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1 Calculus

Definition 1.1.

Definition 1.2. Let f(x) be a function defined on an interval I , and let a be a point in I . Then, the derivative of
f(x) at a is defined as:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

if this limit exists.

Remark 1.1. The limit of a function is said to exist at a point a if the values of the function f(x) get arbitrarily close
to a specific value L as x approaches a from both the left and the right-hand sides, but not necessarily equal to L.

Remark 1.2. Below are four notations of derivative:

• Leibniz’s notation: df
dx ,

d2f
dx2 ;

• Lagrange’s notation: f ′(x), f ′′(x);

• Newton’s notation: ḟ(x), f̈(x);

• Euler’s notation: Df(x), Dnf(x);

Definition 1.3. The fundamental theorem of calculus is a theorem that links the concept of differentiating a func-
tion with the concept of integrating a function.

• The first fundamental theorem of calculus: Let F be the function defined, for all x ∈ [a, b], by

F (x) =

∫ x

a

f(t) dt

Then F is uniformly continuous on [a, b] and differentiable on the open interval (a, b), and

F ′(x) = f(x)

for all x ∈ (a, b), so F is an antiderivative of f .

• The second fundamental theorem of calculus (Newton–Leibniz axiom): Let f be a real-valued function on a
closed interval [a, b] and F a continuous function on [a, b] which is an antiderivative of f in (a, b):

F ′(x) = f(x).

If f is Riemann integrable on [a, b], then∫ b

a

f(x) dx = F (b)− F (a).

Remark 1.3. How to understand the association between the “area under the curve” and the “slope”? By looking at
the Newton-Leibniz axiom, divide both side of the equation by b− a, we can have∫ b

a

f(x) dx = F (b)− F (a)∫ b
a
f(x) dx

b− a︸ ︷︷ ︸
average height of the curve

=
F (b)− F (a)

b− a︸ ︷︷ ︸
average slope of the antiderivative

.

Namely the average height of the curve f is equivalent to the average slope of the antiderivative F in [a, b].
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Figure 1: Association between the “area under the curve” and the “slope”, where sin(x) is the curve and − cos(x) is
the antiderivative of sin(x).

Definition 1.4. Integration by parts (Change of variables) formula states:∫ b

a

u dv = [uv]ba −
∫ b

a

v du∫ b

a

uv′ dx = [uv]ba −
∫ b

a

u′v dx.

Example 1. Integration by parts twice:∫ b

a

f ′′(x)g(x)dx =

∫ b

a

g(x) df ′(x) = [g(x)f ′(x)]ba −
∫ b

a

f ′(x) dg(x)

where

−
∫ b

a

f ′(x) dg(x) = −
∫ b

a

f ′(x)g′(x) dx

= −
∫ b

a

g′(x) df(x)

= [−g′(x)f(x)]ba +

∫ b

a

f(x) dg′(x)

= [−g′(x)f(x)]ba +

∫ b

a

f(x)g′′(x) dx

Hence ∫ b

a

f ′′(x)g(x)dx = [g(x)f ′(x)]ba − [g′(x)f(x)]ba +

∫ b

a

f(x)g′′(x) dx

Definition 1.5. Fourier series is an expansion of a periodic function into a sum of trigonometric functions.

The Fourier series coefficients can be defined by the integrals in the sine-cosine form:

An =
2

P

∫ P/2

−P/2
s(x) cos

(
2πnx

P

)
dx for n ≥ 1

Bn =
2

P

∫ P/2

−P/2
s(x) sin

(
2πnx

P

)
dx for n ≥ 1

where P is the function’s period. 1 With these coefficients defined the Fourier series is:

s(x) ∼ A0 +

∞∑
n=1

(
An cos

(
2πnx

P

)
+Bn sin

(
2πnx

P

))
1It is notable that, A0 is the average value of the function s(x). This is a property that extends to similar transforms such as the

Fourier transform.
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The Fourier series coefficients can also be defined by the integrals in the exponential form:

cn =
1

P

∫ P/2

−P/2
s(x)e−

2πinx
P dx for all integers n

cn =
1

P

∫ P/2

−P/2
s(x)

(
cos

(
−2πnx

P

)
+ i sin

(
−2πnx

P

))
dx for all integers n

cn =
1

P

∫ P/2

−P/2
s(x) cos

(
−2πnx

P

)
dx+ i

∫ P/2

−P/2
s(x) sin

(
−2πnx

P

)
dx for all integers n

cn = (An − iBn)/2 for n > 0

cn = (A−n + iB−n)/2 for n < 0

c0 = A0 for n = 0

s(x) =

∞∑
n=−∞

cn · e
2πinx
P . exponential form

=

∞∑
n=1

An − iBn
2

·
(

cos

(
2πnx

P

)
+ i sin

(
2πnx

P

))

+

−1∑
n=−∞

An + iBn
2

·
(

cos

(
2πnx

P

)
− i sin

(
2πnx

P

))
+A0

= A0 +

∞∑
n=1

An cos

(
2πnx

P

)
+Bn sin

(
2πnx

P

)
. sine-cosine form

Remark 1.4. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier
series.

Remark 1.5. When you express a function with a Fourier series you are actually performing the Gram-Schimdt
process, by projecting a function onto a basis of Sine and Cosine functions

An =

〈
s(x), cos

(
2πnx

P

)〉
=

2

P

∫ P/2

−P/2
s(x) cos

(
2πnx

P

)
dx for n ≥ 1

Bn =

〈
s(x), sin

(
2πnx

P

)〉
=

2

P

∫ P/2

−P/2
s(x) sin

(
2πnx

P

)
dx for n ≥ 1

Example 2. Consider a sawtooth function:

s(x) =
x

π
, for− π < x < π,

s(x+ 2πk) = s(x), for− π < x < π and k ∈ Z.

Figure 2: Plot of the sawtooth wave, a periodic continuation of the linear function s(x) = x/π on the interval (−π, π]
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In this case, the Fourier coefficients are given by

An =
2

2π

∫ π

−π
s(x) cos(nx) dx = 0, n ≥ 0. . Integration of odd function is 0.

Bn =
2

2π

∫ π

−π
s(x) sin(nx) dx

=
1

π

∫ π

−π

x

π
sin(nx) dx

=
1

π2

∫ π

−π
x sin(nx) dx

=
1

nπ2

∫ π

−π
x d(− cos(nx)) . Integration by parts.

=
1

nπ2

(
[−x cos(nx)]π−π −

∫ π

−π
− cos(nx) dx

)
=

1

nπ2

(
[−x cos(nx)]π−π +

[
1

n
sin(nx)

]π
−π

)

=
1

nπ2

(
−π cos(nπ)− (π cos(−nπ)) +

1

n
sin(nπ)− 1

n
sin(−nπ)

)
=

1

nπ2

(
−π cos(nπ)− π cos(nπ) +

1

n
sin(nπ) +

1

n
sin(nπ)

)
=

1

nπ2

(
−2π cos(nπ) +

2

n
sin(nπ)

)
= − 2

πn
cos(nπ) +

2

π2n2
sin(nπ)

=
2 (−1)n+1

πn
, n ≥ 1.

It can be shown that the Fourier series converges to s(x) at every point x where s is differentiable, and therefore:

s(x) = A0 +

∞∑
n=1

(An cos (nx) +Bn sin (nx))

=
2

π

∞∑
n=1

(−1)n+1

n
sin(nx), for x− π /∈ 2πZ.

Below is the visualization of the evolution of Fourier approximation:

Figure 3: Plots of the first five successive partial Fourier series.
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Definition 1.6. Taylor series of a real or complex-valued function f (x) that is infinitely differentiable at a real or
complex number a is the power series

t(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) +

f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · · ,

where f (n)(a) denotes the nth derivative of f evaluated at the point a. Function t(x) approximates the f(x) around
an arbitrarily small neighborhood of a. When a = 0, the series is also called a Maclaurin series.

Proof. How are the coefficients ahead of the polynomial terms determined? Assuming the Taylor series of the function
f(x) is t(x) =

∑∞
n=0 cn(x− a)n. In order to match the n-th derivative with the original function f(x) at x = a, we

have

t(n)(x) = cnn! +

∞∑
m=n+1

m!

(m− 3)!
(x− a)m−3 = f (n)(x)

When x = a, we have

cnn! = f (n)(a)

cn =
f (n)(a)

n!

Remark 1.6. When you look at the first-order approximation t(x) = f(a) + f ′(a)(x − a), it is very similar to what
we did in Euler integration.

Example 3.

• The Maclaurin series of the exponential function ex is
∞∑
n=0

xn

n!
=
x0

0!
+
x1

1!
+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ · · · .

It converges for all x, namely the radius of convergence is infinity.

• The Maclaurin series of the exponential function sin(x) is

sinx =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 = x− x3

3!
+
x5

5!
− x7

7!
+ · · · .

It converges for all x, namely the radius of convergence is infinity.

• The Maclaurin series of the exponential function cos(x) is

cosx =

∞∑
n=0

(−1)n

(2n)!
x2n = 1− x2

2!
+
x4

4!
− x6

6!
+ · · · .

It converges for all x, namely the radius of convergence is infinity.

Example 4. When we are propagating an integral curve, we are actually using the Taylor series:

t(x+ a) = f(x) +
f ′(x)

1!
(x+ a− x) +

f ′′(x)

2!
(x+ a− x)2 +

f ′′′(x)

3!
(x+ a− x)3 + · · · ,

In practice, we use first-order expansion:

t(x+ a) = f(x) + af ′(x).

To be more precise, we can also use second-order expansion:

t(x+ a) = f(x) + af ′(x) +
a2

2!
f ′′(x).
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Definition 1.7. Euler’s formula states that for any real number x:

eix = cosx+ i sinx.

Proof. • Using Taylor series: According to the Maclaurin series of ex, sin(x), cos(x), we can have the follow-
ing deviation

eix =

∞∑
n=0

(ix)n

n!

=
(ix)0

0!
+

(ix)1

1!
+

(ix)2

2!
+

(ix)3

3!
+

(ix)4

4!
+

(ix)5

5!
+

(ix)6

6!
+

(ix)7

7!
+ · · ·

=
x0

0!
+
ix

1!
− x2

2!
− ix3

3!
+
x4

4!
+
ix5

5!
− x6

6!
− ix7

7!
+ · · ·

= cos(x) + i sin(x)

• Using differentiation: Consider the function f(θ)

f(θ) =
cos θ + i sin θ

eiθ
= e−iθ (cos θ + i sin θ)

for real θ. Differentiating gives by the product rule

f ′(θ) = e−iθ (i cos θ − sin θ)− ie−iθ (cos θ + i sin θ) = 0

Thus, f(θ) is a constant. Since f(0) = 1, then f(θ) = 1 for all real θ, and thus

eiθ = cos θ + i sin θ.

Definition 1.8. Euler-Lagrange equation is defined as

∂F

∂y
− ∂

∂x

(
∂F

∂y′

)
= 0.

which is used to find a y = f(x) making this integral

L(y) =

∫ x2

x1

F (x, y, y′)dx

stationary.

Example 5. Suppose A and B are two points in an Euclidean space. We want to find the geodesic between A and B.

Solution. We would like to minimize

L =

∫ B

A

1ds, where ds =
√

(dx)2 + (dy)2 =
√

1 + (y′)2dx

which can be written in another form

L =

∫ B

A

√
1 + (y′)2dx

We need to find a y(x) which minimize L, where

F =
√

1 + (y′)2

7
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Substituting it into the Euler-Lagrange equation, we have

∂F

∂y
− d

dx

(
∂F

∂y′

)
= 0

− d

dx

(
y′√

1 + (y′)2

)
= 0

y′√
1 + (y′)2

= c

(y′)2 =
c2

1− c2
y′ = c1

y = c1x+ c2

2 Vector Space

Definition 2.1. Vector space over a field F is a non-empty set V together with two binary operations that satisfy
the eight axioms listed below. In this context, the elements of V are commonly called vectors, and the elements of F
are called scalars.

• Vector addition: for any x,y ∈ V , x + y ∈ V

• Scalar multiplication: for any x ∈ V, α ∈ F , αx ∈ V

To have a vector space, the following axioms must be satisfied:

• x + y = y + x

• (x + y) + z = x + (y + z)

• There is a null vector θ ∈ X such that x + θ = x for every x ∈ X

• α(x + y) = αx + αy; (α+ β)x = αx + βx

• (αβ)x = α(βx)

• 0x = θ; 1x = x

Example 6. Rn,Cn, function spaces, and linear equations are all vector spaces.

Definition 2.2. Subspace of V is a nonempty subset W of a vector space V that is closed under addition and scalar
multiplication (and therefore contains the 0-vector of V)

Example 7. A hyperplane passing the origin point in the vector space V is a subspace of the V .

8
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Figure 4: A line passing through the origin (blue, thick) in R3 is a linear subspace. It is the intersection of two planes
(green and yellow).

Definition 2.3. Norm ‖ · ‖ : X ×X → R is a mapping that satisfies the following axioms:

1. ‖x‖ ≥ 0 for all x ∈ X , ‖x‖ = 0 if and only in x = θ

2. ‖x + y‖ ≤ ‖x‖+ ‖y‖ for each x,y ∈ X . Triangle inequality

3. ‖αx‖ = |α| · ‖x‖ for all scalars α and each x ∈ X

where X is a vector space.

Remark 2.1. Norm and inner product are two independent concepts. Norm is not necessarily defined by inner product.
But when the Banach space’s norm is defined by inner product (namely the norm satisfies parallelogram law), then it
is called Hilbert space.

Example 8. The norm is clearly an abstraction of our usual concept of length. For continuous situation, the supre-
mum norm ‖f‖∞ is the supremum (lowest upper bound) of all elements of its domain evaluated in f . For discrete
situation, the sup norm equals to the maximum of absolute values of its components, namely ‖f‖∞ = max |fi|.

Remark 2.2. If f : Rn → R, f(x) = ‖x‖p, p ≥ 1, then f is convex.

Figure 5: Image of 2D norm

Definition 2.4. Normed linear vector space is a vector space X on which there is defined a real-valued function
that maps each element x in X into a real number ‖x‖.
Definition 2.5. Pre-Hilbert space is a linear vector space X together with an inner product defined on X ×X .

Definition 2.6. Cauchy sequence is a sequence {xn} in a normed space such that ‖xn − xm‖ → 0 as n,m→∞.

9
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Remark 2.3. In a normed space, every convergent sequence is a Cauchy sequence, however, a Cauchy sequence may
not be convergent.

Figure 6: Example of Cauchy sequence

Definition 2.7. A normed linear vector space X is complete is every Cauchy sequence from X has a limit in X .
The limit is also a vector.

Example 9.

• For a finite-dimensional vector space like Rn, it is complete — every Cauchy sequence from Rn has a limit
also lives in Rn.

• For an infinite-dimensional vector space (a space of continuous functions) X , it is not complete as the limit
of the below Cauchy sequence of xn does not live in the space of continuous functions — the limit is a
non-continuous function.

Figure 7: A Cauchy sequence makes continuous function space not complete.[Luenberger, 1997]

Definition 2.8. Banach space is a complete normed linear vector space.

Remark 2.4. In a Banach space, norms are rigorously defined, which necessitates the validity of the triangle inequal-
ity. Therefore, it is a fundamental characteristic of Banach spaces that the triangle inequality holds.

Definition 2.9. Inner product [Luenberger, 1997] 〈·, ·〉 : X × X → R is a mapping that satisfies the following
axioms:

1. 〈x, y〉 = 〈y,x〉

2. 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉

3. 〈λx, y〉 = λ〈x, y〉

4. 〈x,x〉 ≥ 0 and 〈x,x〉 = 0 if and only if x = θ

10
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where X is a vector space.

Definition 2.10. In a pre-Hilber space, two vector v1,v2 (function f, g) are said to be orthogonal if

〈v1,v2〉 = 0

or

〈f, g〉 =
1

L

∫ L

−L
f(x)g(x)dx = 0

Example 10. sin(x) and cos(x) are two functions orthogonal to each other, as

〈sin(x), cos(x)〉 =
1

L

∫ L

−L
sin(x) cos(x) dx = 0

Example 11. That is, Pn(x) is a polynomial of degree n, such that∫ 1

−1

Pm(x)Pn(x) dx = 0 if n 6= m.

An especially compact expression for the Legendre polynomials is given by Rodrigues’ formula:

n Pn(x)

0 1
1 x

2 1
2

(
3x2 − 1

)
3 1

2

(
5x3 − 3x

)
n 1

2nn!
dn

dxn (x2 − 1)n

Example 12. For A,B ∈ GL(n), the inner product 〈A,B〉 = Tr(A>B) and the associated norm ‖A‖2 =

Tr(A>A)1/2.

Definition 2.11. Hilbert space is a complete pre-Hilbert space or a Banach space whose norm is defined by the
inner product.

Remark 2.5. Any finite-dimensional inner product space (with inner-product-induced norm) is a Hilbert space. For
example, every Cauchy sequence from Rn has a limit that also lives in Rn.

