ITR EF/BIO 03-31654; and DARPA Contract
NBCH30390004.

∗ Fax: +1-505-277-1439.
E-mail address:dbader@ece.unm.edu(D.A. Bader).
URL: http://www.ece.unm.edu/∼dbader.

0743-7315/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2004.06.010

problem sequentially surely would overwhelm a single
processor.

Given a set of dataX with |X| = n, the selection prob-
lem requires the determination of the element with rankk
(that is, thekth smallest element), for an arbitrarily given
integer k. Median finding is a special case of selection
with k = n

2. In previous work, we have designed deter-
ministic and efficient parallel algorithms for the selection
problem on current parallel machines[3,6,7]. In this paper,
we discuss a new UltraFast Randomized algorithm for the
selection problem that, unlike previous research (for
example, [10,12,14–21]), is not dependent on network
topology or limited to the PRAM model which does
not assign a realistic cost for communication. In addi-
tion, our randomized algorithm improves upon previous
implementations on current parallel platforms, for example,
[2] implements both our deterministic algorithm and the

http://www.elsevier.com/locate/jpdc
mailto:dbader@ece.unm.edu
http://www.ece.unm.edu/~dbader

1052 D.A. Bader / J. Parallel Distrib. Comput. 64 (2004) 1051–1059

randomized algorithms due to Rajasekaran et al. (e.g.,
[15,17]) on the TMC CM-5. An earlier version of this paper
appeared as[5].

The main contributions of this paper are:
(1) New techniques for speeding the performance of cer-

tain randomized algorithms, such as selection, that are
efficient with likely probability.

(2) A new, practical randomized selection algorithm (Ul-
traFast) with significantly improved convergence.

The remainder of this paper is organized as follows. Our
new randomized selection algorithm is detailed in Section2,
followed by analysis and experimental results in Section3.
More extensive statistics from our experiments are reported
in [4].

2. Parallel selection

The selection algorithm for rankk assumes that input
dataX of sizen are initially distributed evenly across thep
processors, such that each processor holdsn

p
elements. The

output, namely the element fromX with rankk, is returned
on each processor.

The randomized selection algorithm locates the element
of rankk by pruning the set of candidate elements using the
following iterative procedure. Twosplitterelements(k1, k2)

are chosen that partition the input into three groups,G0,G1,

andG2, such that each element inG0 is less thank1, each
element inG1 lies in [k1, k2], and each inG2 is greater
than k2. The desire is to have the middle groupG1 much
smaller than the outer two groups(|G1|>|G0|, |G2|) with
the condition that the selection index lies within this mid-
dle group. The process is repeated iteratively on the group
holding the selection index until the size of the group is
“small enough,” whereby the remaining elements are gath-
ered onto a single processor and the problem is solved
sequentially.

The key to this approach is choosing splittersk1 andk2
that minimize the size of the middle group while maximiz-
ing the probability of thecondition that the selection index
lies within this group. Splitters are chosen from a random
sample of the input, by finding a pair of elements of certain
rank in the sample (see Section3). The “Fast Randomized”
algorithm of Rajasekaran and Reif (see[15,17] and imple-
mented in[2]) takes a conservative approach that guarantees
the condition with high probability. We have discovered a
more aggressive technique for pruning the input space by
choosing splitters closer together in the sample while hold-
ing the condition with likely probability. In practice, the con-
dition almost always holds, and in the event of a failure, new
splitters are chosen from the sample with a greater spread
of ranks until the condition is satisfied.

In addition, we improve upon previous algorithms in the
following ways.
(1) Stopping criterion. For utmost performance, current

parallel machines require a coarse granularity, the

measure of problem size per node, because communi-
cation is typically an order of magnitude slower than
local computation. In addition, machine configurations
tend to be small to moderate in terms of number of
processors (p). Thus, a stopping criterion of problem
size < p2 is much too fine grained for current ma-
chines, and we suggest, for instance, a stopping size
of max(p2,4096). Whenp is small andn = O

(
p2

)
, a

second practical reason for increasing the stopping size
is that the sample is very limited and might not yield
splitters that further partition the input.

