
Chapter 4
Verilog Simulation

Figure 4.1: The simulation environment for a Verilog program (DUT) and testbench

20 CHAPTER 4: Verilog Simulation

‘timescale 1ns / 100ps
module test;

wire Cout;
reg Cin;
wire [1:0] Sum;
reg [1:0] A;
reg [1:0] B;

twoBitAdd top(Cout, Sum, A, B, Cin);

‘include "testfixture.verilog"
endmodule

Figure 4.2: Verilog code for a DUT/testbench simulation environment

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.3: Dialog box for initializing a simulation run directory

21

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.4: The initial Verilog-XL simulation control window

22 CHAPTER 4: Verilog Simulation

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.5: The Record Signals dialog box

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.6: Dialog to create a new testfixture template

23

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.7: The Verilog-XL Stimulus Options form

24 CHAPTER 4: Verilog Simulation

Figure 4.8: Testfixture template for the two-bit adder

25

Figure 4.9: An example testfixture for the two-bit adder

26 CHAPTER 4: Verilog Simulation

// Default Verilog stimulus.
integer i,j,k;
initial
begin

A[1:0] = 2’b00;
B[1:0] = 2’b00;
Cin = 1’b0;

$display("Starting simulation...");

for(i=0;i<=3;i=i+1)
begin
for(j=0;j<=3;j=j+1)
begin
for(k=0;k<=1;k=k+1)
begin
#20
$display("A=%b B=%b Cin=%b, Cout-Sum=%b%b", A, B, Cin, Cout, S);
if ({Cout,S} != A + B + Cin)

$display("ERROR: Cout-Sum should equal %b, is %b",
(A + B + Cin), {Cin,S});

Cin=˜Cin; // invert Cin
end
B[1:0] = B[1:0] + 2’b01; // add the bits

end
A = A+1; // shorthand notation for adding
end

$display("Simulation finished... ");
end

Figure 4.10: Another testfixture for the two-bit adder

27

// Default Verilog stimulus.
reg [1:0] ainarray [0:4]; // define memory arrays
reg [1:0] binarray [0:4]; // to hold input and result
reg [2:0] resultsarray [0:4];
integer i;

initial
begin

/* A simple Verilog testfixture for testing a 2-bit adder */

$readmemb("ain.txt", ainarray); // read values into
$readmemb("bin.txt", binarray); // arrays from files
$readmemb("results.txt", resultsarray);

A[1:0] = 2’b00; // initialize inputs
B[1:0] = 2’b00;
Cin = 1’b0;

$display("Starting...");
#10
$display("A = %b, B = %b, Cin = %b, Sum = %b, Cout = %b",

A, B, Cin, Sum, Cout);

for(i=0; i<=4; i=i+1) // loop through all values in arrays
begin

A = ainarray[i]; // set the inputs
B = binarray[i]; // from the memory arrays
#10
$display("A = %b, B = %b, Cin = %b, Sum = %b, Cout = %b",

A, B, Cin, Sum, Cout);
// check against results array
if ({Cout,Sum} != resultsarray[i])

$display("Error: Sum should be %b, is %b instead",
resultsarray[i],Sum);

end
$display("...Done");
$finish;

end

Figure 4.11: A testfixture using values from external files

(a) ain.txt (b) bin.txt (c) results.txt

Figure 4.12: Data files used in Figure 4.11

28 CHAPTER 4: Verilog Simulation

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.13: Dialog box for re-netlisting a previously netlisted design

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.14: The netlisting log for the two-bit adder

29

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.15: The Verilog-XL window after netlisting

30 CHAPTER 4: Verilog Simulation

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.16: Result of running with the testbench from Figure 4.9

31

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.17: Waveform window without any signals

32 CHAPTER 4: Verilog Simulation

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.18: Design browser with signals selected

33

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.19: Waveform window showing exhaustive test results

34 CHAPTER 4: Verilog Simulation

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.20: Waveform window showing outputs as a bus

35

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.21: Printing dialog box for SimVision

36 CHAPTER 4: Verilog Simulation

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.22: Dialog box for initializing a simulation run directory for NC Verilog

37

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.23: The Record Signals dialog box

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.24: Dialog to create a new testfixture template

38 CHAPTER 4: Verilog Simulation

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.25: SimVision Console window

39

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.26: SimVision Design Browser window

40 CHAPTER 4: Verilog Simulation

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.27: Waveform window showing the output of exhaustive simulation

41

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.28: Dialog box for creating a behavioral view

Figure 4.29: Behavioral view template based on the nand2 symbol

42 CHAPTER 4: Verilog Simulation

Figure 4.30: Complete behavioral description of a nand2 cell

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.31: Read only window for simulation of behavioral view