Theorem 2.1. Cauchy-Schwarz Inequality. If p = 2 and q = 2 and if x = [x1,x2, · · · ]> ∈ l2,y = [y1,y2, · · · ]> ∈
l2, then

∞∑
i=1

|xiyi| ≤ ‖x‖2 · ‖y‖2

〈x,y〉2 ≤ ‖x‖22 · ‖y‖22
Remark 2.6. Cauchy-Schwarz inequality holds in Hilbert space.

Theorem 2.2. Hölder Inequality. If p and q are positive numbers 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, such that 1/p+ 1/q = 1

and if x = [x1,x2, · · · ]> ∈ lp,y = [y1,y2, · · · ]> ∈ lq , then
∞∑
i=1

|xiyi| ≤ ‖x‖p · ‖y‖q

‖x� y‖1 ≤ ‖x‖p · ‖y‖q

Equality holds if and only if
(
|xi|
‖x‖p

)1/q

=
(
|yi|
‖y‖q

)1/p

for each i.

11
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Remark 2.7. Holder inequality is a generalization of Cauchy-Schwarz inequality.

Remark 2.8. Cauchy-Schwarz inequality is intuitive to understand as

cos(θ)2 ≤ 1

|x‖22 · ‖y‖22 · cos(θ)2 ≤ |x‖22 · ‖y‖22
〈x,y〉2 ≤ ‖x‖22 · ‖y‖22

Theorem 2.3. Minkowski Inequality (triangle inequality). If x and y are in lp, 1 ≤ p ≤ ∞, then

‖x + y‖p ≤ ‖x‖p + ‖y‖p
Equality holds if and only if k1x = k2y for some positive constants k1 and k2.

Theorem 2.4. Divergence Theorem. Letting ϕ be a C1 vector field, defined on Ω, which is a region in the plane with
boundary ∂Ω, then ∫

Ω

divϕdx =

∫
∂Ω

〈ϕ,N〉dl

where N is the outward normal to Ω and div(ϕ) = trace(Dϕ).

Definition 2.12. lp space consists of all sequences of scalars {ξ1, ξ2, · · · } for which

∞∑
i=1

|ξi|p <∞

where 1 ≤ p <∞.

The norm of an element x = {ξi} in lp is defined as

‖x‖p =

( ∞∑
i=1

|ξi|p
)1/p

Definition 2.13. Lp[a, b] space (Lebesgue space) consists of all functions f(u) for which∫ b

a

|f(u)|pdu <∞

where 1 ≤ p <∞.

The norm of an element f(u) in Lp is defined as

‖f‖p =

(∫ b

a

|f(u)|pdu

)1/p

The Lp-functions are the functions for which this integral converges.

Remark 2.9. Always remember the absolute value sign in norm calculation.

Remark 2.10. According to Minkoski inequality, the triangle inequality, which is essential for inner product-induced
norms, holds only when p ≥ 1 (convex). That is why Lp and lp spaces requires 1 ≤ p <∞.

Proof. Let a = [1, 0]>,b = [0, 1]>, we have a + b = [1, 1]>

‖a‖ 1
2

= 1

‖b‖ 1
2

= 1

‖a‖ 1
2

+ ‖b‖ 1
2

= 2

‖a + b‖ 1
2

= (1
1
2 + 1

1
2 )2 = 4

‖a‖ 1
2

+ ‖b‖ 1
2
< ‖a + b‖ 1

2

The triangle inequality does not hold.

12
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Remark 2.11. lp, Lp is Banach space (complete and norm defined). lp, Lp space is Hilbert space (Banach space with
inner-product-induced norm) if and only if p = 2.

Proof. Consider two simple functions:

f(x) = 1[0, 1/2]

g(x) = 1[1/2, 1]

‖f‖2p =

((∫
|f(x)|p dx

) 1
p

)2

=

((
1

2

) 1
p

)2

=

(
1

2

) 2
p

= ‖g‖2p

2‖f‖2p + 2‖g‖2p = 4×
(

1

2

) 2
p

‖f + g‖2p =

((∫
|f(x) + g(x)|p dx

) 1
p

)2

= 1

‖f − g‖2p =

((∫
|f(x)− g(x)|p dx

) 1
p

)2

= 1

‖f + g‖2p + ‖f − g‖2p = 2

Hence, parallelogram law ‖f + g‖2p + ‖f − g‖2p = 2‖f‖2p + 2‖g‖2p holds if and only if p = 2.

Remark 2.12.

lp/Lebesgue space Lp with p ≥ 1→Banach space (norm defined, hence triangle inequality holds)

lp/Lebesgue space Lp with p = 2→Banach space with parallelogram law holds

⇔Banach space with inner product induced norm

⇔Hilbert space

Remark 2.13. The parallelogram law is a necessary and sufficient condition for a norm to be defined by an inner
product. See proof below.

Theorem 2.5. Norm satisfying parallelogram law→ norm is induced by inner product:

Let V be a vector space over R and ‖ · ‖ : V → R be a norm on V such that:

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

for each x,y ∈ V .

Then the function 〈·, ·〉 : V × V → R defined by:

〈x,y〉 =
‖x + y‖2 − ‖x− y‖2

4
for each x,y ∈ V , is an inner product on V .

Proof. 1. 〈x,y〉 = 〈y,x〉:

〈y,x〉 =
‖y + x‖2 − ‖y − x‖2

4

=
‖x + y‖2 − ‖ − (x− y)‖2

4

=
‖x + y‖2 − ‖x− y‖2

4
. ‖αx‖ = |α| · ‖x‖

= 〈x,y〉

13
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2. 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉:

〈x, z〉+ 〈y, z〉 =
1

4

(
‖x + z‖2 − ‖x− z‖2

)
+

1

4

(
‖y + z‖2 − ‖y − z‖2

)
=

1

4

(
‖x + z‖2 − ‖x− z‖2 + ‖y + z‖2 − ‖y − z‖2

)
=

1

4

(
‖x + z‖2 + ‖y‖2 − ‖x− z‖2 − ‖y‖2 + ‖x‖2 + ‖y + z‖2 − ‖x‖2 − ‖y − z‖2

)
Note that by hypothesis of inner product, we have ‖f+g‖2 +‖f−g‖2 = 2

(
‖f‖2 + ‖g‖2

)
for each f, g ∈ V .

Setting f = x + z and g = y, we have:

‖x + y + z‖2 + ‖x− y + z‖2 = 2
(
‖x + z‖2 + ‖y‖2

)
Setting f = x− z and g = y, we have:

‖x + y − z‖2 + ‖x− y − z‖2 = 2
(
‖x− z‖2 + ‖y‖2

)
Setting f = x and g = y + z, we have:

‖x + y + z‖2 + ‖x− y − z‖2 = 2
(
‖x‖2 + ‖y + z‖2

)
Setting f = x and g = y − z, we have:

‖x + y − z‖2 + ‖x− y + z‖2 = 2
(
‖x‖2 + ‖y − z‖2

)
By putting this together, we have:

〈x, z〉+ 〈y, z〉 =
1

4

(
‖x + z‖2 + ‖y‖2 − ‖x− z‖2 − ‖y‖2 + ‖x‖2 + ‖y + z‖2 − ‖x‖2 − ‖y − z‖2

)
=

1

8

(
‖x + y + z‖2 + ‖x− y + z‖2 − ‖x + y − z‖2 − ‖x− y − z‖2

)
+

1

8

(
‖x + y + z‖2 + ‖x− y − z‖2 − ‖x + y − z‖2 − ‖x− y + z‖2

)
=

2

8

(
‖x + y + z‖2 − ‖x + y − z‖2

)
=

1

4

(
‖x + y + z‖2 − ‖x + y − z‖2

)
=〈x + y, z〉

3. 〈λx,y〉 = λ〈x,y〉:

• When λ = 0, 〈0 · x,y〉 = 〈0,y〉 = ‖0+y‖2−‖0−y‖2
4 = ‖y‖2−‖y‖2

4 = 0 = 0 · 〈x,y〉;
• When λ = 1, 〈1 · x,y〉 = 〈x,y〉 = 1 · 〈x,y〉;
• When λ > 1, λ ∈ N, if 〈nx,y〉 = n〈x,y〉, then

〈(n+ 1)x,y〉 = 〈nx + x,y〉
= 〈nx,y〉+ 〈x,y〉
= n〈x,y〉+ 〈x,y〉 . Previous property

= (n+ 1)〈x,y〉
• For λ ∈ Q,R, refer to here.

4. 〈x,x〉 = 0 if and only if x = 0:

〈x,x〉 =
‖x + x‖2 − ‖x− x‖2

4

=
‖2x‖2 − ‖0‖2

4
. Norm’s axiom 1

=
4‖x‖2

4
. Norm’s axiom 2

= ‖x‖2

14
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Hence, 〈x,x〉 = ‖x‖2 = 0 if and only if x = 0.

Theorem 2.6. Inner-product-induced norm→ parallelogram law:

Let ‖ · ‖ be the inner product norm of inner product space (V, 〈·, ·〉),x,y ∈ V .

Then

‖x + y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2

)
.

Proof.

〈x + y,x + y〉+ 〈x− y,x− y〉 = ‖x + y‖2 + ‖x− y‖2 . Definition of inner product induced norm

〈x + y,x + y〉+ 〈x− y,x− y〉 = 〈x,x〉+ 〈x,y〉+ 〈y,x〉+ 〈y,y〉
+ 〈x,x〉 − 〈x,y〉 − 〈y,x〉+ 〈y,y〉 . Linearity of inner product

= 2〈x,x〉+ 2〈y,y〉
= 2

(
‖x‖2 + ‖y‖2

)
. Definition of inner product induced norm

Hence, ‖x + y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2

)
.

Figure 8: Visualization of ‖x‖p = 1, namely the unit circle in different norms, which are the cross sections of Figure
2.

Definition 2.14. Lebesgue integral of a function f over a measure space X is written∫
X

fdµ

to emphasize that the integral is taken with respect to the measure µ.

Remark 2.14. In mathematics, the integral of a non-negative function of a single variable can be regarded, in the
simplest case, as the area between the graph of that function and the x-axis. The Lebesgue integral extends the integral
to a larger class of functions.

15
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Figure 9: Riemann-Darboux’s integration (in blue) and Lebesgue integration (in red).

Definition 2.15. Frobenius norm is defined by

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 =
√

trace (A∗A) =

√√√√min{m,n}∑
i=1

σ2
i (A)

Definition 2.16. Gram–Schmidt process is a method for orthonormalizing a set of vectors {v1, . . . ,vn} (vector
space) in an inner product space. We define the projection2 operator by

proju(v) = 〈v,u〉 · u

〈u,u〉
,

The Gram–Schmidt process then works as follows:

u1 = v1, e1 =
u1

‖u1‖

u2 = v2 − proje1
(v2), e2 =

u2

‖u2‖

u3 = v3 − proje1
(v3)− proje2

(v3), e3 =
u3

‖u3‖

u4 = v4 − proje1
(v4)− proje2

(v4)− proje3
(v4), e4 =

u4

‖u4‖
...

...

uk = vk −
k−1∑
j=1

projej (vk), ek =
uk
‖uk‖

.

where {u1, . . . ,un} is the orthogonal basis of the vector space and {e1, . . . , en} is the orthonormal basis of the vector
space.

Definition 2.17. Positive definite matrix A is an n× n symmetric matrix such that

1. 〈x>Ax〉 ≥ 0 for all x ∈ R

2. 〈x>Ax〉 = 0 holds if and only if x = 0

Definition 2.18. Positive definite function k is an n× n symmetric function such that∫ ∫
f(x)k(x, y)f(y) dxdy > 0

for all L2 function f .

Remark 2.15. The Gram-Schmidt matrix G of a set of vectors {v1, . . . ,vn} is defined as below
〈v1,v1〉 〈v2,v1〉 · · · 〈vn,v1〉
〈v1,v2〉 〈v2,v2〉 · · · 〈vn,v2〉

...
...

. . .
...

〈v1,vn〉 〈v2,vn〉 · · · 〈vn,vn〉


2The definition of projection guarantees the u is orthogonal to previous e.

16



Note on Mathematics of Imaging A PREPRINT

It is a symmetric semi-positive-definite matrix the determinant of which indicates whether the set of vectors are linearly
independent.

Proof. The proof of Gram-Schmidt matrix G’s semi-positive-definitness reads as

G = V>V

u>Gu = u>V>Vu

u>Gu = (Vu)>Vu ≥ 0

Definition 2.19. Sobolev space W k,p(R) for 1 ≤ p ≤ ∞ in one-dimensional case is defined as the subset of
functions f in Lp(R) such that f and its weak derivatives3 up to order k have a finite Lp norm.

‖f‖k,p =

(
k∑
i=0

∫ ∣∣∣f (i)(t)
∣∣∣p dt)

1
p

.

Remark 2.16. In the one-dimensional problem, it is enough to assume that the (k−1)-th derivative f (k−1) is differ-
entiable almost everywhere and is equal almost everywhere to the Lebesgue integral of its derivative (this excludes
irrelevant examples such as Cantor’s function).

Example 13. Sobolev spaces with p = 2 are especially important because of their connection with the Fourier series
and because they form a Hilbert space. A special notation has arisen to cover this case since the space is a Hilbert
space:

Hk = W k,2.

Thereby, the frequently occurring H1 denotes the Sobolev space is constituted by the functions f such that its first
derivative have a finite L2 norm.

Example 14. The space Hk can be defined naturally in terms of Fourier series whose coefficients decay sufficiently
rapidly, namely,

Hk(T) =

{
f ∈ L2(T) :

∞∑
n=−∞

(
1 + n2 + n4 + · · ·+ n2k

) ∣∣∣f̂(n)
∣∣∣2 <∞}

where f̂ is the Fourier series of f , and T denotes the 1-torus. As above, one can use the equivalent norm

‖f‖2k,2 =

∞∑
n=−∞

(
1 + |n|2

)k ∣∣∣f̂(n)
∣∣∣2 .

Remark 2.17. Overview of several spaces:

Spaces Elements Operations Equivalents

Vector vectors x + y, αx

Pre-Hilbert vectors x + y, αx, 〈·, ·〉 vector space + 〈·, ·〉
Banach vectors x + y, αx, ‖ · ‖ vector space (complete) +‖ · ‖

Lebesgue
functions (vectors)

s.t. ‖f‖p <∞, p ∈ [1,∞)
x + y, αx, ‖ · ‖ Banach space

H1 Sobolev
functions (vectors)
s.t. f ′ has L2 norm

x + y, αx, ‖ · ‖ Banach space

Hilbert vectors
x + y, αx,

‖ · ‖ defined by 〈·, ·〉 vector space (complete)+ 〈·, ·〉+ ‖ · ‖

3A weak derivative is a generalization of the concept of the derivative of a function (strong derivative) for functions not assumed
differentiable, but only integrable to lie in the Lp space.
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Definition 2.20. Fourier transform of function f(x) can be expressed as

F (ω) =

∫ ∞
−∞

f(x) e−i2πωx dx.

And inverse of Fourier transform reads as

f(x) =

∫ ∞
−∞

F (ω) ei2πxω dω.

Remark 2.18. Let’s consider a 2D spatial domain signal, denoted by the function f(x, y), where x and y represent
the spatial coordinates.

The Fourier transform of the signal f(x, y) is given by:

F (u, v) =

∫∫ ∞
−∞

f(x, y) · exp(−i2π(ux+ vy)) dx dy

where F (u, v) is the complex-valued function in the Fourier domain and u and v represent the frequency coordinates.

Now, let’s consider a rotation of the spatial domain signal f(x, y) by an angle θ in the counterclockwise direction.
The rotated signal, denoted by g(x, y), is given by:

g(x, y) = f(x cos θ − y sin θ, x sin θ + y cos θ)

To understand the effect of this rotation in the Fourier domain, we need to compute the Fourier transform of the rotated
signal g(x, y).

Substituting the expression for g(x, y) in the Fourier transform formula, we have:

G(u, v) =

∫∫ ∞
−∞

g(x, y) · exp(−i2π(ux+ vy)) dx dy

=

∫∫ ∞
−∞

f(x cos θ − y sin θ, x sin θ + y cos θ) · exp(−i2π(ux+ vy)) dx dy

Now, we can introduce a change of variables by substituting x′ = x cos θ − y sin θ and y′ = x sin θ + y cos θ. This
allows us to express the integral in terms of the new variables x′ and y′:

G(u, v) =

∫∫ ∞
−∞

f(x′, y′) · exp(−i2π(ux+ vy)) dx′ dy′

=

∫∫ ∞
−∞

f(x′, y′) · exp(−i2π((u cos θ − v sin θ)x′ + (u sin θ + v cos θ)y′)) dx′ dy′

Comparing the above equation with the Fourier transform formula, we can see that the expression inside the expo-
nential function is of the form −i2π(ux′ + vy′), which corresponds to the Fourier transform of the original signal
f(x′, y′).