(2) Aggressive convergence. As outlined in Section3, our
algorithm converges roughly twice as fast as the best
known previous algorithm.

(3) Algorithmic reduction. At each iteration, we use “selec-
tion” to choose the splitters instead of sorting, a com-
putationally harder problem.

(4) Communication aggregation. Similar collective com-
munication steps are merged into a single operation.
For instance, instead of calling theCombineprimi-
tive twice to find the size of groupsG0 andG1 (|G2|
can be calculated from this information and the prob-
lem size), we aggregate these operations into a single
step.

(5) “Min/Max” selection algorithm. When the selection in-
dex is relatively close to 1 orn, our approach switches
to a faster algorithm for this special case.

Next we outline our new UltraFast randomized selection
algorithm (see Algorithm 1).

3. Analysis

The following sampling lemma from Rajasekaran (see
[17]) will be used in the analysis.

Let S = {v1, v2, . . . , vs} be a random sample from a set
X of cardinalityn. Also, let v′

1, v
′
2, . . . , v

′
s be the sorted or-

der of this sample. Ifri is the rank ofk′
i in X, the follow-

ing lemma provides a high probability confidence interval
for ri .

Lemma 1. For every�, Pr
(
|ri − i n

s
| > √

3� n√
s

√
ln n

)
<

n−�.

Thus, ifk1 andk2 are chosen as the splitters from sample
setSby selecting the elements with rankis

n
−d

√
s ln n and

is
n

+d
√
s ln n, respectively, andd = √

4�, then the element
of desired rank will lie in the middle partition(cless, cless+
cmid] with high probability(1 − n−�).

A tradeoff occurs between the size of the middle partition
(r) and the confidence that the desired element lies within
this partition. Note that in the Fast Randomized algorithm,

with d = 1, this probability is 1− n− 1
4 , andr � 8 n√

s

√
ln n.

Sinces ≈ n�, this can be approximated byr � 8n1− �
2
√

ln n.

D.A. Bader / J. Parallel Distrib. Comput. 64 (2004) 1051–1059 1053

Algorithm 1. UltraFast Randomized Selection Algorithm for processorPi

Input
{n} - Total number of elements {p} - Total number of processors, labeled from 0 top − 1
{Li }- List of elements on processorPi , where|Li | = n

p

{C}-A constant≈ max(p2,4096) {�}- logn of the sample size (e.g. 0.6)
{�∗}-selection coefficient (e.g. 1.0) {�}-selection coefficient multiplier (e.g. 2.25)
{�}- Min/Max constant (e.g. 2p) rank-desired rank among the elements

begin
Step 0. Setni = n

p .

While (n > C) and (|n − rank| > �)
Step 1. Collect a sampleSi from Li by picking ni

n�

n elements at random onPi .
Step 2. S = Gather(Si , p).
Set z = TRUE and� = �∗.
While (z ≡ TRUE)

On P0

Step 3.Selectk1, k2 from S with ranks
⌊
i|S|
n − �

√|S|
⌋

and
⌊
i|S|
n + �

√|S|
⌋

.

Step 4.Broadcastk1 and k2.
Step 5.PartitionLi into < k1 and [k1, k2], and> k2, to give countsless, middle,
(andhigh). Only save the elements that lie in the middle partition.
Step 6.cless = Combine(less,+); cmid = Combine(middle,+);
Step 7. If (rank ∈ (cless , cless + cmid])
n = cmid ; ni = middle; rank = rank − cless ; z = FALSE

Else
On P0: � = � · �

Endif
Endwhile

Endwhile
If (|n − rank|� �) then

If rank � � then we use the “minimum” approach, otherwise, we use the “maximum”
approach in parentheses, as follows.
Step 8.Sequentially sort ourni elements in nondecreasing (nonincreasing) order using a
modified insertion sort with output size|Li | = min(rank, ni) (|Li | = min(n−rank+1, ni)).
An element that is greater (less) than theLi minimum (maximum) elements is discarded.
Step 9. Gather the p sorted subsequences ontoP0.
Step 10. Using a p-way tournament tree of losers[13] constructed from thep sorted
subsequences, (rank) (n − rank + 1) elements are extracted, to find the elementq with
selection indexrank.

