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Motivation

asymptotically optimal parallel solvers for elliptic PDEs

variable coefficients

adaptive discretizations

arbitrary geometries

Parallel Geometric Multigrid
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Multigrid

Solve Au = f using two grids

fine grid

coarse grid

Smooth ( u, f )

r = f − Au
re

strict

ec = A−1
c rc, direct solve
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u = u + e, correct
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Parallel Multigrid

Challenges

Geometric multigrid for arbitrary meshes

graph based partitioning (ParMETIS SC’98, SC’00)

scalability is challenging

Octrees

Dendro (Sampath et al., SC’08)

limited to cubic domains

Two-tier meshes, macromesh + regular grid

HHG (Bergen et al., SC’05)

limited adaptivity

Algebraic Multigrid

Adams et al., SC’04

Hypre(CHPC’10), trilinos::ML
graph based coarsening

need assembled matrix
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Parallel Multigrid

Key Contributions

GMG for complex geometries

with adaptivity (macromesh +

octrees)

excellent strong and weak

scalability

low setup cost

matrix-free implementation using

non-blocking MPI calls

262K cores with single MPI
process per core

with depth, while those at ridges and fracture zones are
vertical (Figure 2b). The viscosity in plate interiors is pre-
dominantly governed by the maximum cutoff value of
1024 Pa s due to low internal deformation and low intra-plate
strain rates. Around plate boundaries, this results in several
orders of magnitude change in viscosity over short distances,
necessitating the 1 km resolution around weak zones
(Figure 2c). This refinement in the mesh is facilitated through
the viscosity gradient term in the error estimator (equation
(3)), and occurs during the iterative solution of the Stokes
equation. Elsewhere in the plates and slabs, the resolution is
2–10 km. In the upper mantle, the cold and therefore stiff
slabs are defined by sharp gradients in viscosity and tem-
perature with respect to the surrounding upper mantle with
lower viscosity. The longer wavelength structures in the
lower mantle have much smoother gradients, being derived
from a smooth tomography model. Here the resolution is on
the order of 80–150 km. In addition, the effect of nonlinearity
on the upper mantle viscosity is evident in mantle wedges:
the high velocity corner flow causes strain rates to be high,
giving rise to a low viscosity governed by dislocation creep.
The effect of strain rate weakening is also visible in the hinges

of subducting plates, where the bending of cold plates into
the mantle results in yielding.

3.2. Plate Motions and Plateness
3.2.1. Global Plate Motions
[30] Global plate motions constitute a first order test of

dynamic convection models with plates, because the plate
behavior is only Earth-like for a limited range of parameters
in the constitutive relations. If plates are too stiff, they may
move too slowly compared to observed motions, although
they may satisfy plateness constraints. On the other hand,
plates that are too weak may move too fast while exhibiting
excessive internal deformation, as indicated through mea-
sures of plateness. Here we investigate the fine balance
between these end member scenarios.
[31] In general, the global plate motion directions match the

NNR_NUVEL1A plate motion model well [DeMets et al.,
1994], but the velocity magnitudes are a strong function of
the rheology. An increase in yield stress from 100 (Case 2,
Figure 3a) to 800 MPa (Case 5, Figure 3b) results in a
decrease in magnitude of the predicted model velocity in
both subducting and overriding plates, while generally not sig-
nificantly altering the directions of plate motions. This velocity

Figure 2. (a) Cutout showing viscosity in a global model with stress exponent n = 3.0 and yield stress
sy = 100 MPa (Case 2) through the Marianas and Philippines. (b) Zoom-in on viscosity of the Marianas
subduction zone, showing the mesh. (c) Further zoom-in on the hinge of the Marianas slab, as denoted
by the white box in Figure 2b. Plate labels are: EUR: Eurasia; MAR: Marianas; PAC: Pacific; PSP:
Philippine Sea.

ALISIC ET AL.: MULTI-SCALE DYNAMICS OF MANTLE FLOW B10402B10402
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Two-tier Meshes

Conforming macromesh of adaptive octrees
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Two-tier Meshes

Conforming macromesh of adaptive octrees

forest of octrees
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Two-tier Meshes

Conforming macromesh of adaptive octrees
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Parallel Geometric Multigrid on Forests

Overall algorithm

−div(µ(x)∇u(x)) = f (x), Au = f .

Input: fine mesh (forest), µ(x), f (x)
Output: u(x)
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Overall algorithm

−div(µ(x)∇u(x)) = f (x), Au = f .