Therefore, we can rewrite the equation as:

G(u, v) = F (u cos θ − v sin θ, u sin θ + v cos θ)

This result shows that rotating the signal f(x, y) in the spatial domain corresponds to a phase shift in the Fourier
domain, where the phase shift is determined by the rotation angle θ.

Hence, rotation in the spatial domain leads to the same rotation in the Fourier domain, preserving the rotational
symmetry property of the Fourier transform.

18
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Figure 10: Top row from left to right: bar image with no translation, up translation, down translation rotation
in spatial domain; bottom row from left to right: corresponding Fourier spectrum of the bar image in spatial
domain.[Chaudhuri, 2004]

Figure 11: Top row from left to right: bar image with 0◦, 40◦, 90◦ rotation in spatial domain; bottom row from left to
right: corresponding Fourier spectrum of the bar image with 0◦, 40◦, 90◦ rotation in spatial domain.

Definition 2.21. Dirac delta function can be loosely thought of as a function on the real line which is zero every-
where except at the origin, where it is infinite,

δ(x) '

{
+∞, x = 0

0, x 6= 0
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and which is also constrained to satisfy the identity∫ ∞
−∞

δ(x) dx = 1.

For any function f(x) that is continuous at x = x0, the delta distribution is defined as∫ ∞
−∞

f(x)δ(x− x0) dx = f(x0).

Remark 2.19. Fourier transform of Dirac delta function is

∆(ω) = F(δ(x− x0)) =

∫ ∞
−∞

δ(x− x0)e−i2πωx dx

= e−i2πωx0

When x0 = 0,
∆(ω) = F(δ(x− x0)) = 1

Theorem 2.7. The property of a Green’s function can be exploited to solve differential equations of the form

Lu(x) = f(x),

where L and f(x) are given. If the kernel of L is non-trivial, then the Green’s function is not unique.

A Green’s function, G(x, s) of a linear differential operator L = L(x) at point s, is any solution of

LG(x, s) = δ(x− s),

where δ is the Dirac delta function.

If such function G can be found for the operator L, then we obtain∫
LG(x, s)f(s)ds =

∫
δ(x− s)f(s)ds = f(x)

Because the operator L = L(x) is linear and acts only on the variable x, one may take the operator L outside of
integration, yielding

L

(∫
G(x, s)f(s)ds

)
= f(x),

which means that
u(x) =

∫
G(x, s)f(s)ds

is the solution to Lu(x) = f(x).

Definition 2.22. Linear operators L are the operators such that for every pair of functions f and g and scalar t, it
has

L(f + g) = L(f) + L(g),

L(tf) = tL(f).

Definition 2.23. Eigenfunctions u of linear operators D are the functions such that

Du = λu,

where λ is the eigenvalue and u is the corresponding eigenfunction.

Example 15. Below are a few examples of eigenfunctions of linear operator:

• Differentiation: d
dxe

λx = λeλx

• Gradient: ∇eλx = λeλx
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• Laplacian:

– ∇2 sin(ax+ b) = λ sin(x)4

– ∇2 sin(ax) sin(by) = −(a2 + b2) sin(ax) sin(by)

Example 16. The following operators are all linear:

Operator L(f + g) = L(f) + L(g) L(tf) = tL(f)

Differential d(f+g)
dx = df

dx + dg
dx

d(tf)
dx = t dfdx

Integral
∫

(f + g) dx =
∫
f dx+

∫
g dx

∫
(tf) dx = t

∫
f dx

Gradient ∇(f + g) = ∇f +∇g ∇(tf) = t∇f
Fourier F(f + g) = Ff + Fg F(tf) = tFf

Laplacian ∆(f + g) = ∆f + ∆g ∆(tf) = t∆f

Expectation E(f + g) = E(f) + E(g) E(tf) = tE(f)

Definition 2.24. Boundary condition is a mathematical condition that is imposed on the solution of the PDE at the
boundary of the domain in which the PDE is defined. The boundary condition specifies how the solution behaves at
the boundary of the domain and is necessary to obtain a unique solution of the PDE.

Example 17. Below are the most commonly used boundary conditions:

• Dirichlet boundary conditions on a domain Ω ⊂ Rn take the form

y(x) = f(x) ∀x ∈ ∂Ω,

where f is a known function defined on the boundary ∂Ω.

• Neumann boundary conditions on a domain Ω ⊂ Rn take the form

∂y

∂n
(x) = f(x) ∀x ∈ ∂Ω,

where n denotes the (typically exterior) normal to the boundary ∂Ω, and f is a given scalar function.

Definition 2.25. Least-norm problem can be formulated as

arg min‖x‖

s.t. 〈x, e(i)〉 = ci

Example 18. Discrete least-norm problem:

arg min‖x‖
s.t. x1 + x2 = 1

x3 = 1

1. Find the plane represented by each 〈x, e(i)〉 = ci: When the dot product between a fixed vector e(i) and a
vector variable x is a constant ci, it entails that the projection of x on e(i) is a fixed value — namely e(i) is
perpendicular to the plane represented by x, see Figure 12. Hence, the plane induced by 〈x, e(i)〉 = ci is
perpendicular to e(i), with the intercept indicated by ci.

2. Find the subspace satisfies all 〈x, e(i)〉 = ci: Once we have found out all the plane that is perpendicular to
e(i) with intercept ci, we can have the subspace that satisfies all 〈x, e(i)〉 = ci by intersecting the planes.

4https://www.math.mcgill.ca/jakobson/papers/soup.pdf
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Figure 12: Left: plane represented by 〈x, e〉 = c. Right: 3D case with multiple constraints.

3. Shortest ‖x‖ lives in the span of {e(i)}: As the span of e(i) is orthogonal to the subspace, to determine the x

that minimizes ‖x‖, we can express x̂ as a decomposition into x̂ =
∑
βie

(i). Consequently, x̂ resides within
the span of e(i).

4. Calculate the β coefficient by incorporating the constraints and x̂ =
∑
βie

(i):e(1)

...
e(n)

× x̂ =

c1...
cn


e(1)

...
e(n)

× [e(1) · · · e(n)
]
×

β1

...
βn

 =

c1...
cn


〈e1, e1〉 · · · 〈en, e1〉

...
. . .

...
〈e1, en〉 · · · 〈en, en〉

×
β1

...
βn

 =

c1...
cn


Gβ = c

β = G−1c

Example 19. Continuous least-norm problem:

arg min‖f‖
s.t. f(ti) = ci

If f lives in a reproducing kernel Hilbert space with kernel k(·, ·), then we have

arg min‖f‖
s.t. 〈k(·, ti), f(·)〉H = f(ti) = ci

1. Find the plane represented by each 〈k(·, ti), f(·)〉H = ci

2. Find the subspace satisfies all 〈k(·, ti), f(·)〉H = ci

3. Shortest ‖f‖H lives in the span of {k(·, ti)}
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Figure 13: Right: Continuous case with multiple constraints.

4. Calculate the β coefficient by incorporating the constraints and f̂ =
∑
βik(·, ti):k(·, t1)

...
k(·, tn)

× f̂ =

c1...
cn


k(·, t1)

...
k(·, tn)

× [k(·, t1) · · · k(·, tn)
]
×

β1

...
βn

 =

c1...
cn


〈k(·, t1), k(·, t1)〉H · · · 〈k(·, t1), k(·, tn)〉H

...
. . .

...
〈k(·, tn), k(·, t1)〉H · · · 〈k(·, tn), k(·, tn)〉H

×
β1

...
βn

 =

c1...
cn


k(t1, t1) · · · k(t1, tn)

...
. . .

...
k(tn, t1) · · · k(tn, tn)

×
β1

...
βn

 =

c1...
cn


Kβ = c

β = K−1c

Example 20. For landmark registration, we formulate the problem:

arg min‖ui‖H

s.t. ui
(
x(j)

)
= c

(j)
i

where the deformation field φ(·) : Rn → Rn read as

φ
(
x(j)

)
= x(j) + u

(
x(j)

)
= x(j) + c(j)

and ui is the i-th component of the output of the displacement function. Here, we solve the deformation field in
different components individually. For 3D registration, we are going to perform the process below three times.

We assume ui lives in a reproducing kernel Hilbert space with kernel k(·, ·), then we have

arg min‖ui‖

s.t. 〈k(·,x(j)), ui(·)〉H = ui(x
(j)) = c

(j)
i

1. Find the plane represented by each 〈k(·,x(j)), ui(·)〉H = c
(j)
i
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2. Find the subspace satisfies all 〈k(·,x(j)), ui(·)〉H = c
(j)
i

3. Shortest ‖ui‖H lives in the span of {k(·,x(j))}

4. Calculate the β coefficient by incorporating the constraints and ûi =
∑
βik(·,x(j)):

k(·,x(1))
...

k(·,x(n))

× ûi =

c(1)

...
c(n)


k(·,x(1))

...
k(·,x(n))

× [k(·,x(1)) · · · k(·,x(n))
]
×

β1

...
βn

 =

c(1)

...
c(n)


〈k(·,x(1)), k(·,x(1))〉H · · · 〈k(·,x(1)), k(·,x(n))〉H

...
. . .

...
〈k(·,x(n)), k(·,x(1))〉H · · · 〈k(·,x(n)), k(·,x(n))〉H

×
β1

...
βn

 =

c(1)

...
c(n)


k(x(1),x(1)) · · · k(x(1),x(n))

...
. . .

...
k(x(n),x(1)) · · · k(x(n),x(n))

×
β1

...
βn

 =

c(1)

...
c(n)


Kβ = ci

β = K−1ci

Definition 2.26. [ucl, 2019] Kernel k : X ×X → R is a function, whereH is a Hilbert space and X is a non-empty
set, if there exists a function φ : X → H such that for any x,x′ ∈ X , we have

k(x,x′) : X × X → R
k(x,x′) = 〈φ(x), φ(x′)〉H

Remark 2.20. The kernel can be regarded as a distance function, which tells you the similarity of the two samples. In
the Gaussian process, the covariance function is exactly a kernel.

Remark 2.21. We imposed almost no conditions on X : we don’t even require there to be an inner product defined on
the elements of X . Defining the inner product on H is enough. For example, let x,x′ represent two different books,
we can’t take an inner product between books, but we can take an inner product between the feature maps φ(x), φ(x′)

corresponding to x,x′.

Remark 2.22. The kernel gives a way to compute inner products in some feature space without even knowing what this
space is and what is φ. In most cases, we care more about the inner product than the feature mapping itself. We never
need the coordinates of the data in the feature space. One example is the Gaussian kernel k(x,y) = exp(−γ‖x−y‖2).
If we Taylor-expand this function, we’ll see that it corresponds to an infinite-dimensional codomain of φ.

24



Note on Mathematics of Imaging A PREPRINT

Figure 14: φ(x) = [x1,x2,x1x2]> example of the kernel: on the left, the points are plotted in the original space; on
the right, the points are plotted into a higher dimensional feature space by φ.

Definition 2.27. Reproducing kernel Hilbert SpaceH

• is a Hilbert space, i.e., a vector space equipped with inner product 〈·, ·〉 and norm ‖ · ‖;

• There exists an operator δx : f → f(x), for any x ∈ X (typically X will be Rn), f ∈ H, δx is bounded, i.e.,
there exists δx,M such that ‖δxf‖ ≤M‖f‖H;

• For any x ∈ X, f ∈ H, there exists a unique function (vector) kx = k(·,x) ∈ H, s.t. f(x) = δx(f) =

〈f,Kx〉H, namely the reproducing ability, which is guaranteed by Riesz representation theorem.

Definition 2.28. Reproducing kernel k : X × X → R is a function, where H is a Hilbert space and X is a
non-empty set, if k satisfies

1. ∀x ∈ X , k(·,x) ∈ H . Feature map of every point is in the feature space

2. ∀x ∈ X ,∀f ∈ H, f(x) = 〈f, k(·,x)〉H . Reproducing property

3. k(x,y) = 〈k(·,x), k(·,y)〉H = 〈φ(x), φ(y)〉H

Remark 2.23. From a discrete perspective, k(·, ·) can be regarded as a “matrix”; k(·,x(i)) can be viewed as a
“vector” designated at x(i) column; and k(x(i),x(j)) is a scalar designated at x(i) “row” and x(j) “column”.

Remark 2.24. The feature map is not unique, only the kernel is. RKHS functions can be written as linear combination
of feature maps k(·,x), which we can regard as “basis function”:

f(·) =

m∑
i=1

αiφi(·) =

m∑
i=1

αik(·,x(i))

f(x) = 〈f(·), k(·,x)〉H

=

〈
m∑
i=1

αik(·,x(i)), k(·,x)

〉
H

=

m∑
i=1

αi

〈
k(·,x(i)), k(·,x)

〉
H

=

m∑
i=1

αik(x,x(i))
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For shorter notation:

f =

m∑
i=1

αiφi =

m∑
i=1

αik(·,x(i))

f(x) = 〈f, k(·,x)〉H

=

〈
m∑
i=1

αik(·,x(i)), k(·,x)

〉
H

=

m∑
i=1

αi

〈
k(·,x(i)), k(·,x)

〉
H

=

m∑
i=1

αik(x,x(i))

Remark 2.25. When comparing the expression of Green’s function and RKHS, we found that Green’s function is the
kernel of the inverse of the operator, where g(s) corresponds to αi and G(x, s) corresponds to RKHS k(x,xi).

Lu(x) = g(x)

u(x) =

∫
g(s)G(x, s)ds

g(x) =

m∑
i=1

αik(x,xi)

Example 21. We define a feature map φ : R2 → R3

φ(x) = [x1,x2,x1x2]>

For the reproducing property, we define an RKHS function f : R2 → R

f(x) =

∞∑
l=1

flφl(x) . Remark 3

= ax1 + bx2 + cx1x2

f(·) = [a, b, c]>

where f(·) or f stands for a function while f(x) means the value of function f at x. With this, we can write

f(x) = f(·)>φ(x)

= 〈f(·), φ(x)〉H

The reproducing property tells us that the evaluation of f at x can be written as an inner product in feature space.

Example 22. The kernel k(x,y) = 1
2σ e
−σ|x−y| associates with the inner product 〈Lk(x,y), g〉, where L =(

− ∂2

∂x2 + α
)

?
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Proof.

Lk(x, 0) = δ(x)

F (Lk(x)) = F (δ(x)) = 1

F
((
− ∂2

∂x2
+ α

)
k(x)

)
=

∫ +∞

−∞

(
− ∂2

∂x2
+ α

)
k(x)e−jωxdx

= −
∫ +∞

−∞

∂2

∂x2
k(x)e−jωx dx+ α

∫ +∞

−∞
k(x)e−jωx dx

= −
∫ +∞

−∞
k(x)

∂2

∂x2
e−jωx dx+ αK(ω)

= −
∫ +∞

−∞
k(x)(−jω)2e−jωx dx+ αK(ω) . Integration by part twice

= ω2

∫ +∞

−∞
k(x)e−jωx dx+ αK(ω)

= ω2K(ω) + αK(ω)

= (ω2 + α)K(ω) = 1

K(ω) =
1

ω2 + α

F−1(K(ω)) = k(x) =
1

2
√
α
e−
√
α|x|

k(x,y) =
1

2σ
e−σ|x−y|

Definition 2.29. Primal-Dual method
Assume the primal problem as below:

maximize z(x)

subject to G(x) ≤ θ x ∈ Ω

which is equivalent to

minimize w(y) = sup
x∈Ω
{z(x) + 〈G(x), y〉}

subject to y ≥ θ x ∈ Ω

More specifically,

Primal

maximize z =

n∑
j=1

cjxj

subject to
n∑
j=1

aijxj ≤ bi (i = 1, 2, · · · ,m)

xj ≥ 0 (j = 1, 2, · · · , n)
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Dual

minimize w =

m∑
i=1

biyi

subject to
m∑
i=1

aijyi ≥ cj (j = 1, 2, · · · , n)

yi ≥ 0 (i = 1, 2, · · · ,m)

Remark 2.26. The difference between supremum (resp. infimum) and maximum (resp. minimum) is that for bounded,
infinite sets, the maximum (resp. minimum) may not exist, but the supremum (resp. infimum) always does.

Figure 15: Supremum and Infimum

Example 23.

Primal
max z = 30x1 + 100x2

s.t. x1 + x2 ≤ 7

4x1 + 10x2 ≤ 40

x1 ≥ 3

x1 ≥ 0

x2 ≥ 0

Multiply constraints i by a factor yi. Choose the sign of yi such that all inequalities are ≤ after multiplication:

max z = 30x1 + 100x2

s.t. x1 + x2 ≤ 7 ×y1

4x1 + 10x2 ≤ 40 ×y2

x1 ≥ 3 ×(−y3)

x1 ≥ 0 ×(−y4)

x2 ≥ 0 ×(−y5)

Add up all the obtained inequalities into a resultant inequality:

(y1 + 4y2 − y3 − y4)x1 + (y1 + 10y2 − y5)x2 ≤ 7y1 + 40y2 − 3y3

Make the coefficients of the resultant constraint match the objective function. Then, the right hand side of the resultant
constraints is an upper bound of z∗:

Dual
min w = 7y1 + 40y2 − 3y3

s.t. y1 + 4y2 − y3 − y4 = 30

y1 + 10y2 − y5 = 100
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Remark 2.27. Finding the max problem is equivalent to finding the min of the upper bound, that’s why in the above
example we should have the right sign of factor to make all inequalities are ≤ after multiplication. Likewise, finding
the min problem is equivalent to find the max of the lower bound.