Else
Step 11.L = Gather(Li).
Step 12.On P0

Perform sequential selection to find elementq of rank in L;
Endif
result = Broadcast(q).

end

Suppose now the bound is relaxed with probability no
less than 1− n−� = �. Then � = − log(1−�)

logn
, and the

splitters k1, k2 can be chosen with ranksis
n

− �
√
s and

is
n

+ �
√
s, for � = 2

√− ln(1 − �) (see Table1). Then
the size of the middle partition can be bounded similarly
by r � 16 n√

s

√− ln(1 − �). This can be approximated by

r � 16n1− �
2
√− ln (1 − �). Thus, the middle partition size

of the UltraFast algorithm is typically smaller than that of
the Fast algorithm, whenever the conditionn > (1 − �)−4.

A large value for� increases running time since the sample
(of sizen�) must be either sorted (in Fast) or have elements
selected from it (in UltraFast). A small value of� increases
the probability that both of the splitters lie on one side of
the desired element, thus causing an unsuccessful iteration.
In practice, 0.6 is an appropriate value for� [2].

3.1. Complexity

We use a simple model of parallel computation to ana-
lyze the performance of the selection algorithms, similar to
the message-passing models (e.g., BSP, LogP, etc.). Current
hardware platforms can be viewed as a collection of power-
ful processors connected by a communication network that
can be modeled as a complete graph on which communica-
tion is subject to the restrictions imposed by the latency and
the bandwidth properties of the network. We view a parallel
algorithm as a sequence of local computations interleaved
with communication steps, and we allow computation and
communication to overlap. We account for communication
costs as follows.

The transfer of a block consisting ofmcontiguous words,
assuming no congestion, takes O(� + �m) time, where� is

1054 D.A. Bader / J. Parallel Distrib. Comput. 64 (2004) 1051–1059

Table 1
Lower bound of the capture probability (�) that the selection index is in

the middle partition, where� = 1 − e
− �2

4

� Lower bound of capture (�, in %)

6.07 99.99
5.26 99.9
4.29 99.0
3.03 90.0
2.54 80.0
2.19 70.0
1.91 60.0
1.50 43.0
1.00 22.1
0.50 6.05

an bound on the latency of the network and� is the time per
word at which a processor can inject or receive data from
the network.

One iteration of the Fast randomized selection algorithm
takes O

(
n(j) + (� + �) log p

)
time, wheren(j) is the maxi-

mum number of elements held by any processor during iter-
ation j. From the bound on the size of the middle partition,
we find a recurrence on the problem size during iterationi,

n0 = n,

ni + 1� 8n0.7
i

√
ln ni, (1)

which shows a geometric decrease in problem size per iter-
ation, and thus, O(log log n) iterations are required. Since

n(j) = O
(
n
p

)
, Fast selection requires

O
(
n
p

log log n + (� + �) log p log log n
)

(2)

time. Assuming random data distribution, the running time
reduces to the following[2]:

O

(
n

p
+ (� + �) log p log log n

)
. (3)

Each iteration of the UltraFast algorithm is similar to Fast,
except sorting is replaced by sequential selection, which
takes linear time[11]. Also, the problem size during iteration
i is bounded with the following recurrence:

n0 = n,

ni+1 � 16n0.7
i

√− ln(1 − �), (4)

and similar to the Fast algorithm, UltraFast requires
O(log log n) iterations. Thus, UltraFast randomized selec-
tion has a similar complexity, with a worst case running
time given in Eq. (2). As we will show later by empirical
results in Table3, though, the constant associated with
the number of iterations is significantly smaller for the
UltraFast algorithm.

