Intro 0000	Methods 00000000	Results 0000		Conclusion
	Structural Connection in the Space of	tome Atlas (Riemanniar	Constructior n Metrics	١
	Kris Campbell ¹ H Martin Bauer ³ P. Tho	1aocheng Dai ¹ mas Fletcher ⁴	Zhe Su ² Sarang Joshi ^{1,}	5
	¹ School of Computing, Scientific C	omputing and Imaging	Institute, Univ of Uta	h

²Department of Neurology, Univ of California Los Angeles ³Department of Mathematics, Florida State Univ ⁴Electrical & Computer Engineering, Univ of Virginia ⁵Department of Bioengineering, Univ of Utah

Intro Methods	Results	Conclusion
•000 0000000	0000	00

How do we statistically analyze a population of connectomes?

Tractography provided by [Zhang et al. 2018]

Structural Connectome Atlas

Structural connectome: structural network of the brain

white matter pathways between brain regions

Goal: Construct connectome atlas from tractography data

Purpose: Statistically quantify the geometric variability of structural connectivity across a population

Intro	Methods	Results	Conclusion
0000	00000000	0000	00

Existing Methods

Register DWI to anatomical template¹

- Euclidean average of diffusion tensors at each voxel
- ► No directionality information considered

Register q-space diffusion image to anatomical template²

- Averages spin-distribution function (SDF) at each voxel
- Considers directionality information
- ▶ No consistency of long-range white matter connections

Register tractography, then cluster into fiber bundles³

- Considers long-range connections
- Computationally expensive

¹[Mori et al. 2008] ²[Yeh et al. 2018] ³[Zhang et al. 2018]

	Conclusion
0000 00000000 0000	00

Our Contributions

Represent tractography fibers as geodesics of a metric, that is, as a point on the infinite-dimensional manifold of Riemannian metrics

Diffeomorphism-invariant Ebin metric to compute distances and geodesics between connectomes

Diffeomorphic Metric Registration of connectomes

Method to estimate atlas of connectomes

Intro	Methods	Results	Conclusion
0000	•0000000	0000	00

Structural Connectomes as Riemannian Metrics

Goal: Find a metric whose geodesics match the tractography as defined by a vector field, ${\it V}$

Inverse diffusion tensor metric⁴: $\tilde{g} = D(x)^{-1}$

- Geodesics capture essence of the tractography
- Deviates from tractography in high curvature areas

Estimate locally-adaptive metric⁵: $g_{\alpha} = e^{\alpha(x)} \tilde{g}$

• Chosen so that geodesics of the metric match tractography Minimize $F(\alpha) = \int_{M} ||\operatorname{grad} \alpha - 2\nabla_{V} V||_{\tilde{g}}^{2} dx$

by solving $\Delta_{\tilde{g}} \alpha = 2 \operatorname{div}_{\tilde{g}}(\nabla_V V)$ for α

⁴[O'Donnell et al. 2002] ⁵[Hao et al. 2014]

Intro	Methods	Results	Conclusion
0000	0000000	0000	00

Tractography-based Metric Estimation

Geodesics for a synthetic tensor field (left) and a subject's connectome metric from the Human Connectome Project (center) with a detailed view of the geodesics in the corpus callosum (right).

1100000 000	IICIUSIOII
0000 0000000 000 000	(

Manifold of Metrics

 $g \in Met(M)$, space of smooth Riemannian metrics on M

$$\begin{split} \mathsf{Diff}(M) \text{ acts on } \mathsf{Met}(M) \text{ via pullback, } \varphi \in \mathsf{Diff}(M):\\ (g,\varphi) \mapsto \varphi^*g = g(T\varphi \cdot, T\varphi \cdot) \end{split}$$

Geodesics w.r.t. g are mapped via φ to geodesics w.r.t. φ^*g

Equip Met(M) with Ebin metric

Intro	Methods	Results	Conclusion
0000	0000000	0000	00

Ebin Metric (Metric on Metrics)

Ebin metric⁶ is the integral of point-wise metrics on SPD:

$$G_g^E(h,k) = \int_M \operatorname{Tr}\left(g^{-1}hg^{-1}k\right)\operatorname{vol}(g)$$

▶ $h, k \in T_g \operatorname{Met}(M)$, $\operatorname{vol}(g)$ - induced volume density of g

Invariant under the action of Diff(M) $G_g(h,k) = G_{arphi^*g}(arphi^*h,arphi^*k)$

Explicit point-wise formulas for geodesics and distances ⁶[Ebin 1970]

Intro	Methods	Results	Conclusion
0000	00000000	0000	00

Geodesics⁷ with Respect to Ebin Metric

Distance is the integral of point-wise distances on SPD:

$$dist_{Met}(g_0, g_1)^2 = \frac{16}{n} \int_M \left(\alpha(x)^2 - 2\alpha(x)\beta(x)\cos(\theta(x)) + \beta(x)^2 \right) dx$$