Definition 2.30. Thin plate splines are a spline-based technique for data interpolation and smoothing, which has
the natural representation in terms of radial basis functions

f(x) =

K∑
i=1

wiϕ(‖x− ci‖),

where wi is a set of mapping coefficient, ci is a set of control points and corresponding ϕ for TPS is ϕ(r) = r2 log(r).

For 2D case, the energy function is defined as below

ETPS,smooth(f) =

K∑
i=1

‖yi − f(xi)‖2 + λ

∫ ∫ [(
∂2f

∂x2
1

)2

+ 2

(
∂2f

∂x1∂x2

)2

+

(
∂2f

∂x2
2

)]
dx1dx2

where the tuning parameter λ is to control the rigidity of the deformation, balancing the aforementioned criterion with
the measure of goodness of fit. If the interpolant pass through the data points exactly, then the first term of the energy
function below should be zero. For this variational problem, it can be shown that there exists a unique minimizer f .

Definition 2.31. Injection (injective function) is a function f that maps distinct elements of its domain to distinct
elements, i.e. f(x1) = f(x2) implies x1 = x2.

Definition 2.32. Bijection (bijective/invertible function) is a function between the elements of two sets, where each
element of one set is paired with exactly one element of the other set, and each element of the other set is paired with
exactly one element of the first set. There are no unpaired elements.

Remark 2.28. Bijective functions are essential to many areas of mathematics including the definitions of isomorphism,
homeomorphism, diffeomorphism.

Definition 2.33. If x ∈ X , then the image of x under f , is denoted as f(x).
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3 Differential Geometry

Overview. Riemannian manifolds is a space that locally resembles5 Euclidean space and is equipped with a
Riemannian metric, which defines the inner product at each point on the tangent space and is in the form of a
metric tensor. Tangent space is a vector(Euclidean) space that associates with each point on the manifold. The distance
between two points on a Riemannian manifold is called geodesic, which is also called the shortest path. This distance
makes a manifold a metric space.

Definition 3.1. Euclidean space Rn is a space with metric tensor I everywhere.

Definition 3.2. Isomorphism [Fletcher et al., 2004a, Hao, 2014, Zhang, 2016] is a function between two structures
of the same type that can be reversed by an inverse function, i.e. bijective.

Example 24. In various areas of mathematics, isomorphisms have received specialized names, depending on the type
of structure under consideration.

• An isometry (Def. 3.40) is an isomorphism of metric spaces, also a metric-preserving diffeomorphism.

• A homeomorphism (Def. 3.3) is an isomorphism of topological spaces.

• A diffeomorphism (Def. 3.9) is an isomorphism of spaces equipped with a differential structure, typically
differentiable manifolds.

Remark 3.1. Isometry, homeomorphism and diffeomorphism are all bijective, i.e. one-to-one.

Definition 3.3. Homeomorphism f : M → N is a bijective function between two topological spaces M,N , such
that f and f−1 are both continuous function.

Definition 3.4. Manifold is a Hausdorff space M with a countable basis such that for each point p ∈ M there is
a neighborhood U of p that is homeomorphic to Rn for some integer n. In other words, locally, a manifold is like a
Euclidean space.

Definition 3.5. Immersion is a smooth mapping f : M → N if for all p ∈ M , the differential f∗,p : TpM →
Tf(p)N is injective.

Definition 3.6. Embedding is a smooth mapping f : M → N if

1. it is a one-to-one (bijective) immersion;

2. the image f(M) with the subspace topology is homeomorphic (bijective) to M under f .

Definition 3.7. Submanifold (or immersed submanifold) N of smooth manifold M together with an injective im-
mersion ι : N →M . Identifying N with its image ι(N) ⊂M , we can consider N as a subset of M .

Definition 3.8. Rank of a smooth map f : M → N at a point p ∈M is the rank of its differential (Jacobian) at p.

Remark 3.2. Let m be the dimension of M and n be the dimension of N , in case f : M → N has maximal rank at
p, there are three not mutually exclusive possibilities:

1. If m = n, then by the inverse function theorem, f is a local diffeomorphism at p;

2. If m ≤ n, then the maximal rank is m and f is an immersion at p;

3. If m ≥ n, then the maximal rank is n and f is a submersion at p.

Definition 3.9. Diffeomorphism f : M → N is a bijective function between two smooth manifolds M,N , such
that f and f−1 (f is full ranked hence invertable) are both smooth functions.

5When we say that a Riemannian manifold ”locally resembles Euclidean space,” we mean that if you zoom in closely enough
to a small region on the manifold, that region will look like a small piece of Euclidean space in terms of distances, angles, and
curvature — the local region can be approximated by the Euclidean space, but not exactly the smae.
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Remark 3.3. Composing function with a diffeomorphism is a linear operator:

(I1 + I2) ◦ φ = I1 ◦ φ+ I2 ◦ φ(tI) ◦ φ = t(I ◦ φ)

Definition 3.10. For two manifoldsM andN , a smooth mapping f : M → N induces a linear mapping of the tangent
spaces f∗ : TpM → Tf(p)N called the differential (Jacobian) of f .

Definition 3.11. Metric-preserving mapping f : M → N is a smooth mapping for all p ∈M and tangent vectors
u,v ∈ TpM , we have

〈u,v〉Mp = 〈f∗u, f∗v〉Nf(p).

Definition 3.12. Tangent space TpM is a vector space attached to each point on a manifoldM , which is isomorphic
(not equivalent) to the Euclidean space. Intuitively, it is thought of as the linear space that best approximates M in a
neighborhood of point p. Vectors in this space are called tangent vectors.

Remark 3.4. Tangent space means for each and every point p in Rn, we introduce a new coordinate system where all
the vectors originated at p will reside.

Example 25. The rotation group is presented as

SO(3) = {R ∈ R3×3|R>R = I, |R| = 1}

In order to derive the form of elements in its Lie Algebra, so(3), take a generic curve R(t) through the identity in
SO(3) with derivative X ∈ so(3) at t = 0 and consider the derivative of the constraint at t = 0. The product rule
yields

d

dt

∣∣∣∣
t=0

R(t)>R(t) = X> + X = 0

This implies that any element of so(3) is a skew-symmetric matrix.

Remark 3.5. The cross product of vector a and b can be written as below

a× b = [a]×b =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 ·
b1

b2

b3

 ,

namely a skew-symmetric matrix times the vector b.

Example 26. The group of symmetric positive definite matrices is presented as

SPD(n) = {X ∈ Rn×n|X = X>,X > 0}.

The tangent space TASPD(n) at A, is the space of symmetric matrices [Yger et al., 2016].

Definition 3.13. Tangent bundle TM consists of the tangent space TpM at all points p in M .

TM = {(p,v)|p ∈M,v ∈ TpM}

Since a tangent space TpM is the set of all tangent vectors to M at p, the tangent bundle is the collection of all tangent
vectors, along with the information of the point to which they are tangent.

Definition 3.14. Hessian matrix of a differentiable, multivariable function f : Rn → R at p is defined by

Hfp =


∂2

1fp ∂1∂2fp · · · ∂1∂nfp
∂2∂1fp ∂2

2fp · · · ∂2∂nfp
...

...
. . .

...
∂n∂1fp ∂n∂2fp · · · ∂2

nfp

 .

Remark 3.6. The Hessian matrix of a function f is the Jacobian matrix of the gradient of the function f ; that is:
H(f) = D(∇f).
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Proof.

∇f(x1, · · · , xn) =

∂1f(x1, · · · , xn)
...

∂mf(x1, · · · , xn)



D(∇f) =


∂1∂1f ∂2∂1f · · · ∂n∂1f

∂1∂2f ∂2∂2f · · · ∂n∂2f
...

...
. . .

...
∂1∂nf ∂2∂nf · · · ∂n∂nf

 = Hf

Remark 3.7. If multivariable function f : Rn → R,∇f(x) = 0, Hf(x) is positive (resp. negative) definite, then x is
the isolated local minimum (resp. maximum).

Remark 3.8. Relationship between convexity and positive-definiteness:

f is convex⇔ ∀p,Hfp is positive semi–definite

f is strictly convex⇔ ∀p,Hfp is positive definite

Definition 3.15. Laplacian of a differentiable, multivariable function f : Rn → R at p is defined by

∆fp = tr(Hfp) =

n∑
i=1

∂2
i fp.

Remark 3.9. The eigenvector of a 2D Laplacian operator is an image s.t. the effect of applying the Laplacian operator
to the image is equivalent to scaling the image by a scalar.

Definition 3.16. Jacobian matrix (differential) of a differentiable, vector-valued function f : Rn → Rm at p is
defined by [sta, 2013d]

Dfp =


∂1f

1
p ∂2f

1
p · · · ∂nf

1
p

∂1f
2
p ∂2f

2
p · · · ∂nf

2
p

...
...

. . .
...

∂1f
m
p ∂2f

m
p · · · ∂nf

m
p

 =


(∇f1

p )>

(∇f2
p )>

...
(∇fmp )>

 ,

where

f(x1, · · · , xn) =

 f1(x1, · · · , xn)
...

fm(x1, · · · , xn)

 .

Remark 3.10. The Jacobian of ∇f , where f : Rn → R, is the Laplacian of f .

Remark 3.11. A matrix can be thought of as a linear transformation. Hence, we can think ofDfp as a linear function
Dfp : TpRn → TpRm, which maps a vector in the tangent space at the source point p to a vector in the tangent space
at the target point f(p).

In other words, the Jacobian matrix Dfp tells you how the change (v) in the domain p will be reflected in the range
f(p). More formally, we have

d

dt
f(γ(t))|t=0 = Dfp · vp ,where v ∈ TpRn

Example 27. When f : R→ R, we have d
dpf(p) = Dfp · vp = f ′(p) · vp, namely the first order Taylor expansions.
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Figure 16: Jacobian

Definition 3.17. Divergence of a differentiable, vector-valued function f : Rn → Rm at p is defined by

∇ · fp = tr(Dfp) =

n∑
i=1

∂if
i
p.

Remark 3.12. The determinant of Jacobian at a given point gives important information about the behavior of f
near that point.

• If the Jacobian determinant at p is non-zero, then f is invertible near a point p ∈ Rn.

• If the Jacobian determinant at p is positive (resp. negative), then f preserves (resp. reverses) orientation
near p.

• The absolute value of the Jacobian determinant at p gives us the factor by which the function f expands or
shrinks volumes near p.

Example 28. For vector field f : R2 → R2:

Df =

(
∂f1

∂x1
∂f1

∂x2

∂f2

∂x1
∂f2

∂x2

)

Example 29. Integrating
∫ a
b

(2x3 + 1)7(x2) dx.

Solution. Making

y = ϕ(x) = 2x3 + 1

dy

dx
= ϕ′(x) = 6x2

Therefore we have ∫ a

b

(2x3 + 1)7(x2) dx =
1

6

∫ a

b

f(ϕ(x))ϕ′(x) dx

=
1

6

∫ ϕ(a)

ϕ(b)

f(ϕ(x))dϕ(x)

=
1

6

∫ ϕ(a)

ϕ(b)

f(y)dy

=
1

6

∫ ϕ(a)

ϕ(b)

y7dy

=
1

48
[y8]

ϕ(a)
ϕ(b)
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Definition 3.18. Vector field X(M) is a function on a manifold M that smoothly assigns to each point p ∈ M a
tangent vector v ∈ TpM .

Figure 17: Tangent Space

Definition 3.19. Mahalanobis distance is a measure of the distance between a point s(i) and a distribution, can be
written as

dM (si) =
√

(s(i) − µ)>Σ−1(s(i) − µ),

where µ is the mean vector and Σ is the covariance matrix of the distribution.

It can also be defined as a dissimilarity measure between two random vectors Si and Sj of the same distribution with
the covariance matrix Σ:

dM (s(i), s(j)) =
√

(s(i) − µ)>Σ−1(s(j) − µ).

Definition 3.20. Metric is a mapping d : X × X → R over a vector space X if for all x(i),x(j),x(k) ∈ X , it
satisfies the properties:

• Triangular inequality: d(x(i),x(j)) + d(x(j),x(k)) ≥ d(x(i),x(k))

• Non-negativity: d(x(i),x(j)) ≥ 0

• Symmetry: d(x(i),x(j)) = d(x(j),x(i))

• Distinguishability: d(x(i),x(j)) = 0⇔ x(i) = x(j)

The ordered pair (X, d) is called a metric space. Strictly speaking, if a mapping satisfies the first three properties but
not the fourth, it is called pseudometric.

Remark 3.13. From a Mahalanobis distance perspective dM (x(i),x(j)) =
√

(x(i) − x(j))>M(x(i) − x(j)), if dM
is a pseudometric (namely d(x(i),x(j)) = 0 6↔ x(i) = x(j)), M is not full-rank[Suárez et al., 2021], which arises to
the problem of dimensionality reduction.

Remark 3.14. Another interpretation of Mahalanobis distance dM . Due to the positive definiteness of covariance
matrix M = Σ−1 = J>J, we can have

d2
M (s(i), s(j)) = (s(i) − s(j))>M(s(i) − s(j))

= (s(i) − s(j))>J>J(s(i) − s(j))

= (J(s(i) − s(j)))>J(s(i) − s(j))

= ‖J(s(i) − s(j))‖22
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Learning a Mahalanobis distance is equivalent to learning a linear mapping J that transforms the data into a new
space. And the corresponding distance is basically the Euclidean distance.

Remark 3.15. Metric tensor M can be decomposed to J>J due to its positive definiteness, where J is namely the
Jacobian matrix representing the diffeomorphism maps the tangent space to the Euclidean space Rn. Jv is the image
of v in the Euclidean space, hence the norm is calculated via Euclidean metric ‖v‖g = ‖Jv‖ = (Jv)>I(Jv).

Definition 3.21. Riemannian metric on a differential manifold M is a smooth function that assigns to each point p
of M an inner product 〈·, ·〉 on the tangent space TpM .

Remark 3.16. Assuming A is the metric at point p ∈ M , and v, λ are the unit eigenvector and its square root
corresponding eigenvalue of A.

Av = λv

‖v‖2 = v>Av = v>λv = λv>v = λ

The deviation above tells you that the length of unit vector in the direction of eigenvector is scored as its corresponding
eigenvalue. The unit vector points to other direction may be scored at different length.

Remark 3.17. Covariance matrix and Riemannian metric.[Arvanitidis et al., 2016] A local covariance matrix can
be used to represent the local structure of the data: the inverse of a local diagonal covariance matrix Σ−1 can be
treated as the metric tensor, as the eigenvector corresponds to the smallest eigenvalue of the metric tensor is the
direction of the geodesic. The geodesic is “pulled” towards the data where the metric is small.

Figure 18: Correspondance between eigenvectors of covariancce matrix and the Riemannian metric.

Definition 3.22. Metric tensor [YouTube, 2018d] is a function that tells how to compute the distance between any
two points in a given space.

Example 30. Typically, we calculate the arc length as below

arc length =

∫
‖γ̇(t)‖dt
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Figure 19: Base vectors on tangent space

By introducing the position vector, and expand it intrinsically, we can have

∥∥∥∥∥d~Rdλ
∥∥∥∥∥

2

=
d~R

dλ
· d
~R

dλ

=

(
d~R

du
· du
dλ

+
d~R

dv
· dv
dλ

)
·

(
d~R

du
· du
dλ

+
d~R

dv
· dv
dλ

)

=

(
du

dλ

)2
(
d~R

du
· d
~R

du

)
+
du

dλ
· dv
dλ

(
d~R

du
· d
~R

dv

)

+
dv

dλ
· du
dλ

(
d~R

dv
· d
~R

du

)
+

(
dv

dλ

)2
(
d~R

dv
· d
~R

dv

)

=
(
du
dλ

dv
dλ

)(d~R
du ·

d~R
du

d~R
du ·

d~R
dv

d~R
dv ·

d~R
du

d~R
dv ·

d~R
dv

)
︸ ︷︷ ︸

metric tensor

(
du
dλ
dv
dλ

)
.~eu =

d~R

du
,~ev =

d~R

dv

=
(
du
dλ

dv
dλ

)(~eu · ~eu ~eu · ~ev
~ev · ~eu ~ev · ~ev

)
︸ ︷︷ ︸

metric tensor

(
du
dλ
dv
dλ

)

Remark 3.18. Actually, without seeing the manifold extrinsically, it’s hard to derive the metric, as we don’t know the
position vector. Provided that the metric is already given, so can we calculate what we want intrinsically.