3.2. Experimental data sets

Empirical results for the selection algorithm use the fol-
lowing five input classes. Given a problem of sizen andp
processors,

[I]—Identical elements{0,1, . . . , n
p

− 1} on each proces-
sor.

[S]—Sorted elements{0,1, . . . , n − 1} distributed inp
blocks across the processors.

[R]—Random, uniformly-distributed, elements, withn
p

elements per processor.
[N]— This input is taken from the NAS Parallel Bench-

mark for Integer Sorting[9]. Keys are integers in the range
[0,219), and each key is the average of four consecutive
uniformly-distributed pseudo-random numbers generated by
the following recurrence:

xk+1 = axk(mod 246),

wherea = 513 and the seedx0 = 314159265. Thus, the
distribution of the key values is a Gaussian approximation.
On a p-processor machine, the firstn

p
generated keys are

assigned toP0, the next n
p

to P1, and so forth, until each
processor hasn

p
keys.

[K]—This input contains n
p

randomly generated ele-
ments per processor, sampled from the skewed log-normal
distribution,1 in the range of positive integers[1, INTMAX]
(where INTMAX, for example, is 231 − 1 on a 32-bit
machine). We generate each pseudo-random integer(⌊

exp

(
1

12
ln INTMAX · normRand(0,1)

+1

2
ln INTMAX

)⌋)

by taking the largest integer less than or equal to the expo-
nential of a mean 0, standard deviation 1 Gaussian random
number (found by adding together twelve uniformly dis-
tributed random numbers from the range[−0.5,0.5)) that is
first scaled by1

12 ln INTMAX and then displaced to the right
by 1

2 ln INTMAX. For a given INTMAX, the mean and stan-
dard deviation of this skewed distribution are computable.2

3.3. Empirical results

Results for a previous implementation of the Fast random-
ized selection algorithm on the TMC CM-5 parallel machine
appear in[2]. However, this machine is no longer available
and does not support the current message-passing standard
MPI. Therefore, we have recoded this algorithm into MPI.

Table2 compares the execution time of the Fast random-
ized algorithm on both the CM-5[1,2] and the IBM SP-2.

1 The log-normal is a distribution whose natural logarithm is a normal
distribution. Given a normal distribution with mean	 and standard devi-

ation �, the log-normal distribution exp(norm(,�)) has meane	+�2/2

and variancee2	+�2
(e�2 − 1).

2 For our generator, a log-normal distribution with mean	 and standard
deviation�, the scale (112 ln INTMAX) of the mean 0, s.d. 1, Gaussian

random number equals

√
ln

(
	2+�2

	2

)
, the displacement (1

2 ln INTMAX)

equals 1
2 ln

(
	4

	2+�2

)
.

D.A. Bader / J. Parallel Distrib. Comput. 64 (2004) 1051–1059 1055

Table 2
Comparison of the execution time of the Fast randomized selection algorithm on TMC CM-5 and IBM SP-2-TN (in ms)

n p [R]andom Input [S]orted Input

CM-5 SP-2 SP-2 CM-5 SP-2 SP-2
33 66 P2 160 P2SC 33 66 P2 160 P2SC

4 174 68.0 23.5 194 104 25.6
512K 8 105 62.7 17.2 119 79.6 21.7

16 69.5 39.5 10.8 86.7 61.9 15.6

4 591 153 56.6 601 229 67.3
2M 8 318 108 37.6 359 182 48.0

16 193 74.4 23.7 237 136 34.6

Since selection is computation-bound, we would expect the
performance to be closely related to the node performance
of these two machines. The SP-2-TN 66 MHz Power2 (66-
P2) processor is roughly twice as fast as the CM-5 33 MHz
RISC processor. As expected, this factor of two performance
improvement is apparent in the execution time comparison
for equivalent machine and problem sizes. In actuality, the
SP-2 is more than twice as powerful, since communication
latency and bandwidth are improved roughly by a factor
of three. The newer SP-2-TN 160 MHz Power2 SuperChip
(160-P2SC) nodes are roughly three times faster than the 66-
P2 nodes, and we see a similar performance improvement.

