Haocheng Dai

Contact Information	haocheng@cs.utah.edu https://users.cs.utah.edu/~haocheng/		
Summary	My research interest is centered on developing specialized and trustworthy machine learning tools tailored for computer vision in healthcare settings. My focus extends to, but is not limited to:		
	- Trustworthy Machine Learning		
	– Geometric Deep Learning and Shape Modeling		
	– Multimodal Learning, Vision Language Models, and Diffusion Models		
	– Physics-Informed Machine Learning		
Education	University of Utah Ph.D. Student in Computer Science Committee: SC Joshi (Chair), M Bauer, S Elhabian, PT F	Salt Lake City, UT 2024 Fletcher, RM Kirby	
	Tongji University B.Eng in Computer Science	Shanghai, China 2019	
	Institut de Mathématiques de Toulouse Exchange Student	Toulouse, France 2019	
	Technion - Israel Institute of Technology Exchange Student	Haifa, Israel 2018	
Publications & Preprints	The Silent Majority: Demystifying Memorization Effect in the Presence of Spurious Correlations, C. You [*] , <u>H. Dai</u> [*] , Y. Min [*] , J. Sekho, S. C. Joshi, J. Duncan (*equal contribution), In submission, \mathfrak{O} .		
	High-Fidelity CT on Rails-Based Characterization of Delivered Dose Variation in Con- formal Head and Neck Treatments, <u>H. Dai</u> , V. Sarkar, C. Dial, M. Foote, Y. Hitchcock, S. C. Joshi, B. J. Salter, <i>Applied Radiation Oncology (ARO) 2023</i> , §.		
	Detect AI-generated Images Uploaded for Risk Evidence Collection in Customer Self-Service Workflow, <u>H. Dai</u> , S. Chen, B. Xiao, Y. Chen, <i>Amazon Machine Learning Conference (AMLC) 2023</i> , 9 .		
	Neural Operator Learning for Ultrasound Tomography Inversion, <u>H. Dai</u> [*] , M. Pen- warden [*] , R. M. Kirby, S. C. Joshi (*equal contribution), <i>International Conference on</i> <i>Medical Imaging with Deep Learning (MIDL) 2023</i> , \mathfrak{O} .		
	Modeling the Shape of the Brain Connectome via Deep Neural Networks, <u>H. Dai</u> , M. Bauer, P. T. Fletcher, S. C. Joshi, <i>International Conference on Information Processing</i> in Medical Imaging (IPMI) 2023, Oral Presentation, S .		
	Understanding Visual Documents from Customer Self-Service Workflow using Multi- modal Transformer, <u>H. Dai</u> , J. Chou, S. Chen, B. Xiao, Y. Chen, <i>Amazon Machine Learning Conference (AMLC) 2022</i> , §.		

Integrated Construction of Multimodal Atlases with Structural Connectomes in the Space of Riemannian Metrics, K. M. Campbell, <u>H. Dai</u>, Z. Su, M. Bauer, P. T. Fletcher, S. C. Joshi, *Journal of Machine Learning for Biomedical Imaging (MELBA) 2022*, **9**.

Structural Connectome Atlas Construction in the Space of Riemannian Metrics, K. M. Campbell, <u>H. Dai</u>, Z. Su, M. Bauer, P. T. Fletcher, S. C. Joshi, *International Conference on Information Processing in Medical Imaging (IPMI) 2021*, François Erbsmann Prize (**Best Paper Award**), **S**.

Industry Experience	Amazon, Inc Applied Scientist Intern	Seattle, WA 2023	
	 Mitigated the diffusion model's deterioration in tiny text generation, irrespective of resolution, by implementing a multi-stage generation approach and utilizing templates; Utilized the diffusion model for manipulating text information in visual documents, facilitating efficient data generation for fraud image detection; 		
	 Implemented a "legal-edit invariant, illegal-edit variant" fine-tuning strategy to bolster the detection model's resilience against common customer edits; 		
	 Found that GradCAM heatmap masking can fool the detection model substan- tially, underscoring the significance of this technique in fraud media prevention. 		
	Amazon, Inc Applied Scientist Intern	Seattle, WA 2022	
	 Designed a multimodal transformer model to understand visual documents in various formats; 		
	 Our model manifested strong generalization capability beyond human supervision — outperforming the AWS Textract query; 		
	 Developed a partially masked visual document understanding framework by in- corporating a semantic segmentation module along with the transformer model, standing at a recall rate of 0.85. 		
Services	Reviewer		
	– Conferences: ACM MM, CVPR, MICCAI, MIDL		
	– Journals: Medical Image Analysis, MELBA, Scientific Reports		
	- Workshop: ICLR Workshop on AI for Differential Equations in Science		
Teaching Experience	Teaching Mentor	University of Utah	
	– CS 4150: Algorithms	2022	
	- CS 3190: Foundations of Data Analysis	2021	
Honors & Awards	François Erbsmann Prize (Best Paper Award), <i>IPMI 2021</i> Department Fellowship, <i>School of Computing, University of Uto</i> Chinese Government Scholarship, <i>Chinese Scholarship Council</i> Tongji Scholarship of Excellence (2016, 2017, 2018), <i>Tongji Uni</i>	ıh iversity	
Technical Skills	Python, MatLab, C++, PyTorch, Jax		