The parametric equation of a sphere is shown as below:

~R = [X,Y, Z]>

where X = cos(v) sin(u) = cos(λ) sin(λ)

Y = sin(v) sin(u) = sin(λ) sin(λ)

Z = cos(u) = cos(λ)

when u = λ, v = λ.
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After expanding the base vectors extrinsically, we can have the base vectors expressed as below:

~eu =
d~R

du
=
∂ ~R

∂X

∂X

∂u
+
∂ ~R

∂Y

∂Y

∂u
+
∂ ~R

∂Z

∂Z

∂u

= cos(v) cos(u)
∂ ~R

∂X
+ sin(v) cos(u)

∂ ~R

∂Y
− sin(u)

∂ ~R

∂Z

= cos(v) cos(u)~eX + sin(v) cos(u)~eY − sin(u)~eZ

~ev =
d~R

dv
=
∂ ~R

∂X

∂X

∂u
+
∂ ~R

∂Y

∂Y

∂u
+
∂ ~R

∂Z

∂Z

∂u

= − sin(v) sin(u)
∂ ~R

∂X
+ cos(v) sin(u)

∂ ~R

∂Y

= − sin(v) sin(u)~eX + cos(v) sin(u)~eY

Since ~eX , ~eY , ~eZ are perpendicular to each other, so the metric tensor is yielded as below:(
~eu · ~eu ~eu · ~ev
~ev · ~eu ~ev · ~ev

)
=

(
1 0

0 sin2(u)

)

Substituting the metric tensor back into the expression of norm of velocity, we get∥∥∥∥∥d~Rdλ
∥∥∥∥∥

2

=
(
du
dλ

dv
dλ

)(1 0

0 sin2(u)

)(
du
dλ
dv
dλ

)

=

(
du

dλ

)2

+ sin2(u)

(
dv

dλ

)2

• For u = π
4 , v = λ ∥∥∥∥∥d~Rdλ

∥∥∥∥∥
2

=

(
du

dλ

)2

+ sin2(u)

(
dv

dλ

)2

= 02 + sin2
(π

4

)
· 12 =

1

2

The functional of arc length is

arc length =

∫ ∥∥∥∥∥d~Rdλ
∥∥∥∥∥ dt =

∫ √
2

2
dt =

√
2

2
t

Figure 20: u = π
4 , v = λ
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• For u = π
2 , v = λ ∥∥∥∥∥d~Rdλ

∥∥∥∥∥
2

=

(
du

dλ

)2

+ sin2(u)

(
dv

dλ

)2

= 02 + sin2
(π

2

)
· 12 = 1

The functional of arc length is

arc length =

∫ ∥∥∥∥∥d~Rdλ
∥∥∥∥∥ dt =

∫
1dt = t

Figure 21: u = π
2 , v = λ

Remark 3.19. So the figure below is a good illustration of the role metric tensor plays:

Figure 22: What we usually see in expression convenience vs. What actually it is

The sub-figure left is what we usually see in practice, which gives us the illusion that this is an Euclidean space, but a
distorted one. However, the actual shape of the manifold is the sub-figure right, which can be more arbitrary than this
sphere in most cases. So, if we want to measure the distance between two points, what we need is simply the metric
tensor on each points. With the metric tensor, we can derive the inner product of the velocity vector, then integrate the
norm of velocity by t, we can have the distance we want.

In other words, the metric tensor is the tool to describe the shape of a manifold.

Remark 3.20. As figure 11 shows, longer axis stands for higher time cost, while shorter axis represents lower time
cost, namely a shorter distance. And figure 12 illustrates the previous property well - the closer to the polars, the lower
time cost would be.
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Figure 23: Visualization of metric tensor

Figure 24: Visualization of sphere metric field

Definition 3.23. Riemannian manifold (M, g) is a differentiable (smooth) manifold M equipped with a Rieman-
nian metric g.

Example 31. The Riemannian metric can be equated with a smoothly varying positive-definite symmetric matrix g,
called the metric tensor, defined at each point. For two vectors v, w ∈ TpM , given local coordinates (x1, x2, · · · , xn)

in a neighborhood of p, the entry in g (n× n matrix) can be expressed like below

gij = 〈Ei, Ej〉,

where Ei = ∂
∂xi are the coordinate basis vectors at p. With this definition, we can compute the inner product 〈v, w〉

as v>gw. Also, for a vector v, we can compute the length of the vector as 〈v, v〉 12 , which is the L2 norm. Sometimes,
people utilize the inverse of the diffusion tensor, D−1, to define a local cost function as

〈v, w〉 = v>D−1w,

where v, w ∈ TpM . In this case, since the inverse of the diffusion tensor are positive-definite symmetric and they are
also Riemannian metric, a DTI is actually wrapped into a Riemannian manifold.

Definition 3.24. Geodesic between two points p, q ∈M can be defined by the minimization of the energy functional

E(γ) =

∫ 1

0

‖γ̇(t)‖2dt
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where γ : [0, 1] → M is a curve with fixed endpoints γ(0) = p, γ(1) = q. The inner product between two tangent
vectors v, w ∈ TxM is given by 〈v, w〉 = v>g(x)w, where g(x) is the Riemannian metric at point x.

Remark 3.21. [sta, 2013a] Intrinsic distance is measured as ‘an ant would walk along the surface’. Extrinsic
distance is defined as the L2 norm between two points, basically ‘how a surface looks from the outside’. From the
beginning and through the middle of the 18th century, differential geometry was studied from the extrinsic point of
view: curves and surfaces were considered as lying in a Euclidean space of higher dimension. Starting with the work
of Riemann, the intrinsic point of view was developed, in which one cannot speak of moving “outside” the geometric
object because it is considered to be given in a free-standing way.

Example 32. [Bhatia, 2009] Let A and B be any two elements of Pn. Then there exists a unique geodesic [A,B]

joining A and B. This geodesic has a parametrization

γ(t) = A
1
2 (A−

1
2BA−

1
2 )>A

1
2 , t ∈ [0, 1].

Figure 25: Intrinsic vs. Extrinsic Distance

Definition 3.25. Geodesic Equation guarantees the acceleration vector normal to the surface

d2uk

dt2
+ Γkij

dui

dt
· du

j

dt
= 0

Proof. In this section, all the computations are conducted in 2D situation.

Velocity Vector:
d~R

dt
=
∂ ~R

∂u
· du
dt

+
∂ ~R

∂v
· dv
dt

Acceleration Vector:
d2 ~R

dt2
=

d

dt

(
∂ ~R

∂u
· du
dt

+
∂ ~R

∂v
· dv
dt

)
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Expend the expression of acceleration vector, we have

d2 ~R

dt2
=

d

dt

(
∂ ~R

∂u
· du
dt

+
∂ ~R

∂v
· dv
dt

)

=
∂ ~R

∂u
· d

2u

dt2
+
du

dt

(
d

dt
· ∂

~R

∂u

)
+
∂ ~R

∂v
· d

2v

dt2
+
dv

dt

(
d

dt
· ∂

~R

∂v

)

=
∂ ~R

∂u
· d

2u

dt2
+
du

dt

(
∂

∂u
· d
~R

dt

)
+
∂ ~R

∂v
· d

2v

dt2
+
dv

dt

(
∂

∂v
· d
~R

dt

)

=
∂ ~R

∂u
· d

2u

dt2
+
du

dt

[
∂

∂u
·

(
∂ ~R

∂u
· du
dt

+
∂ ~R

∂v
· dv
dt

)]

+
∂ ~R

∂v
· d

2v

dt2
+
dv

dt

[
∂

∂v
·

(
∂ ~R

∂u
· du
dt

+
∂ ~R

∂v
· dv
dt

)]

=
∂ ~R

∂u
· d

2u

dt2
+
∂2 ~R

∂u2
·
(
du

dt

)2

+
∂2 ~R2

∂u∂v
· du
dt
· dv
dt

+
∂ ~R

∂v
· d

2v

dt2
+
∂2 ~R2

∂u∂v
· du
dt
· dv
dt

+
∂2 ~R

∂v2
·
(
dv

dt

)2

By using Einstein Notation, and making u1 = u, u2 = v, we can denote the acceleration vector as

d2 ~R

dt2
=
d2ui

dt2
· ∂

~R

∂ui
+
dui

dt
· du

j

dt
· ∂2 ~R

∂ui∂uj
(1)

Assuming that ∂2 ~R
∂ui∂uj is consist of three components, so we can express it like

∂2 ~R

∂ui∂uj
= Γ1

ij

∂ ~R

∂u1
+ Γ2

ij

∂ ~R

∂u2
+ Lij~n

where the Christoffel symbol Γkij , gives us the tangential component of ∂2 ~R
∂ui∂uj and the second fundamental form Lij ,

gives us the normal component of ∂2 ~R
∂ui∂uj . By using the Einstein Notation, we can have a more concise form as below:

∂2 ~R

∂ui∂uj
= Γkij

∂ ~R

∂uk
+ Lij~n (2)

Figure 26: meaning of Lij ,Γkij
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Finally, by substituting Eq.(2) into Eq.(1), we can have acceleration vector as below

d2 ~R

dt2
=
d2ui

dt2
· ∂

~R

∂ui
+
dui

dt
· du

j

dt
· ∂2 ~R

∂ui∂uj

=
d2ui

dt2
· ∂

~R

∂ui
+
dui

dt
· du

j

dt
·

(
Γkij

∂ ~R

∂uk
+ Lij~n

)

=

(
d2uk

dt2
+ Γkij

dui

dt
· du

j

dt

)
∂ ~R

∂uk︸ ︷︷ ︸
tangential part

+Lij ·
dui

dt
· du

j

dt
· ~n︸ ︷︷ ︸

normal part

That acceleration vector normal to the surface requires

d2uk

dt2
+ Γkij

dui

dt
· du

j

dt
= 0,

which is the Geodesic Equation.

Derivation of Γkij and Lij As ~n is perpendicular to the tangent vectors, therefore, by multiplying ∂ ~R
∂ul

on both sides
of equation above, we can yield that

∂2 ~R

∂ui∂uj
· ∂

~R

∂ul
=

(
Γkij

∂ ~R

∂uk
+ Lij~n

)
· ∂

~R

∂ul
= Γkij

∂ ~R

∂uk
· ∂

~R

∂ul
(3)

Since ∂ ~R
∂uk
· ∂ ~R
∂ul

= ~ek · ~el = gkl, then we get

∂2 ~R

∂ui∂uj
· ∂

~R

∂ul
= Γkijgkl,

By substituting the metric form below into Eq.(3)(
∂ ~R
∂u1 · ∂

~R
∂u1

∂ ~R
∂u1 · ∂

~R
∂u2

∂ ~R
∂u2 · ∂

~R
∂u1

∂ ~R
∂u2 · ∂

~R
∂u2

)
=

(
g11 g12

g21 g22

)
and with Kronecker delta cancellation rule gkl · glm = δmk , we can have

Γkijgklg
lm =

∂2 ~R

∂ui∂uj
· ∂

~R

∂ul
· glm

Γkijδ
m
k =

∂2 ~R

∂ui∂uj
· ∂

~R

∂ul
· glm

Γmij =

(
∂ ~ej
∂ui
· ~el
)
glm (4)

Likewise, by multiplying ~n at both side of Eq.(2), we can yield the extrinsic expression of second fundamental form

Lij =
∂2 ~R

∂ui∂uj
· ~n

Definition 3.26. Given a vector space V and a functional f : V → R, x, h ∈ V, α ∈ R, if the limit

δf(x) = lim
α→0

1

α
[f(x+ αh)− f(x)]

exists, it’s called the Gâteaux derivative of f at x with increment h. If the limit exists for ∀h ∈ V , the functional f
is said to be Gâteaux differentiable at x.
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Example 33. Given x ∈ Rn and f : Rn → R, which has continuous partial derivatives with respect to each
components of x. Then, the Gateaux derivative of f is

δf(x) =

n∑
i=1

∂f

∂xi
hi = 〈∇f, h〉

Definition 3.27. Directional derivative of a multivariate differentiable function along a given vector v at a given
point x intuitively represents the instantaneous rate of change of the function, moving through x with a velocity
specified by h.

∇hf(x) = Df(x)(h) = 〈∇f, h〉

Remark 3.22. Relationship between partial derivative(scalar), directional derivative(scalar) and gradient(vector):

• The vector consists of partial derivatives is the gradient.

• The linear combination of partial derivatives is directional derivative.

• Partial derivative is a special directional derivative, which is along the axis.

Remark 3.23. Relationship between Gâteaux derivative(scalar), directional derivative(scalar) and covariant deriva-
tive(vector):

• Gâteaux derivative(differential) is a generalization of the concept of directional derivative in differential
calculus.

• Covariant derivative is a generalization of the directional derivative from vector calculus. The covairant
derivative of a function is directional

• Gâteaux and directional derivative are applicable to functional f : Rn → R, so their output are both scalars.
While the covariant derivative is for vector field v : Rn → Rn, so its output is still a vector.

∇hf(x) = hi∇ ∂

∂xi
f

= hi
∂f

∂xi

∇hv = hi∇ ∂

∂ui
(vj ~ej)

= hi
(
∂vj

∂ui
~ej + vj∇ ∂

∂ui
~ej

)
= hi

(
∂vj

∂ui
~ej + vj

∂ ~ej
∂ui

)
= hi

(
∂vj

∂ui
~ej + vjΓkij ~ek

)
.
∂ ~ej
∂ui

= Γkij ~ek

= hi
(
∂vk

∂ui
~ek + vjΓkij ~ek

)
= hi

(
∂vk

∂ui
+ vjΓkij

)
~ek

Definition 3.28. Covariant derivative ∇~w~v, refers to Levi-Civita connection generally,

• is the ordinary derivative for Euclidean space.
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• is the rate of change vector at ~v of a vector field in a direction ~w with the normal component subtracted,
extrinsically.

Levi-Civita connection has following properties:

1. ∇a~w+b~t~v = a∇~w~v + b∇~t~v

2. ∇~w(~v + ~u) = ∇~w~v +∇~w~u . Distributive Property

3. ∇~w(~v · ~u) = (∇~w~v) · ~u+ ~v · (∇~w~u) . Product Rule

4. ∇~w(a~v) = (∇~wa)~v + a(∇~w~v)

5. ∇∂i(a) = ∂a
∂ui

6. ∇~w~v = ∇~v ~w . Commutative Property

Remark 3.24. • In Euclidean space, the covariant derivative is simply the change of the vector fields that take
changing basis vectors into account.

• Parallel transport provides a way to compare a vector in one tangent plane to a vector in another, by moving
the vector along a curve without changing it.

• Different expressions of Γmkj give us different ways of “parallel transport”. If Γmkj =

1
2g
im
(
∂gij
∂uk

+ ∂gki
∂uj −

∂gjk
∂ui

)
, then it’s Levi-Civita connection. If Γmkj = 0, it’s another connection.

Figure 27: Different definitions of Γmkj give us different kinds of “parallel transport”.

• Covariant derivative helps us find parallel transported vector fields. ∇~w~v = ~0 means the vector ~v is parallel
transported in the direction ~w at ~v’s position.

• [rg, ] Covariant derivative ∇~w~v is the difference between a vector field v and its parallel transport in the
direction w.
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Figure 28: Difference between a vector and the parallel transported one

• Covariant derivative provides a connection between tangent spaces in a curved space.

• In curved space, a geodesic has zero tangential acceleration when we travel along it at constant speed. To
compute geodesic curves, we need to find curves where the acceleration vector is normal to the space, namely
∇γ̇(t)γ̇(t) = ~0 holds along the curve γ.

• In other words, geodesic is a curve resulting from parallel transporting a vector along itself.

• In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the
covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto
the manifold’s tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic
normal component (dependent on the embedding) and the intrinsic covariant derivative component.

Example 34. [YouTube, 2018a] In a 2D Euclidean space, we represent a vector as below:

~v = v1 ~e1 + v2 ~e2 =
∑
i

vi~ei = vi~ei,

where v1, v2 are constant.

Figure 29: Constant vector space

45



Note on Mathematics of Imaging A PREPRINT

The covariant derivative defined in Euclidean space is just intuitive:

∇ ∂
∂u1

~v =
∂

∂u1
~v

=
∂

∂u1
(v1 ~e1 + v2 ~e2)

=
∂

∂u1
(v1 ~e1) +

∂

∂u1
(v2 ~e2)

=
∂v1

∂u1
~e1 + v1 ∂ ~e1

∂u1
+
∂v2

∂u1
~e2 + v2 ∂ ~e2

∂u1

=
∂v1

∂u1
~e1 +

∂v2

∂u1
~e2

= ~0

∇ ∂
∂u2

~v =
∂

∂u2
~v

=
∂v1

∂u2
~e1 +

∂v2

∂u2
~e2

= ~0

In conclusion, in Euclidean space, the covariant derivative of a vector field is just the ordinary derivative. We need to
make sure to differentiate both the vector components and the basis vectors.