We conducted experiments with our UltraFast and the
known Fast randomized selection algorithms on an IBM SP-
2 (with 160-P2SC nodes) with four, eight, and sixteen pro-
cessors, by finding the median of each input in the previous
section for various problem sizes (ranging between 16K to
16M elements).3 A comparison of the empirical execution
times for machine configurations ofp = 4,8, and 16 pro-
cessors are graphed using log–log plots in Figs.1, 2, and3,
respectively. In all cases, the UltraFast algorithm is substan-
tially faster than the Fast randomized selection algorithm,
typically by a factor of 2. Running time can be characterized
mainly by n

p
log p and is only slightly dependent on input

distribution. In addition, we have included the performance
of several variations as follows:

FR—the Fast Randomized algorithm from[2,15,17];
FT—the modified (and improved) Fast Randomized with

thewhile loop stopping criterion ofn� max(p2,4096) in-
stead ofn�p2;

R2—the modified UltraFast Randomized algorithm with-
out the “Min/Max” selection improvement when(|n −
rank|� �); and

R3—the UltraFast randomized algorithm (Alg. (1)).
Forp = 8, Table3 provides a summary of the number of

times each algorithm iterates. While the Fast algorithm typi-
cally iterates in the neighborhood of about 25 times, there are
some cases when it iterates hundreds or even thousands of
times. For some other problem instances, the Fast algorithm
may encounter an infinite loop when the number of elements
in a step is larger thanp2, and no choice of splitters further

3 Throughout this paper,K andM refer to 210 and 220, respectively.

Table 3
Total number of iterations of the Fast and UltraFast randomized selection
algorithms

n Input Fast UltraFast

512K I 19 2
S 17 2
R 29 2
N 19 2
K 18 2

1M I 24 2
S 17 2
R 22 2
N 32 2
K 22 2

2M I 26 2
S 22 3
R 21 2
N 38 3
K 20 3

4M I 37 3
S 23 3
R 21 3
N 4095 3
K 90 3

8M I 28 3
S 24 3
R 21 3
N 866 3
K ∞ 3

For this table, eight processors are used.

partitions the elements. On the other hand, the UltraFast al-
gorithm never iterates more then three times. This is due to
two reasons. First, UltraFast converges roughly twice as fast
as the Fast algorithm. Second, the algorithm stops iterating
by using a more realistic stopping criterion matched to the
coarse granularity of current parallel machines. In addition,
whenp is small andn = O

(
p2

)
, the Fast algorithm’s sample

is very limited and sometimes does not yield splitters that
further partition the input. Thus, in this situation, the Fast al-
gorithm may iterate from tens to thousands of times before
pruning any additional elements from the solution space.

1056 D.A. Bader / J. Parallel Distrib. Comput. 64 (2004) 1051–1059

Execution Time for Randomized Selection Algorithms
on 4 IBM SP-2 processors

Log2 (Problem Size)

14 15 16 17 18 19 20 21 22

T
im

e
(s

)

0.001

0.01

0.1

FR [I]
FT [I]
R2 [I]
R3 [I]

Execution Time for Randomized Selection Algorithms

on 4 IBM SP-2 processors

Log2 (Problem Size)
14 15 16 17 18 19 20 21 22

T
im

e
(s

)

0.001

0.01

0.1

FR [S]
FT [S]
R2 [S]
R3 [S]

Execution Time for Randomized Selection Algorithms
on 4 IBM SP-2 processors

Log2 (Problem Size)
14 15 16 17 18 19 20 21 22

T
im

e
(s

)