Geodesic g(x, t) between $g_0(x), g_1(x)$:

$$g(x,t) = \begin{cases} \left(q^2 + r^2\right)^{\frac{2}{n}} g_0 \exp\left(\frac{\arctan(r/q)}{\kappa}k_0\right) & 0 < \kappa < \pi, \\ q^{\frac{4}{n}}g_0 & \kappa = 0, \\ \left(1 - \frac{\alpha + \beta}{\alpha}t\right)^{\frac{4}{n}} g_0 \mathbf{1}_{\left[0,\frac{\alpha}{\alpha + \beta}\right]} + \left(\frac{\alpha + \beta}{\beta}t - \frac{\alpha}{\beta}\right)^{\frac{4}{n}} g_1 \mathbf{1}_{\left[\frac{\alpha}{\alpha + \beta}, 1\right]} & \kappa \ge \pi, \end{cases}$$

where:

$$\begin{aligned} \alpha(x) &= \sqrt[4]{\det(g_0(x))}, \quad \beta(x) &= \sqrt[4]{\det(g_1(x))}, \quad \theta(x) = \min\{\pi, \kappa(x)\} \\ k(x) &= \log\left(g_0^{-1}(x)g_1(x)\right), \quad k_0(x) = k(x) - \frac{\operatorname{Tr}(k(x))}{n} \operatorname{Id}, \quad \kappa(x) = \frac{\sqrt{n\operatorname{Tr}(k_0(x)^2)}}{4} \\ q(t, x) &= 1 + t\left(\frac{\beta(x)\cos(\kappa(x)) - \alpha(x)}{\alpha(x)}\right), \quad r(t, x) = \frac{t\beta(x)\sin(\kappa(x))}{\alpha(x)}. \end{aligned}$$

⁷[Gil-Medrano, Michor 1991], [Clarke 2013]

Intro 0000	Methods 00000●000	Results 0000	Conclusion
Geodesic Di	stance of Connec	tome Metric	
103818	8 111312	log(Distance)	- 6
			- 4
			Ĵ

Intro	Methods	Results	Conclusion
0000	000000000	0000	00

Diffeomorphic Metric Registration

Recall Diff(M) acts on Met(M)) via pullback: $(g, \varphi) \mapsto \varphi^* g = g(T\varphi \cdot, T\varphi \cdot)$

Ebin metric induces right-invariant distance on Diff(M) $\text{dist}_{\text{Diff}}^2(\text{id}, \varphi) = \text{dist}_{\text{Met}}^2(g, \varphi^*g)$

Register two connectomes by finding φ that minimizes: $E(\varphi) = \inf_{\varphi \in \text{Diff}(M)} \text{dist}^2_{\text{Diff}}(\text{id}, \varphi) + \lambda \operatorname{dist}^2_{\text{Met}}(g_0, \varphi^* g_1)$

Connectome Atlas Building

Explicit distance used in registration formulation to minimize $\hat{g} = \operatorname*{argmin}_{g,\varphi_i} \sum_{i=1}^{N} \operatorname{dist}^2_{\operatorname{Diff}}(\operatorname{id},\varphi_i) + \lambda \operatorname{dist}^2_{\operatorname{Met}}(g,\varphi_i^*g_i)$

Alternating algorithm implemented in PyTorch:

- 1. Estimate Fréchet mean
- 2. Register each connectome to current mean estimate
 - Gradient flow to optimize
 - only 2 iterations of metric matching each time to avoid overfitting early

Intro	Methods	Results	Conclusion
0000	0000000	0000	00

Recursive⁸ Fréchet Mean of Connectomes

Fréchet mean, \hat{g} , of metrics g_1, \ldots, g_N , minimizes:

$$\hat{g} = \operatorname*{argmin}_{g} \sum_{i=1}^{N} \mathsf{dist}^2_{\mathsf{Met}}(g,g_i)$$

Requires only N geodesic calculations in total

Intro	Methods	Results	Conclusion
0000	00000000	•000	00
			1

Synthetic Data

Generate vector fields with integral curves from a family of parameterized cubic functions

400 iterations, $\lambda = 100$, learning rate $\epsilon = 5$

Algorithm behaves well when $1/\epsilon$ is approx equal to energy

Intro	Methods	Results	Conclusion
0000	00000000	0000	00

Real Data

Subjects from Human Connectome Project (HCP)⁹

Estimate diffusion tensors for $b\ \mbox{-value}\ =\ 1000\ \mbox{using FSL's}$ dtifit

5000 iterations, $\lambda = 100$, learning rate $\epsilon = 1$

 λ balances magnitude of diffeomorphisms from each connectome metric to the atlas

⁹[Van Essen et al. 2013]

Intro	Methods	Results	Conclusion
0000	00000000	0000	00

Example HCP Structural Connectome Atlas

Intro	Methods	Results	Conclusion
0000	00000000	0000	•0

Future Work

Statistical analysis

- Median, principal geodesic analysis, regression
- Robustness of connectome atlases

Intro	Methods	Results	Conclusion
0000	00000000	0000	○●

Conclusions

Novel framework for statistical analysis of structural connectomes

Represent tractography fibers as geodesics of a metric, that is, as a point on the manifold of Riemannian metrics

Explicitly compute distances and geodesics between connectomes using diffeomorphism-invariant Ebin metric

Diffeomorphic Metric Registration framework to register connectomes

Structural connectome atlas building algorithm

This research is supported by NSF grants DMS-1912037, DMS-1953244, DMS-1912030 and NIH/NIAAA award R01-AA026834.

Supplemental Materials

Connectome Atlas Supplement