∂

∂ui
~v =

∂

∂ui
vj ~ej

=
∂vj

∂ui
~ej︸ ︷︷ ︸

components

+
∂ ~ej
∂ui

vj︸ ︷︷ ︸
basis vectors

Example 35. [YouTube, 2018b] In extrinsic case, the covariant derivative is defined as below

∇ ∂

∂ui
~v =

∂~v

∂ui
− ~n

=
∂

∂ui
(v1 ~e1 + v2 ~e2)− ~n

=
∂

∂ui
vj ~ej − ~n

=
∂vj

∂ui
~ej +

∂ ~ej
∂ui

vj − ~n

=
∂vj

∂ui
~ej + (Γkij ~ek + Lij n̂)vj − ~n .

∂ ~ej
∂ui

= Γ1
ij ~e1 + Γ2

ij ~e2 + Lij n̂

=
∂vj

∂ui
~ej + Γkij ~ekv

j

=
∂vk

∂ui
~ek + Γkij ~ekv

j

=

(
∂vk

∂ui
+ Γkijv

j

)
~ek (5)

where Lij is the second fundamental form and Γkij is in form of Eq.(4).

46



Note on Mathematics of Imaging A PREPRINT

Parameterize the space with tangent space basis

~R = [X,Y, Z]>

where X = cos(u2) sin(u1)

Y = sin(u2) sin(u1)

Z = cos(u1),

where ~R is the position vector and u1, u2 represents the latitude and longitude, respectively.

Figure 30: Parametric equations for sphere

By using the chain rule, we have

~e1 =
∂ ~R

∂u1
= + cos(u2) cos(u1)

∂ ~R

∂X
+ sin(u2) cos(u1)

∂ ~R

∂Y
− sin(u1)

∂ ~R

∂Z
(6)

= + cos(u2) cos(u1)~eX + sin(u2) cos(u1)~eY − sin(u1)~eZ

~e2 =
∂ ~R

∂u2
= − sin(u2) sin(u1)

∂ ~R

∂X
+ cos(u2) sin(u1)

∂ ~R

∂Y
(7)

= − sin(u2) sin(u1)~eX + cos(u2) sin(u1)~eY

With Eq.(6,7), we can yield the metric as below

gij =

(
~e1 · ~e1 ~e1 · ~e2

~e2 · ~e1 ~e2 · ~e2

)
=

(
∂ ~R
∂u1 · ∂

~R
∂u1

∂ ~R
∂u1 · ∂

~R
∂u2

∂ ~R
∂u2 · ∂

~R
∂u1

∂ ~R
∂u2 · ∂

~R
∂u2

)
=

(
1 0

0 sin2(u1)

)

gij =

(
~e1 · ~e1 ~e1 · ~e2

~e2 · ~e1 ~e2 · ~e2

)−1

=

(
∂ ~R
∂u1 · ∂

~R
∂u1

∂ ~R
∂u1 · ∂

~R
∂u2

∂ ~R
∂u2 · ∂

~R
∂u1

∂ ~R
∂u2 · ∂

~R
∂u2

)−1

=

(
1 0

0 1
sin2(u1)

)
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Substituting Eq.(6,7) into the second derivative of position vector, we get

∂ ~e1

∂u1
=

∂

∂u1

(
∂ ~R

∂u1

)

= − cos(u2) cos(u1)
∂ ~R

∂X
− sin(u2) sin(u1)

∂ ~R

∂Y
− cos(u1)

∂ ~R

∂Z

= − cos(u2) cos(u1)~eX − sin(u2) sin(u1)~eY − cos(u1)~eZ (8)

∂ ~e2

∂u2
=

∂

∂u2

(
∂ ~R

∂u2

)

= − cos(u2) sin(u1)
∂ ~R

∂X
− sin(u2) sin(u1)

∂ ~R

∂Y

= − cos(u2) sin(u1)~eX − sin(u2) sin(u1)~eY (9)

∂ ~e2

∂u1
=

∂

∂u1

(
∂ ~R

∂u2

)

= − sin(u2) cos(u1)
∂ ~R

∂X
+ cos(u2) cos(u1)

∂ ~R

∂Y

= − sin(u2) cos(u1)~eX + cos(u2) cos(u1)~eY (10)

Substituting gij and Eq.(6,7,8,9,10) into Eq.(4), we can yield the Christoffel symbols as below

Γ1
11 = 0 Γ1

12 = 0 Γ1
21 = 0 Γ1

22 = − 1
2 sin(2u1)

Γ2
11 = 0 Γ2

12 = cot(u1) Γ2
21 = cot(u1) Γ2

22 = 0

Substituting the Christoffel symbols into Eq.(5), we finally get the extrinsic expression of covariant derivative on
sphere as below

∇ ~e1~v =

(
∂v2

∂u1
+ v2 cot(u1)

)
~e2

∇ ~e2~v =

(
∂v1

∂u2
− 1

2
sin(2u1)v2

)
~e1 +

(
∂v2

∂u2
+ v1 cot(u1)

)
~e2 (11)

We initialize two different vector field along the equator to see what does covariant derivative exactly mean:

• The first vector field along the equator is

~v = cos(u2)~e1 + sin(u2)~e2 where u1 =
π

2
, u2 = λ ∈ [0,

π

2
]

Figure 31: Exponential and log map
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Substitute the u1, u2 into Eq.(11), we have

∇ ~e2~v =

(
∂v1

∂u2
− 1

2
sin(2u1)v2

)
~e1 +

(
∂v2

∂u2
+ v1 cot(u1)

)
~e2

= − sin(u2)~e1 + cos(u2)~e2,

since ∇ ~e2~v 6= ~0, which means the rate of change is not completely normal to the tangent space.

• The second vector field along the equator is

~v = 0~e1 + 1~e2 where u1 =
π

2
, u2 = λ ∈ [0,

π

2
]

Figure 32: Exponential and log map

Since the vector field has nothing to do with u1, u2, we have

∇ ~e2~v =

(
∂v1

∂u2
− 1

2
sin(2u1)v2

)
~e1 +

(
∂v2

∂u2
+ v1 cot(u1)

)
~e2

= (0− 0)~e1 + (0 + 0)~e2 = ~0,

which means the rate of change doesn’t exist in the tangent space. And this is exactly the geodesic which is
resulted from parallel transporting a vector along itself.

Example 36. [YouTube, 2018c] In extrinsic case, we have to subtract the normal component, however, in intrinsic
case, such normal component doesn’t exist, so we have

∇ ∂

∂ui
~v =

∂~v

∂ui

=
∂

∂ui
(vj ~ej)

=
∂vj

∂ui
~ej + vj

∂ ~ej
∂ui

=
∂vk

∂ui
~ek + vjΓkij ~ek .

∂ ~ej
∂ui

= Γkij ~ek

=

(
∂vk

∂ui
+ vjΓkij

)
~ek

The only difference between the extrinsic and intrinsic cases lies in the calculation of Christoffel symbol. Previously,
we derived the christoffel symbol in Eq.(4), by inner product between Eq.(6,7,8,9,10), given the position vector.
However, in intrinsic case, there’s no longer a position vector, so we have to find another way to derive the Christoffel
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symbol. And it turns out using the metric:

∂

∂uk
gij =

∂

∂uk
(~ei · ~ej) . gij =

∂

∂ui
· ∂

∂uj
= ~ei · ~ej

=
∂~ei
∂uk
· ~ej + ~ei ·

∂ ~ej
∂uk

= (Γlik~el) · ~ej + ~ei · (Γljk~el)
= Γlik(~el · ~ej) + Γljk(~ei · ~el)
= Γlikglj + Γljkgil

Similarly, we can yield other two expressions:

∂gij
∂uk

= Γlikgjl + Γljkgil

∂gki
∂uj

= Γlkjgil + Γlijgkl

∂gjk
∂ui

= Γljigkl + Γlkigjl

Add the two of them up and subtract the left one:

∂gij
∂uk

+
∂gki
∂uj

− ∂gjk
∂ui

= Γlikgj l + Γljkgil + Γlkjgil + Γlijgkl − Γljigkl − Γlkigjl

= Γljkgil + Γlkjgil

= 2Γlkjgil

Times gim on both sides, we can finally get the intrinsic expression of the Christoffel symbol:

2Γlkjgilg
im = gim

(
∂gij
∂uk

+
∂gki
∂uj

− ∂gjk
∂ui

)
Γlkjδ

m
l =

1

2
gim

(
∂gij
∂uk

+
∂gki
∂uj

− ∂gjk
∂ui

)
Γmkj =

1

2
gim

(
∂gij
∂uk

+
∂gki
∂uj

− ∂gjk
∂ui

)
The derivation below illustrates the extrinsic and intrinsic expressions of the Christoffel symbols are actually the same:

∂gij
∂uk

+
∂gki
∂uj

− ∂gjk
∂ui

=
∂~ei
∂uk
· ~ej + ~ei ·

∂ ~ej
∂uk

.
∂gij
∂uk

=
∂~ei
∂uk
· ~ej + ~ei ·

∂ ~ej
∂uk

+
∂ ~ek
∂uj
· ~ei + ~ek ·

∂ ~ej
∂ui

− ∂ ~ej
∂ui
· ~ek − ~ej ·

∂~ei
∂uk

= 2~ei ·
∂ ~ek
∂uj

.
~ej
ui

=
~ei
uj

Γmkj =
1

2
gim

(
∂gij
∂uk

+
∂gki
∂uj

− ∂gjk
∂ui

)
=

1

2
gim · 2~ei ·

∂ ~ej
∂uj

=

(
~ei ·

∂ ~ek
∂uj

)
gmi
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Definition 3.29. First fundamental form on manifold M is the field which assigns to each p ∈M the bilinear map

gp(v, w) : TpM × TpM → R
gp(v, w) = 〈v, w〉

where v, w ∈ TpM .

Definition 3.30. Second fundamental form on manifold M is defined by

hp(v, w) : TpM × TpM → TpM
⊥

hp(v, w) = (dΠ(p)v)w = (dΠ(p)w)v

where p ∈M and v, w ∈ TpM .

Definition 3.31. Riemannian exponential map takes the position p = γ(0) ∈ M and velocity v = γ̇(0) ∈ TpM
as input and returns the point at time 1 along the geodesic with these initial conditions. When γ is defined over the
interval [0, 1], the Riemannian exponential map at p is defined as

Expp(v) : TpM →M

Expp(v) = Exp(p, v) = γ(1)

Remark 3.25. The exponential map is a diffeomorphism in a neighborhood of zero. The inverse of it in this neighbor-
hood is the Riemannian log map.

Example 37. For a Lie group with bi-invariant metric, the Lie group exponential map is the same with the Riemannian
exponential map at the identity, that is, for any tangent vector X ∈ g, we have

exp(X) = Expe(X).

For matrix groups, the Lie group exponential map of a matrix X ∈ gl(n) is computed by the formular

exp(X) =

∞∑
k=0

1

k!
Xk.

This series converges absolutely for all X ∈ gl(n)

Definition 3.32. Riemannian log map is the inverse of Riemannian exponential map, defined in the neighborhood
Expp(v)

Logp : M → TpM

Logp(γ(1)) = v

Remark 3.26. The matrix logarithm of M is defined as

log(M) = X−1 log(D)X,

where M ∈ Rn×n is a diagonalizable matrix, X ∈ Rn×n and D ∈ Rn×n is a diagonal matrix. log(D) ∈ Rn×n is
also a diagonal matrix with diagonal elements equals to the logarithm of the corresponding diagonal elements of D.

Remark 3.27. According to the property above, we can also have

tr(log(M)) = tr(X−1 log(D)X)

= tr(XX−1 log(D))

= tr(log(D))
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Figure 33: Exponential and log map

Definition 3.33. Group G is a set of elements with a binary operation ·, such that

1. ∀x, y ∈ G, x · y ∈ G

2. ∀x, y ∈ G, (x · y) · z = x · (y · z)

3. ∃e ∈ G,∀x ∈ G satisfy e · x = x · e = x, where e is unique

4. ∀x ∈ G,∃y ∈ G such that y · x = x · y = e

Definition 3.34. Lie group is a smooth manifold equipped with group structures, where the two group operations

(x, y)→ x · y : G×G→ G Multiplication

x→ x−1 : G→ G Inverse

are both smooth mappings. In other words, a Lie group adds a smooth manifold structure to a group.

Remark 3.28. The group action should be thought of as a transformation of the manifold M , just as matrices are
transformations of Euclidean space.[Fletcher et al., 2004b]

Example 38. Many common geometric transformations in Euclidean space form Lie groups. For example, rotations,
translations, magnifications, and affine transformations of Rn all form Lie groups. More generally, Lie groups can be
used to describe transformations of smooth manifolds.[Fletcher et al., 2004b]

Definition 3.35. Orbit of a point p ∈M is defined as

G(p) = {g · p : g ∈ G}

Example 39. If G = SO(2), the orbit of point p is a circle.

Definition 3.36. Lie algebra is a vector space g together with an operation called Lie bracket [·, ·], a alternating
bilinear map g× g→ g. ∀x, y, z ∈ g and a, b ∈ R, the following axioms are satisfied:

1. Linearity: [ax+ by, z] = a[x, z] + b[y, z]

2. Anticommutativity: [x, y] = −[y, x] = x · y − y · x

3. Jacobi identity: [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0
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Definition 3.37. Lie bracket (Lie derivative) of vector fields [·, ·] is an operator that assigns to any two vector fields
X and Y on a smooth manifoldM a third vector field denoted [X,Y ], and is sometimes denoted LXY (“Lie derivative
of Y along X”):

[X,Y ] =

n∑
i=1

n∑
j=1

(
Xj∂jY

i − Y j∂jXi
)
∂i.

IfM is (an open subset of) Rn, then the vector fieldsX and Y can be written as smooth maps of the formX : M → Rn

and Y : M → Rn, and the Lie bracket [X,Y ] : M → Rn is given by:

[X,Y ] = JYX − JXY

where JY and JX are n × n Jacobian matrices (∂jY i and ∂jXi respectively using index notation) multiplying the
n× 1 column vectors X and Y .

Remark 3.29. Geometrically, the Lie bracket of vector fields gives information about how they ”fail to commute”
when applied to different points on the manifold.

Remark 3.30. Coordinate lines are just flow curves along the basis vector. Coordinate flow curves always close,
which means Lie bracket of basis vectors always has to be zero vector.

Figure 34: Coordinate lines

Lie bracket(commutator) measures how much vector field flow curves fail to close.

Example 40. The example below shows how to calculate the flow curve, given the flow field.

Figure 35: Flow field

Vector arrows tell you velocity at each point:
~w = 1 ~ex + x~ey.

To express the vector in the way of position vector ~R, we have

~w =
d~R

dλ
=
dx

dλ

∂ ~R

∂x
+
dy

dλ

∂ ~R

∂y

=
dx

dλ
~ex +

dy

dλ
~ey
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Associating the two expressions above, we can yield the respective expressions of x, y.

dx

dλ
= 1→ x = λ+ c1

dy

dλ
= x = λ+ c1 → y =

1

2
λ2 + c1λ+ c2

Assuming c1 = c2 = 0, this can be a possible flow curve

x(λ) = λ, y(λ) =
1

2
λ2,

which is tangent to all vectors in a vector field.

Example 41. The Lie bracket of the vector field is defined below:

[~u,~v] = ~u(~v)︸︷︷︸
derivative of ~v in the direction of ~u

−~v(~u)

We separate the flow field in the example above into two fields

Figure 36: Two vector fields

Derivative of ~u in the direction of ~v is shown below

~v(~u) = vi~ei(u
j ~ej)

= vi∂i(u
j∂j)

= vi[(∂iu
j)∂j + uj(∂i∂j)] . product rule

= vi(∂iu
j)∂j + viuj(∂i∂j)

= vy(∂yu
x)∂x + vyux(∂y∂x)

= x(∂y1)∂x + x · 1(∂y∂x)

= x(∂y∂x)

= x(∂y ~ex)

= x
~ex
∂y

= ~0
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Derivative of ~v in the direction of ~u is shown below

~u(~v) = ui~ei(v
j ~ej)

= ui∂i(v
j∂j)

= ui[(∂iv
j)∂j + vj(∂i∂j)] . product rule

= ui(∂iv
j)∂j + uivj(∂i∂j)

= ux(∂yv
y)∂y + uxvy(∂x∂y)

= 1(∂xx)∂y + 1 · x(∂x∂y)

= ∂y + x(∂y∂x)

= ∂y + x(∂y ~ex)

= ∂y + x
~ex
∂y

= ∂y

= ~ey

[~u,~v] = ~u(~v)− ~v(~u) = ~ey −~0 = ~ey

These four lines don’t give us a closed rectangle. Lie bracket is defined like this to computes the difference between
these two derivatives. ~ey is the separation vector.

Figure 37: Separation vector

Definition 3.38. Lie derivative of tensor fields T w.r.t. smooth vector field X is defined by

(LXT )p =
d

dt

∣∣∣∣
t=0

(φ∗tT )p = lim
t→0

φ∗t (Tφt(p))− Tp
t

,

where X is on smooth manifold M , T is the covariant tensor field on M and let φt(p) = φ(t, p) be a diffeomorphism
parameterized by point p and “time” t. X is induced by φ

Remark 3.31. Intuitively, if you have a tensor field T and a vector field X , then LXT is the infinitesimal change you
would see when you flow T using the vector field −X , which is the same thing as the infinitesimal change you would
see in T if you flowed along the vector field X .