0.001

0.01

0.1

FR [R]
FT [R]
R2 [R]
R3 [R]

Execution Time for Randomized Selection Algorithms
on 4 IBM SP-2 processors

Log2 (Problem Size)
14 15 16 17 18 19 20 21 22

T
im

e
(s

)

0.001

0.01

0.1

FR [N]
FT [N]
R2 [N]
R3 [N]

Execution Time for Randomized Selection Algorithms

on 4 IBM SP-2 processors

Log2 (Problem Size)
14 15 16 17 18 19 20 21

T
im

e
(s

)

0.001

0.01

0.1

FR [K]
FT [K]
R2 [K]
R3 [K]

Fig. 1. Empirical performance of Fast versus UltraFast randomized selection algorithms withp = 4 nodes of an IBM SP-2-TN. Each of the five graphs
represents one input class ([I], [S], [R], [N], and [K]) and increasing problem sizes on thex-axis. For each input class and problem size, there are four
algorithms/variations reported: FR—the Fast randomized; FT—the modified Fast randomized with stopping criterion of max(p2,4096) instead ofp2;
R2—the UltraFast randomized without the “Min/Max” selection improvement; and R3—the UltraFast randomized algorithm.

Extended tables of statistics for various inputs and ma-
chine sizes are provided for both algorithms in our technical
report [4] that show for each iteration the sample size (s),
partitioning information, and a term,k#, defined as half of
the difference between the ranks of the two splitters selec-
tion from the sample.

4. Future directions

We are investigating other combinatorial algorithms that
may have significant practical improvement by relaxing the
probabilistic bounds, as demonstrated by our UltraFast ran-
domized selection.

D.A. Bader / J. Parallel Distrib. Comput. 64 (2004) 1051–1059 1057

Execution Time for Randomized Selection Algorithms
on 8 IBM SP-2 processors

Log2 (Problem Size)
15 16 17 18 19 20 21 22 23

T
im

e
(s

)

0.001

0.01

0.1

FR [I]
FT [I]
R2 [I]
R3 [I]

Execution Time for Randomized Selection Algorithms

on 8 IBM SP-2 processors

Log2 (Problem Size)
15 16 17 18 19 20 21 22 23

T
im

e
(s

)

0.001

0.01

0.1

FR [S]
FT [S]
R2 [S]
R3 [S]

Execution Time for Randomized Selection Algorithms
on 8 IBM SP-2 processors

15 16 17 18 19 20 21 22 23

T
im

e
(s

)

0.001

0.01

0.1

FR [R]
FT [R]
R2 [R]
R3 [R]

Execution Time for Randomized Selection Algorithms
on 8 IBM SP-2 processors

Log2 (Problem Size)

15 16 17 18 19 20 21 22 23

T
im

e
(s

)

0.001

0.01

0.1

FR [N]
FT [N]
R2 [N]
R3 [N]

Execution Time for Randomized Selection Algorithms
on 8 IBM SP-2 processors

Log2 (Problem Size)
15 16 17 18 19 20 21 22 23

T
im

e
(s

)

0.001

0.01

0.1

FR [K]
FT [K]
R2 [K]
R3 [K]

Log2 (Problem Size)

Fig. 2. Empirical performance of Fast versus UltraFast randomized selection algorithms withp = 8 nodes of an IBM SP-2-TN. Each of the five graphs
represents one input class ([I], [S], [R], [N], and [K]) and increasing problem sizes on thex-axis. For each input class and problem size, there are four
algorithms/variations reported: FR—the Fast randomized; FT—the modified Fast randomized with stopping criterion of max(p2,4096) instead ofp2;
R2—the UltraFast randomized without the “Min/Max” selection improvement; and R3—the UltraFast randomized algorithm.

