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INTRODUCTION
Ultrasound computed tomography (USCT) is an emerging image modality 

for estimating the acoustics properties of an object using the transmission of 
sound waves. Due to its low cost and radiation free property, USCT has 
received significant attention. However, conventional full wave inversion 
(FWI) is computationally expensive and memory burdensome, thus 
hampering the widespread application of FWI to USCT breast imaging.  We 
proposed to leverage neural operator [1] to solve the time-of-flight (TOF) 
USCT problem, namely learning the mapping between TOF data and the 
heterogeneous speed of sound (SOS) field.

METHODOLOGY 
1. Generating Gaussian random fields (GRFs) as SOS field to  emulate the 

variations in soft tissue;
2. Using k-wave MATLAB toolbox [2] to run a full-wave numerical forward 

simulation over the heterogeneous SOS fields and a homogeneous 
density fields, given an equally distributed set of 128 emitter locations and 
128 receivers on a ring (locate on red dashed line);

3. Calculating the TOF discrepancy by cross correlating the emitter and 
receiver signals and subtract it with the TOF of water-only SOS;

4. Concatenating the TOF discrepancy with positional encoding;
5. Training a tensorized Fourier neural operator (T-FNO, 64 modes, 32 

hidden channels, and 32 projection channels) with the tensor in step 4 as 
input and corresponding SOS field as output;

6. Inferencing new sample with the trained T-FNO.

RESULTS
We observe that the T-FNO outperforms the U-Net at test time under all 

conditions, whereas the U-Net better fits the training set but does not 
generalize well. T-FNO better captures the overall trends in the data, while the 
U-Net is prone to overfit the training data. This is also shown in the loss 
convergence plots, in which the U-Net suffers from considerable

generalization error, even when additional examples were provided.

CONCLUSION
Our novel problem formulation and application of the T-FNO improves over 

the baseline U-Net, laying the foundation for real-time accurate predictions of 
soft tissue distribution for tumor identification on breast imaging.
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