Input: fine mesh (forest), µ(x), f (x)
Output: u(x)

solve : iterate till convergence,

u ← v-cycle (grid, u, A, f )

u ← smooth (u, A, f )

r ← f − Au
rc ← Rr ( restriction )

ec ← v-cycle (grid.coarse, ec, A, rc)

e ← Pec ( prolongation )

u ← u + e
u ← smooth (u, A, f )
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Multigrid Setup

Coarsening

for regular grids:

replace 2d siblings with parent
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Multigrid Setup

Coarsening

for octrees:

if all siblings exist, replace with parent
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Multigrid Setup

Coarsening

for octrees:

preserve 2:1 balance at all grids
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Multigrid Setup

Coarsening

for forests: cannot coarsen beyond

first-tier macromesh
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Multigrid Setup

Coarsening

Complexity: O(N/p)
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Multigrid Setup

Partitioning & load balancing

36 38 36 38 9 14 27 17 18 17 16 16

fine surrogate coarse

coarsen partition
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Multigrid Setup

partitioning & load balancing

36 38 36 38 9 14 27 17 33 0 34 0

coarsen partition
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Multigrid Setup

partitioning & load balancing

36 38 36 38 9 14 27 17 33 0 34 0

idle cores

coarsen partition
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Multigrid Solve

Inter-grid transfer operators

prolongation (coarse to fine)

preserve every coarse-grid vector on the fine-grid,

Pv = v ∀v ∈ Vc ∈ Vf .

matrix entries: coarse grid shape functions evaluated at the fine grid points,

P(i, j) = φc
j ( fi).

restriction (fine to coarse)

transpose of prolongation

matrix-free implementation

performed between fine and surrogate meshes

no intergrid element searches or look-up tables are needed

single simultaneous traversal over both meshes
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Multigrid Solve

Simultaneous traversal over coarse and fine meshes
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Multigrid Solve

Coarse grid solver

smoothed aggregation

algebraic multigrid

(trilinos::ML)

GMG-AMG approach

matches our two-tier

geometric

decomposition of the

domain

AMG is used for small

problem sizes on small

process counts

5 5

4 4

3 3

2 2

1 1

GMG

AMG

5 5

4 4

3 3

2 2

1 1

GMG

AMG

0

direct
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Results

Test problem

−div(µ(x)∇u(x)) = f (x) ∀x ∈ Ω, u(x) = 0 on ∂Ω.

µ(x) = 106(1 + e−(x−x1)2/2σ2
1 + e−(x−x2)2/2σ2

2 )

3D Poisson problem

Dirichlet boundary conditions

isotropic spatially varying coefficient

forest of 24 Octrees
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Results

Strong scaling

124M elements

5 GMG levels

AMG∗ for Coarse solve

1 MPI process per core

Jaguar XK6 512 1024 2K 4K 8K 16K 32K 64K 131K
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AMG strong

GMG strong

∗
smoothed aggregation (ML)
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Results

Weak scaling

215K elements per

process

AMG for Coarse solve

1 MPI process per core

Jaguar XK6
8 64 512 4096 32K 262K
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Smoother Transfer

Setup Coarse

3 levels 4 levels 5 levels 6 levels 7 levels 8 levels

100% 97% 90% 76% 65% 55%
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Results

Weak scaling : Antarctica mesh

45K Octrees

400K elements per process

constant coefficient Poisson

Cores 64 512 4096 32768 262144

Setup 2.97 2.64 3.1 3.76 8.6

Smoother 289.7 301.5 336.3 391.3 409.1
Transfer 7.45 8.47 11.5 11.35 15.88

Coarse Setup 1.85 2.13 0.82 1.27 1.63

Coarse Solve 24.3 30.8 18.47 30.1 26.01

Total Time 326.3 345.5 370.2 437.8 461.2

100 Billion unknowns on 262K cores while sustaining 272 TFlops/sec.
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Limitations

limitations of the macromesh

limited to unstructured hexahedral meshes

scalability of coarse solver

anisotropy

parallel plane and line smoothers

harder to identify in octrees

jumping coefficients

coefficient aware inter-grid operators

extend to higher-order discretizations
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Summary

parallel, matrix-free multigrid method on geometry-conforming unstructured

forests of octrees

v-cycle implementation uses only non-blocking point-to-point communications

demonstrated strong scalability from 512 to 131K cores

demonstrated weak scalability up to 262K cores using one MPI process per

core

largest solve was on a mesh with 45K octrees with 100 billion unknowns on

262K cores sustaining 272 TFlops/s

Thank you !
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