In addition, our UltraFast parallel, randomized selection
algorithm, here designed and analyzed for a message-
passing platform, would also be suitable for shared-memory
multiprocessors (SMPs) and SMP Clusters[8]. In the SMP
UltraFast selection algorithm, each communication step
can be eliminated, simplified, or replaced with a shared-
memory primitive. For instance, the SMP algorithm would
be as follows. Each processor collects its portion of the
sample from the corresponding block of the input and

writes the sample to a shared-memory array. Thus,Step 2,
the Gather communication, is eliminated. After a single
processor determines the splittersk1 andk2 from the sam-
ple, theBroadcastcommunication inStep 4simplifies into
a memory read by each processor. TheCombine in Step
6 may be replaced by the corresponding shared-memory
primitive. TheGather in Step 11can be replaced with a
shared-memory gather. We are currently investigating the
performance of this SMP approach.

1058 D.A. Bader / J. Parallel Distrib. Comput. 64 (2004) 1051–1059

Execution Time for Randomized Selection Algorithms
on 16 IBM SP-2 processors

Log2 (Problem Size)
16 17 18 19 20 21 22 23 24

T
im

e
(s

)

0.001

0.01

0.1

FR [I]
FT [I]
R2 [I]
R3 [I]

Execution Time for Randomized Selection Algorithms
on 16 IBM SP-2 processors

Log2 (Problem Size)
16 17 18 19 20 21 22 23 24

T
im

e
(s

)

0.001

0.01

0.1

FR [S]
FT [S]
R2 [S]
R3 [S]

Execution Time for Randomized Selection Algorithms

on 16 IBM SP-2 processors

Log2 (Problem Size)
16 17 18 19 20 21 22 23 24

T
im

e
(s

)

0.001

0.01

0.1

FR [R]
FT [R]
R2 [R]
R3 [R]

Execution Time for Randomized Selection Algorithms
on 16 IBM SP-2 processors

Log2 (Problem Size)
16 17 18 19 20 21 22 23 24

T
im

e
(s

)

0.001

0.01

0.1

FR [N]
FT [N]
R2 [N]
R3 [N]

Execution Time for Randomized Selection Algorithms

on 16 IBM SP-2 processors

Log2 (Problem Size)
16 17 18 19 20 21 22 23 24

T
im

e
(s

)

0.001

0.01

0.1

FR [K]
FT [K]
R2 [K]
R3 [K]

Fig. 3. Empirical performance of Fast versus UltraFast randomized selection algorithms withp = 16 nodes of an IBM SP-2-TN. Each of the five graphs
represents one input class ([I], [S], [R], [N], and [K]) and increasing problem sizes on thex-axis. For each input class and problem size, there are four
algorithms/variations reported: FR—the Fast randomized; FT—the modified Fast randomized with stopping criterion of max(p2,4096) instead ofp2;
R2—the UltraFast randomized without the “Min/Max” selection improvement; and R3—the UltraFast randomized algorithm.

References

[1] I.S. Al-Furaih. Timings of selection algorithm. Personal
communication, April 1996.

[2] I. Al-furiah, S. Aluru, S. Goil, S. Ranka, Practical algorithms for
selection on coarse-grained parallel computers, IEEE Trans. Parallel
Distributed Systems 8 (8) (1997) 813–824.

[3] D.A. Bader, On the design and analysis of practical parallel
algorithms for combinatorial problems with applications to image
processing, Ph.D. Thesis, Department of Electrical Engineering,
University of Maryland, College Park, April 1996.

[4] D. A. Bader, An improved randomized selection algorithm
with an experimental study, Technical Report, Electrical and
Computer Engineering Department, The University of New Mexico,
Albuquerque, NM, September 1999.

[5] D.A. Bader. An improved randomized selection algorithm with
an experimental study. In Proceedings of the Second Workshop
on Algorithm Engineering and Experiments (ALENEX00), San
Francisco, CA, January 2000, pp. 115–129.

[6] D. A. Bader, J. JáJá, Practical parallel algorithms for dynamic
data redistribution, median finding, and selection, Technical Report
CS-TR-3494 and UMIACS-TR-95-74, UMIACS and Electrical

D.A. Bader / J. Parallel Distrib. Comput. 64 (2004) 1051–1059 1059

Engineering, University of Maryland, College Park, MD, July
1995.