Definition 3.39. The curvature of a Riemannian manifold can be described in various ways; the most standard
one is the curvature tensor, given in terms of a Levi-Civita connection (or covariant differentiation)∇ and Lie bracket
[·, ·] by the following formula:

R(u,v)w = ∇u∇vw −∇v∇uw −∇[u,v]w.
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HereR(u,v) is a linear transformation of the tangent space of the manifold; it is linear in each argument. If u = ∂/∂xi

and v = ∂/∂xj are coordinate vector fields then [u,v] = 0 and therefore the formula simplifies to

R(u,v)w = ∇u∇vw −∇v∇uw

i.e. the curvature tensor measures the non-commutativity of the covariant derivative.

Remark 3.32. Curvature in Riemannian geometry measures how much the manifold deviates from being flat (like
Euclidean space). If the sectional curvature is zero everywhere on the manifold, it implies that the manifold is locally
flat in every direction. In other words, if you zoom in closely enough at any point on the manifold, it looks like a piece
of Euclidean space. It’s important to note that a manifold with zero curvature is not necessarily globally flat.

Definition 3.40. Isometry φ : M → N is a function which preserves distance between manifold M and N .
∀x ∈M , it has

1. The derivative of φ at x is an isomorphism of tangent space Dφx : TxM → TφxN

2. ∀v, w ∈ TxM , the Riemannian metric preserves as 〈v, w〉 = 〈Dφx · v,Dφx · w〉

Example 42. [sta, 2013b] If S and S′ are surfaces with metric g and g′, then the surfaces are isometric if there exists
φ : S → S′ such that for all tangent vector Xp, Yp ∈ TpS and all p ∈ S, we have

〈Xp, Yp〉g = 〈Dφ ·Xp, Dφ · Yp〉g′

Notice that Dφ is the Jacobian matrix pushes forward tangent vectors from TpS to Tφ(p)S
′. We can understand an

isometry as preserving the intrinsic geometry at corresponding points.

Definition 3.41. Isometry group G is group of M such that ∀p, q ∈M, g ∈ G, d(p, q) = d(g · p, g · q) holds.

Definition 3.42. Conformality φ : S1 → S2 is a function that for all X,Y ∈ TpM , there exists a function
u : M → R such that

e2u(p)〈X,Y 〉g1 = 〈Dφp ·X,Dφp · Y 〉g2 ,

where g1, g2 are the metrics of S1, S2 at points p, φ(p).

Remark 3.33. [sta, 2013c] Compared to isometries that preserve both lengths and angles, conformality is a weaker
condition that preserves only angles. Conformality is very flexible, in fact, all surfaces are locally conformal to the
Euclidean metric.

Definition 3.43. Isotropy subgroup of p is defined as Gp = {g ∈ G|g · p = p}. In other words, Gp is the subgroup
of G which leaves p fixed.

Definition 3.44. Symmetric space is a connected Riemannian manifold M such that ∀p ∈M , there is an involutive
isometry φp : M →M that has p as an isolated fixed point. A point x ∈ X is called a fixed point of φ if φ(x) = x.

Definition 3.45. Automorphism group [Singh, 2013] Ψ : G→ G is defined as

Ψg(h) = ghg−1

given ∀g, h ∈ G.

Definition 3.46. Inner automorphism group Inn(G) is the collection of all inner automorphisms of the form
Ψg,∀g ∈ G. Inn(G) is a Lie group and commutative.

Definition 3.47. Dual pairing (m, v), where m ∈ V ∗, the dual space to V , and v ∈ V

Definition 3.48. Adjoint action Adg is the derivative of Ψg(h) with respect to h at the identity, which is

Adg : G× g→ g

Adg = d(Ψg)e
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• For matrix group, Adg is derived as

Adgw =
∂

∂ξ
Ψg(w)

=
∂

∂ξ
Ψg(hξ|ξ=0)

=
∂

∂ξ

(
g(hξ|ξ=0)g−1

)
= g

(
∂

∂ξ
hξ|ξ=0

)
g−1

= gwg−1

where hξ denotes the variation of h by ξ such that h0 = e and ∂
∂ξhξ|ξ=0 = w for Ψg(hξ) = ghξg

−1.

• For conjugation of operators under dual pairing, using Adgw = gwg−1, we have

(m,Adgw) = (m, gwg−1)

= (g>m,wg−1)

= (g>mg−>, w)

Ad∗gm = g>mg−>,

as if A is a linear operator from V to V , its conjugate A∗ : V ∗ → V ∗ is defined by (A∗m, v) = (m,Av).
For detail, see [Singh, 2013].

• For Diff(Ω), Adφ is derived as

Adφw =
∂

∂ξ
(Ψφhξ)|ξ=0

=
∂

∂ξ
(φ ◦ hξ ◦ φ−1)|ξ=0

= Dφ|hξ◦φ−1w|φ−1

= (Dφ ◦ φ−1)w ◦ φ−1

where hξ denotes the variation of h by ξ such that h0 = Id and ∂
∂ξhξ|ξ=0 = w for Ψφ(hξ) = φ ◦ hξ ◦ φ−1.

Definition 3.49. Infinitesimal adjoint action ad is the derivative of the adjoint map Ad with respect to g at identity,
which is

ad : g× g→ g

ad = d(Adg)e

• For matrix group, adg is derived as

advw =
∂

∂ξ
Adgξw|ξ=0

=
∂

∂ξ
(gξwg

−1
ξ )|ξ=0

=

(
∂

∂ξ
gξwg

−1
ξ

) ∣∣∣∣
ξ=0

+

(
gξw

∂

∂ξ
g−1
ξ

) ∣∣∣∣
ξ=0

= vw −
(
gξwg

−1
ξ

∂

∂ξ
gξg
−1
ξ

) ∣∣∣∣
ξ=0

= vw − wv

where gξ is the variation of g by ξ with g0 = e and ∂
∂ξ gξ|ξ=0 = v for Adgξw = gξwg

−1
ξ .
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• For conjugation of operators under dual pairing, using advw = vw − wv, we have

(m, advw) = (m, vw − wv)

= (m, vw)− (m,wv)

= (v>m,w)− (mv>, w)

= (v>m−mv>, w)

ad∗vm = v>m−mv>,

as if A is a linear operator from V to V , its conjugate A∗ : V ∗ → V ∗ is defined by (A∗m, v) = (m,Av).
For detail, see [Singh, 2013].

• For Diff(Ω), adv is derived as

advw =
∂

∂ξ
((Dφξ ◦ φ−1

ξ )w ◦ φ−1
ξ )|ξ=0

=
∂

∂ξ
((Dφξ ◦ φ−1

ξ ))|ξ=0w +DId
∂

∂ξ
(w ◦ φ−1

ξ )|ξ=0

=

(
(
∂

∂ξ
Dφξ|φ−1

ξ +DDφξ|ξ=0Dφ
−1
ξ )w ◦ φ−1

ξ +Dv|φ−1
ξ

∂φ−1
ξ

∂ξ

)∣∣∣∣
ξ=0

= (Dv + 0)w −Dwv
= Dvw −Dwv

where φξ is the variation of φ by ξ with φ0 = e and ∂
∂ξφξ|ξ=0 = v for Adφw = (Dφ ◦ φ−1)w ◦ φ−1.

Definition 3.50. Left/Right multiplication is a diffeomorphism such that

Ly : x→ y · x Left Multiplication

Ry : x→ x · y Right Multiplication

where y ∈ G, G is a Lie group.

Definition 3.51. Left/Right-invariant means ∀y ∈ G, we have Ly∗X = X or Ry∗X = X .

Example 43. The metric GI has the property of right-invariance: if U, V ∈ TφDiff(M) then

GIφ(U, V ) = GIφ◦ψ(U ◦ ψ, V ◦ ψ) ∀ψ ∈ Diff(M)

Definition 3.52. Inertia operator L : g→ g∗ is defined by

〈v, w〉 = (Lv,w),∀v, w ∈ g

L must be invertible and
(Lv,w) = (Lw, v),∀v, w ∈ g

in order to satisfy the properties of a well-formed Riemannian metric.

Definition 3.53. A linear operator f : g→ g is transposed with respect to the inner product defined by L, using the
formula

〈f†v, w〉 = 〈v, fw〉,∀v, w ∈ g

We use this to define the adjoint-transpose action Ad† : G × g → g via the transpose of Adg and the infinitesimal
adjoint-transpose ad† : g× g→ g via the transpose of adv

Remark 3.34. For an operator like a matrix:

adjoint = (conjugate) transpose

classic adjoint = adjugate

In most linear algebra discussions, “adjoint” refers to the transpose of a matrix.
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Proof. To prove the adjugate of a real matrix A is transpose, we have

〈Af, g〉 = (Af)>g = f>A>g

〈f,A∗g〉 = 〈f,A>g〉 = f>A>g

⇒ 〈Af, g〉 = 〈f,A∗g〉

Example 44.

• Adjoint of the gradient is the negative divergence: 〈∇f, g〉 = 〈f,−∇ · g〉

• Adjoint of the Fourier transform is its inverse: 〈F(f), g〉 = 〈f,F−1(g)〉

• Adjoint of the Laplacian is itself: 〈∆f, g〉 = 〈f,∆g〉

• Adjoint of the linear interpolation is the splatting: 〈f ◦ φ, g〉 = 〈f, φ∗g〉

Definition 3.54. Information metric GI is defined by

GIφ(U, V ) = −
∫
M

〈∆u, v〉gvol + λ

k∑
i=1

(∫
M

〈u, ξi〉gvol ·
∫
M

〈v, ξi〉gvol

)
,

where U = u ◦ φ, V = v ◦ φ, λ > 0,∆ is the Laplace-de Rham operator lifted to vector fields, and ξ1, · · · , ξk is an
orthonormal basis of the harmonic 1-form on M .

Definition 3.55. Fisher-Rao metric is the Riemannian metric on Dens(M) given by

GFµ (α, β) =
1

4

∫
M

α

µ
· β
µ
µ,

for tangent vectors α, β ∈ TµDens(M). It can be interpreted as the Hessian of relative entropy, or information
divergence.

Definition 3.56. The background metric g on manifold M is called compatible with µ if volg = µ, for µ ∈
Dens(M).

Definition 3.57. Set of vector space isomorphisms Liso is defined by

Liso(Rm, V ) = {e : Rm → V |e is a vector space isomorphism}.

Definition 3.58. Frame of m-dimension real vector space V is the basis e1, · · · , em of V .

Definition 3.59. Frame bundle F of a smooth m-dimensional submanifold M is defined by

F(M) = {(p, e)|p ∈M, e ∈ F(M)p},

where F(M)p = Liso(Rm, TpM) is the space of frames of tangent space at p.

Definition 3.60. A smooth curve β : R → F(M) is called a lift of smooth curve γ : R → M if
[Robbin and Salamon, 2011]

π ◦ β = γ.

Example 45. The general linear group GL(m,R) acts on this space by composition on the right via

GL(m)× Liso(Rm, V )→ Liso(Rm, V ) : (a, e)→ a∗e = e ◦ a
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Definition 3.61. A curve β(t) = (γ(t), e(t)) ∈ F(M) is called horizontal lift of γ if the vector field X(t) = e(t)ξ

along γ is parallel for every ξ ∈ Rm. Thus a horizontal lift of γ has the form

β(t) = (γ(t),Φγ(t, 0)e)

for some e ∈ Liso(Rm, Tγ(0)M).

Definition 3.62. Suppose φ : M → N is a differential map from M to N , γ : (−ε, ε) → M is a curve on M ,
γ(0) = p, γ′(0) = v ∈ TpM , then φ ◦ γ is a curve on N , φ ◦ γ(0) = φ(p), we define the tangent vector

φ∗(v) = (φ ◦ γ)′(0) ∈ Tφ(p)N,

as the pushforward tangent vector of v induced by φ.

Definition 3.63. Pullback and pushforward are defined as below

Pullback(right action): ϕ∗ρ = |Dϕ|ρ(ϕ(·))
= |Dϕ|ρ ◦ ϕ

Pushforward(left action): ϕ∗ρ = (ϕ−1)∗ρ

= |Dϕ−1|ρ(ϕ−1(·))
= |Dϕ−1|ρ ◦ ϕ−1

where (ϕ, ρ) ∈ Diff(M)×Dens(M).

Remark 3.35. Given a φ, there can be two effects or two directions of the φ. The pullback is the one from distorted to
checkered, while the pushforward is the one from checkered to distorted, which is more intuitive.

Remark 3.36. The scaling factor of |Dφ| in pullback or pushforward actually tells us the intensity change after the
diffeomorphism action. For density matching, if the volume is squeezed, the intensity would increase, which is reflected
in the value of Jacobian determinant.

Figure 38: Pullback
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Figure 39: Pushforward

Remark 3.37. Relationship between I0, I1, φ, φ
−1: Intuitively, we may think that φ demonstrate the right way to

distort I0 : V to I1 : J , like distorting the “painted flat tablecloth”. In a sense, that’s right, if we write it as
I1 = φ∗I0. However, we always use compose operation to distort the density map, which is |Dφ−1|I0 ◦ φ−1, so when
we are using the composing, always remember that we are composing φ−1, instead of the more intuitively-correct φ.

Figure 40: Pushforward

Remark 3.38. “Blank Space” You may have the confusion that if we deform the image using the diffeomorphism ϕ

in Fig.(31), namely φ∗I , what to fill in the blank triangle area at the bottom, since I analogize the diffeomorphism to
distorting the “painted flat tablecloth”.

How about we think this way, by implementing the algorithm through Python discretely, we can have I ◦ ϕ−1 : Z2 →
R2 → R. The space of Z2 consists of all the integer tuple among (0 : M, 0 : N), where M,N are the height and
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width of I . The space of R2 can be arbitrary real number tuple, but still in the range of (0 : M, 0 : N), as I is not
defined beyond this range. For simplicity, I ◦ ϕ−1 : Z2 → R is still a function defined all over the (0 : M, 0 : N),
which won’t cause the blank space.

The essential cause of the above phenomena is that, due to the limitation in computer, we typically store the diffeomor-
phism in the data structure of array, which means φ : Z2 → R2, where Z2 is consists of all the possible tuple among
(0 : M, 0 : N), that’s how we index the entries in the array. So we should never worry about the blank space, as how
we plot the diffeomorphism is different from how to express it in algorithm.

Figure 41: ϕ
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4 Statistics for Images

Definition 4.1. Principal geodesic analysis(PGA) seeks a sequence of geodesic submanifolds that maximize the
variance of the data. These submanifolds are called the principal geodesic submanifolds.

• Definition 1. The principal geodesic submanifolds are defined by first constructing an orthonormal ba-
sis e1, · · · , ed of TµM . Then, these vectors are used to form a sequence of nested subspaces Vk =

span({e1, · · · , ek}) ∩ U , where U ⊂ TµM is a neighbourhood of 0, such that projection is well-defined
for all geodesic submanifolds of Expµ(U).

The principal geodesic submanifolds are given by

Hk = Expµ(Vk)

The first principal direction is now chosen to maximize the projected variance along the corresponding
geodesic:

e1 = arg max
‖e‖=1

n∑
i=1

‖Logµ(πH(xi))‖2, where H = Expµ(span({e}) ∩ U)

ek = arg max
‖e‖=1

n∑
i=1

‖Logµ(πH(xi))‖2, where H = Expµ(span({e1, · · · , ek−1, e}) ∩ U)

where we define the projection operator πH : M → H as

πH(x) = arg min
y∈H

d(x, y)2

= arg min
y∈H

‖Logx(y)‖2

≈ arg min
y∈H

‖Logp(x)− Logp(y)‖2

• Definition 2. The intent of principal geodesic analysis is to find an orthonormal basis {e1, · · · , ek} of a set
of points {x1, · · · , xn} ∈ Rd, which satisfies the recursive relationship

e1 = arg min
‖e‖=1

n∑
i=1

‖xi − 〈e, xi〉e‖2

e2 = arg min
‖e‖=1

n∑
i=1

‖xi − 〈e1, xi〉e1 − 〈e, xi〉e‖2

...

ek = arg min
‖e‖=1

n∑
i=1

‖xi − 〈e1, xi〉e1 − · · · − 〈ek−1, xi〉ek−1 − 〈e, xi〉e‖2

In other words, the subspace Vk = span({e1, · · · , ek}) is the k-dimensional subspace that minimizes the
sum-of-squared distances to the data. The principal geodesic submanifolds are given by

Hk = Expµ(Vk)

The first principal direction is now chosen to minimize the sum-of-squared distance of the data to the corre-
sponding geodesic:

e1 = arg max
‖e‖=1

n∑
i=1

‖Logxi(πH(xi))‖2, where H = Expµ(span({e}) ∩ U)

ek = arg max
‖e‖=1

n∑
i=1

‖Logxi(πH(xi))‖2, where H = Expµ(span({e1, · · · , ek−1, e}) ∩ U)
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Example 46.