[7] D. A. Bader, J. JáJá. Practical parallel algorithms for dynamic data
redistribution, median finding, and selection. Proceedings of the 10th
International Parallel Processing Symposium, Honolulu, HI, April
1996, pp. 292–301.

[8] D.A. Bader, J. JáJá, SIMPLE: a methodology for programming high
performance algorithms on clusters of symmetric multiprocessors
SMPs, J. Parallel Distributed Comput. 58 (1) (1999) 92–108.

[9] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum,
R. Fatoohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber,
H. Simon, V. Venkatakrishnan, S. Weeratunga. The NAS parallel
benchmarks, Technical Report RNR-94-007, Numerical Aerodynamic
Simulation Facility, NASA Ames Research Center, Moffett Field,
CA, March 1994.

[10] P. Berthomé, A. Ferreira, B.M. Maggs, S. Perennes, C.G.
Plaxton. Sorting-based selection algorithms for hypercubic networks.
In Proceedings of the Seventh International Parallel Processing
Symposium, Newport Beach, CA, IEEE Computer Society Press,
Silver Spring, MD, April 1993, pp. 89–95.

[11] M. Blum, R.W. Floyd, V.R. Pratt, R.L. Rivest, R.E. Tarjan,
Time bounds for selection, J. Comput. System Sci. 7 (4) (1973)
448–461.

[12] E. Hao, P.D. MacKenzie, Q.F. Stout, Selection on the reconfigurable
mesh, In Proceedings of the Fourth Symposium on the Frontiers
of Massively Parallel Computation, McLean, VA, IEEE Computer
Society Press, Silver Spring, MD, October 1992, pp. 38–45.

[13] E. Horowitz, S. Sahni, Fundamentals of Computer Algorithms,
Computer Science Press, Inc., Potomac, MD, 1978.

[14] D. Krizanc, L. Narayanan, Optimal algorithms for selection on a
mesh-connected processor array, Proceedings of the Fourth IEEE
Symposium Parallel and Distributed Processing. Arlington, TX,
December 1992, pp. 70–76

[15] S. Rajasekaran, Randomized selection on the hypercube, J Parallel
Distributed Comput. 37 (2) (1996) 187–193.

[16] S. Rajasekaran, W. Chen, S. Yooseph, Unifying themes for network
selection, Proceedings of the Fifth International Symposium on
Algorithms and Computation (ISAAC’94), Beijing, China, August
1994, Springer, Berlin, pp. 92–100.

[17] S. Rajasekaran, J.H. Reif, Derivation of randomized sorting and
selection algorithms, in: R. Paige, J. Reif, R. Wachter (Eds.),
Parallel Algorithms Derivation and Program Transformation, Kluwer
Academic Publishers, Boston, MA, 1993, pp. 187–205 (Chapter 6).

[18] S. Rajasekaran, S. Sahni, Sorting, selection and routing on the array
with reconfigurable optical buses, IEEE Trans. Parallel Distributed
Systems 8 (11) (1997) 1123–1132.

[19] S. Rajasekaran, S. Sahni, Selection, Randomized routing, and sorting
on the OTIS-mesh, IEEE Trans. Parallel Distributed Systems 9 (9)
(1998) 833–840.

[20] S. Rajasekaran, D.S.L. Wei, Selection, routing and sorting on the
star graph, J. Parallel Distributed Comput. 41 (1997) 225–233.

[21] R. Sarnath, X. He, On parallel selection and searching in partial
orders: sorted matrices, J. Parallel Distributed Comput. 40 (1997)
242–247.

	An improved, randomized algorithm for parallel selection with an experimental study62626262
	Introduction
	Parallel selection
	Analysis
	Complexity
	Experimental data sets
	Empirical results

	Future directions
	References