Algorithm 1 Principal Geodesic Analysis
Inputs: x1, · · · , xn ∈M
µ← intrinsic mean of {xi} . Remark 4.6
ui ← Logµ(xi) . Map xi ∈M to TµM as ui
Σ← 1

n

∑n
i=1 uiu

>
i

{ek, λk} ← eigenvectors and eigenvalues of Σ

return {ek, λk}

Remark 4.1. • The sample variance of the data is the expected value of the squared Riemannian distance from
the mean.

• For data in Rn the two definitions are equivalent since PGA reduces to PCA in the linear case.

Definition 4.2. Atlas is the image of the average anatomy of a collection of anatomical images.

Remark 4.2. Motivation of atlas building:

• Map population into common coordinate space;

• Learn about variability of brain anatomy;

• Describe difference from normal;

• Use as normative atlas for segmentation.

Example 47. Atlas-based segmentation:

1. Build atlas with segmented structures;

2. Transform the atlas to case;

3. Make decision voxel-wise according to atlas.

Remark 4.3. The space of diffeomorphisms is not a vector space, despite the linear average µ = 1
N

∑N
i=1 xi, we

need a more general notion of average, and here comes the Fréchet mean.

Definition 4.3. Fréchet mean and variance are defined as

p∗ = arg min
p

φ(p), . Fréchet mean

φ(p) =

N∑
i=1

d2(p, xi)wi, . Fréchet variance

where (M,d) is a complete metric space, x1, x2, · · · , xn are the random points in M and p ∈M .

Remark 4.4. The Karcher means are then those points, p of M , which locally minimize φ, while the Fréchet means
are then those points, which globally minimize φ.

Remark 4.5. Actually, the Fréchet mean is the generalization of the arithmetic mean, median, geometric mean, and
harmonic mean, by using different distance functions.

• For real numbers, the arithmetic mean is a Fréchet mean, by using the usual Euclidean distance as the
distance function.

• For positive real numbers, the geometric mean is a Fréchet mean, by using the (hyperbolic) distance function
d(x, y) = | log(x)− log(y)|
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• For positive real numbers, the harmonic mean is a Fréchet mean, by using the distance function d(x, y) =

| 1x −
1
y |

Remark 4.6. How to compute the intrinsic mean of manifold data: According to 4.1.2 in [Fletcher, 2004],
Karcher[Karcher, 1977] shows that the gradient of φ above is

∇φ(p) = −2

N∑
i=1

Logp(xi)wi.

If wi = 1
2N , then we have

φ(p) =
1

2N

N∑
i=1

d2(p, xi),

∇φ(p) = − 1

N

N∑
i=1

Logp(xi).

The gradient descent algorithm takes successive steps in the negative gradient direction. Given a current estimate
µj , say µ1 = x1, as the intrinsic mean, the equation for updating the mean by taking a step in the negative gradient
direction is

µj+1 = Expµj

(
τ

N

N∑
i=1

Logµj (xi)

)
,

where τ is the step size. And this updating equation is easy to understand: Log map all the xi ∈ M to the tangent
space of µj , after derived the mean in the tangent space, exp map this mean back to the M , namely the final intrinsic
mean we want.

Definition 4.4. Fréchet median is defined as

p∗ = arg min
p

ψ(p), . Fréchet median

ψ(p) =

N∑
i=1

|d2(p, xi)|,

where x1, x2, · · · , xn are the random points in M and p ∈M .

Definition 4.5. Weighted geometric median is defined as

p∗ = arg min
p

ψ(p),

ψ(p) =

N∑
i=1

d2(p, xi)wi,

where x1, x2, · · · , xn are the random points in M and p ∈M .

Definition 4.6. Fréchet distance between A and B is defined as infimum over all reparameterizations α and β of
the maximum over all t ∈ [0, 1] of the distance between A(α(t)) and B(β(t)).

F (A,B) = inf
α,β

max
t∈[0,1]

{d (A(α(t)), B(β(t)))}

where d is the distance function, e.g. Euclidean distance.

Example 48. Informally, we can think of the t in parameterization as “time”. In the discrete situation, we can think
of α(t), β(t) as two sequences of same size. Say integer index t ∈ [0, 100), so the sequences α(·) : Z1 → Z1, β(·) :

Z1 → Z1 can be presented as follows:

α(·) = [α(0), α(1), α(2), · · · , α(99)],

β(·) = [β(0), β(1), β(2), · · · , β(99)],
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where α(0) ≤ α(1) ≤ α(2) ≤ · · · ≤ α(99) and β(0) ≤ β(1) ≤ β(2) ≤ · · · ≤ β(99). We can view the α(·), β(·)
as two displacement-time graphs in the way of sequence, which tells you the moving points move forward in what
manner.

A(·) : Z1 → Rn, B(·) : Z1 → Rn are also two sequences of same size(not necessary the same size as α, β), which
can be exhibited as follows:

A(·) = [A(0), A(1), A(2), · · · ],
B(·) = [B(0), B(1), B(2), · · · ],

and A(i) and B(i) are the coordinates in the metric space.

So for calculating the Fréchet distance between the curves, the key is to find all the possible reparameterizations α, β.
And for each combination of α, β, we can then find the maximum distance across the whole “time period”, followed
by finding the infimum among all the maximum distance under each combination.

Remark 4.7. In a nutshell, the Fréchet distance between two given fixed paths can be found in this way: we want to
find moving patterns of the two points on two paths that the maximun distance during this travel is minimized. The
satisfied moving patterns are often making the two points moving forward “simultenously”.

Figure 42: The Fréchet distance between two same shape curves is the norm of the translation vector.

Definition 4.7. Wasserstein distance is defined as

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
M×M

dist(x, y)p dγ(x, y)

)1/p

,

=

(
inf

γ∈Γ(µ,ν)

∫
M×M

dist(x, y)pγ(x, y)dxdy

)1/p

,

W2(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
M×M

dist(x, y)2γ(x, y)dxdy

)1/2

,

where Γ(µ, ν) denotes the set of all coupling of marginal distribution µ and ν, and x, y are actually indicating the
position in the respective distribution.

In discrete case, the distance reads as

Wp(µ, ν) = min
T∈Γ(µ,ν)

〈T,Mµν〉 = min
T∈Γ(µ,ν)

tr(T>Mµν),

where Mµν = [dist(xi, yj)
p]ij ∈ Rm×n and Γ(µ, ν) = {T ∈ Rm×n+ |T1m = a, T>1n = b}, namely the transport

map matrix T is under the constraint that the sum of each row and column equals to a and b, respectively. The two
matrices correspond to dist(x, y) and γ(x, y) in continuous form.
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Figure 43: Wasserstein distance, credit to Wikipedia

Remark 4.8. Wasserstein distance is closely related to optimal transport problem. That is, for two distributions of
mass µ(x), ν(y) in the space S, where x, y ∈ S, we wish to transport the mass at the lowest cost. The problem only
makes sense when the sums of two distributions are identical, fortunately µ(x), ν(y) are two probability distributions,
namely the sum of mass equals to 1, this premise will be satisfied.

Assuming there is also a cost function c(x, y) → [0,+∞) which indicates the cost of transporting unit mass from
point x to point y. Function γ(x, y) depicts a transport plan which gives the amount of mass moved from point x to
point y. Therefore, the cost of the whole transport plan equals to∫ ∫

c(x, y)γ(x, y) dxdy,

and the Wasserstein distance is exactly the cost of optimal transport plan.

Lemma 4.1. The p-Wasserstein distance between the two probability measures µ and ν on R1 has the following
closed-form expression:

Wp(µ, ν) =

(∫ +∞

−∞
|U(s)− V (s)|pds

)1/p

.

∫
quantity× unit distance

=

(∫ 1

0

|U−1(t)− V −1(t)|pdt
)1/p

, .

∫
distance× unit quantity

where U and V are the CDFs of µ, ν respectively.

Proof. Assuming {(x1, y1), (x2, y2)} ⊂ (γ∗)6, x1 < x2, where γ∗ denotes the optimal transport plan. Given the
previous assumption, we claim y1 ≤ y2.

Supposing that y1 ≤ y2 is not the case, namely y1 > y2, which yields7

|x1 − y2|p + |x2 − y1|p < |x1 − y1|p + |x2 − y2|p

However this inequality suggests that {(x1, y2), (x2, y1)} ⊂ (γ∗), rather than {(x1, y1), (x2, y2)} ⊂ (γ∗), which
contradicts the initial assumption, namely the optimality of γ∗, as it indicates that γ∗ is no cyclically monotone.

6The support of a probability distribution can be loosely thought of as the closure of the set of possible values of a random
variable having that distribution.

7For a more detailed deviation of this inequality in the case of p > 1, refers to Appendix A in https://arxiv.org/pdf/

1509.02237.pdf
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Now, for x ∈ (µ), y ∈ (ν), we claim that (x, y) ∈ (γ∗) if and only if U(x) = V (y). To see this, note that form the
monotonicity property we just built, we deduce that (x, y) ∈ (γ∗) if and only if

γ∗(R, (−∞, y]) = γ∗((−∞, x], (−∞, y]) = γ∗((−∞, x],R)

In turn, the fact that γ∗ ∈ Γ(µ, ν) implies that γ∗((−∞, x],R) = F (x) and γ∗(R, (−∞, y]) = G(y). From previous
relation, we conclude that

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
M×M

dist(x, y)pγ(x, y)dxdy

)1/p

=

(∫ 1

0

|F−1(t)−G−1(t)|pdt
)1/p

Example 49. For one dimensional discrete case, to transport ν to µ,

1. 4 extra squares would be moved from 0 to 1;

2. 3 extra squares would be moved from 1 to 2;

3. 2 extra squares would be moved from 2 to 3;

4. 1 extra squares would be moved from 3 to 4.

The “earth” need to be moved is exactly the difference between the two CDFs at each location. Therefore the p-
Wasserstein distance equals to (

∑
|U(s)− V (s)|pds)1/p = (4p × 1 + 3p × 1 + 2p × 1 + 1p × 1)1/p

Figure 44: Two distribution µ and ν.

Figure 45: Optimal transport measures the minimal effort required for filling −µ1 with µ0, i.e. transporting one
distribution to another.
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Remark 4.9. Relationship between KL divergence, JS divergence and Wasserstein distance:

• Intuitively, KL divergence looks like a distance between two distributions, however DKL(p, q) 6= DKL(q, p),
namely it is asymmetric. So comes the JS divergence.

• When the two distributions are far apart, the KL divergence cannot reflect the distance between the distribu-
tions while JS divergence is constant, which is deadly for backpropagation in neural network. Nevertheless,
the Wasserstein distance can tackle this drawback of KL/JS divergence, as the optimal transport plan of two
distant distributions would always make sense and variable.

Remark 4.10. Advantages of Wasserstein distance:8

• By leveraging Wasserstein distance, we can get a better average/summary image of two distribution.

Figure 46: Top: Some random circles. Bottom left: Euclidean average of the circles. Bottom right: Wasserstein
barycenter.

• When we are creating a geodesic between two distributions P0, P1, and Pt interpolates between them,
Wasserstein distance can preserve the basic structure of the distribution.

Figure 47: Top row: Geodesic path from P0 to P1. Bottom row: Euclidean path(Pt = tP0 + (1 − t)P1) from P0 to
P1.

• Wasserstein distance is insensitive to small wiggles.

Definition 4.8. Wasserstein barycenter is defined as

µ∗ = arg min
µ

∑
i

W 2
2 (µ, µi)

where W2 is the L2 Wasserstein distance and µi is the sample distribution. For computation in discrete situation,
please refer to https://arxiv.org/pdf/1310.4375.pdf.

Remark 4.11. Euclidean averaging does not contain geometric information. Barycenters under the Wasserstein
distance are more intuitive.9

8Figures in this remark credit to https://www.stat.cmu.edu/~larry/=sml/Opt.pdf
9https://people.csail.mit.edu/eddchien/presentations/Stochastic_Wasserstein_Barycenters.pdf
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Figure 48: Euclidean mean vs. Wasserstein barycenter of distributions.

Corollary 4.1. Given ∆f = g, f(x, y) = F−1
[

1
2 cos(2πu/M)+2 cos(2πv/N)−4G(u, v)

]
.

Proof.

f(x+ 1, y) + f(x− 1, y) + f(x, y + 1) + f(x, y − 1)− 4f(x, y) = g(x, y)

F [f(x+ 1, y) + f(x− 1, y) + f(x, y + 1) + f(x, y − 1)− 4f(x, y)] = F [g(x, y)]

e−2πju/MF (u, v) + e2πju/MF (u, v) + e−2πjv/NF (u, v) + e2πjv/NF (u, v)− 4F (u, v) = G(u, v)

.time shifting[shi, ]: F(f(x+ a, y + b)) = e−2πjau/M−2πjbv/NF (u, v)

After withdrawing the common factor, we have

F (u, v) =
1

e−2πju/M + e2πju/M + e−2πjv/N + e2πjv/N − 4
G(u, v)

f(x, y) = F−1

[
1

e−2πju/M + e2πju/M + e−2πjv/N + e2πjv/N − 4
G(u, v)

]
As eju = cos(u) + j sin(u), we can write f(x, y) in this way:

f(x, y) = F−1

[
1

2 cos(2πu/M) + 2 cos(2πv/N)− 4
G(u, v)

]
Likewise, you can find the 3D one like below:

f(x, y, z) = F−1

[
1

2 cos(2πu/M) + 2 cos(2πv/N) + 2 cos(2πw/O)− 6
G(u, v, w)

]

Remark 4.12. The formula below defines MATLAB’s discrete Fourier transform G of an m× n matrix g:

G(u, v) =

m∑
x=1

n∑
y=1

w(x−1)(u−1)
m w(y−1)(v−1)

n g(x, y),

where wm = e−2πi/m, wn = e−2πi/n and x, u ∈ [1,m], y, v ∈ [1, n].

In a more specific way, we have

G(u, v) =

m∑
x=1

n∑
y=1

e−2πi( (x−1)(u−1)
m +

(y−1)(v−1)
n )g(x, y)
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5 Linear Algebra for Images

5.1 Geometric Transformations

Transformation Matrix #DoF Preserves

Translation

1 0 t1
0 1 t2
0 0 1

 2 orientation

Scaling

s1 0 0

0 s2 0

0 0 1

 2 orientation

Shearing

 1 s1 0

s2 1 0

0 0 1

 2 orientation

Rotation

cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 1 lengths

Affine

a11 a12 a13

a21 a22 a23

0 0 1

 6 parallelism

Remark 5.1. The transformations can be combined by matrix multiplication, of which the order matters,1 0 t1
0 1 t2
0 0 1

 ·
cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 ·
s1 0 0

0 s2 0

0 0 1


=

cos(θ) − sin(θ) t1
sin(θ) cos(θ) t2

0 0 1

 ·
s1 0 0

0 s2 0

0 0 1


=

s1 cos(θ) − sin(θ) t1
sin(θ) s2 cos(θ) t2

0 0 1


especially when there is a translation operation.cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 ·
s1 0 0

0 s2 0

0 0 1

 ·
1 0 t1

0 1 t2
0 0 1


=

s1 cos(θ) − sin(θ) 0

sin(θ) s2 cos(θ) 0

0 0 1

 ·
1 0 t1

0 1 t2
0 0 1


=

s1 cos(θ) − sin(θ) s1t1 cos(θ)− t2 sin(θ)

sin(θ) s2 cos(θ) t1 sin(θ) + s2t2 cos(θ)

0 0 1


Definition 5.1. Affine transformation is a geometric transformation of a Euclidean space that preserves lines and
parallelism (but not necessarily distances and angles).

Remark 5.2. Affine transformations include scaling, rotation, translation, shear mapping, reflection, or compositions
of them in any combination and sequence.
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Definition 5.2. Rigid transformation is a geometric transformation of a Euclidean space that preserves the Eu-
clidean distance between every pair of points.

Remark 5.3. Rigid transformations include rotation, translation, reflection, or compositions of them in any combina-
tion and sequence.

Remark 5.4. Any rigid transformation T can be decomposed into translation and rotation.

5.2 Matrix Derivative

• For f(x) : Rn → R, f(x)′ ∈ Rn, we can have:

∂

∂x
(b>x) =

∂

∂x
(x>b) = b

∂

∂x
(x>x) = 2x

∂

∂x
(x>Ax) = 2A

∂

∂x
‖Ax− b‖22 = 2A>(Ax− b)

∂

∂x
‖Ax− b‖2 =

A>(Ax− b)
‖Ax− b‖2

• For f(X) : Rn×m → R, f(X)′ ∈ Rn×m, we can have:

∂

∂X
(a>Xb) = ab>

∂

∂X
(a>X>b) = ba>

∂

∂X
tr(A>XB) = AB>

∂

∂X
tr(A>X>B) = BA>

∂

∂X
|X| = |X|(X−1)>
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