43

// Verilog HDL for "Ax", "see4" "behavioral"
// Four in a row detector - written by Allen Tanner
module see4 (clk, clr, insig, saw4);

input clk, clr, insig;
output saw4;

parameter s0 = 3’b000; // initial state, saw at least 1 zero
parameter s1 = 3’b001; // saw 1 one
parameter s2 = 3’b010; // saw 2 ones
parameter s3 = 3’b011; // saw 3 ones
parameter s4 = 3’b100; // saw at least, 4 ones

reg [2:0] state, next_state;

always @(posedge clk or posedge clr) // state register
begin

if (clr) state <= s0;
else state <= next_state;

end

always @(insig or state) // next state logic
begin

case (state)
s0: if (insig) next_state = s1;

else next_state = s0;
s1: if (insig) next_state = s2;

else next_state = s0;
s2: if (insig) next_state = s3;

else next_state = s0;
s3: if (insig) next_state = s4;

else next_state = s0;
s4: if (insig) next_state = s4;

else next_state = s0;
default: next_state = s0;

endcase
end

// output logic
assign saw4 = state == s4;
endmodule //see4

Figure 4.32: A simple state machine described in Verilog: see4.v

44 CHAPTER 4: Verilog Simulation

// Top-level test file for the see4 Verilog code
module test;

// Remember that DUT outputs are wires, and inputs are reg
wire saw4;
reg clk, clr, insig;

// Include the testfixture code to drive the DUT inputs and
// check the DUT outputs
‘include "testfixture.v"

// Instantiate a copy of the see4 function (named top)
see4 top(clk, clr, insig, saw4);

endmodule //test

Figure 4.33: Top-level Verilog code for simulating see4 named seetest.v

45

// Four ones in a row detector testbench (testfixture.v)
// Main tests are in an initial block
initial
begin

clk = 1’b0; // initialize the clock low
clr = 1’b1; // start with clr asserted
insig = 1’b0; // insig starts low

#500 clr = 1’b0; // deassert clear and start running

// use the send_test task to test the state machine
send_test(32’b0011_1000_1010_1111_0000_0111_1110_0000);
send_test(32’b0000_0001_0010_0011_0100_0101_0110_0111);
send_test(32’b1000_1001_1010_1011_1100_1101_1110_1111);
send_test(32’b1011_1111_1101_1111_1111_1100_1011_1111);

// Print something so we know we’re done
$display("\nSaw4 simulation is finished...");
$display("If there were no ’ERROR’ statements, then everything worked!\n");
$finish;

end

// Generate the clock signal
always #50 clk = ˜clk;

// this task will take the 32 bit input pattern and apply
// those bits one at a time to the state machine input.
// Bits are changed on negedge so that they’ll be set up for
// the next active (posedge) of the clock.
task send_test;
input [31:0]pat; // input bits in a 32-bit array
integer i; // integer for looping in the for statement
begin

for(i=0;i<32; i=i+1) // loop through each of the bits in the pat array
begin
// apply next input bit before next rising clk edge
@(negedge clk)insig = pat[i];

// remember to check your answers!
// Look at last four bits to see if saw4 should be asserted
if ((i > 4)

&& ({pat[i-4],pat[i-3],pat[i-2],pat[i-1]} == 4’b1111)
&& (saw4 != 1))
$display("ERROR - didn’t recognize 1111 at pat %d,", i);

else if ((i > 4)
&& ({pat[i-4],pat[i-3],pat[i-2],pat[i-1]} != 4’b1111)
&& (saw4 == 1))
$display("ERROR - signalled saw4 on %b inputs at step %d",

{pat[i-3],pat[i-2],pat[i-1],pat[i]}, i);
end // begin-for

end // begin-task
endtask // send_test

Figure 4.34: Testbench code for see4.v in a file named testfixture.v

46 CHAPTER 4: Verilog Simulation

--->sim-xl -f test.txt
Tool: VERILOG-XL 05.10.004-s Jul 29, 2006 20:50:01

Copyright (c) 1995-2003 Cadence Design Systems, Inc. All Rights Reserved.
Unpublished -- rights reserved under the copyright laws of the United States.

Copyright (c) 1995-2003 UNIX Systems Laboratories, Inc. Reproduced with Permission.

THIS SOFTWARE AND ON-LINE DOCUMENTATION CONTAIN CONFIDENTIAL INFORMATION
AND TRADE SECRETS OF CADENCE DESIGN SYSTEMS, INC. USE, DISCLOSURE, OR
REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF
CADENCE DESIGN SYSTEMS, INC. RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013 or
subparagraphs (c)(1) and (2) of Commercial Computer Software --
Restricted
Rights at 48 CFR 52.227-19, as applicable.

Cadence Design Systems, Inc.
555 River Oaks Parkway
San Jose, California 95134

For technical assistance please contact the Cadence Response Center at
1-877-CDS-4911 or send email to support@cadence.com

For more information on Cadence’s Verilog-XL product line send email to
talkv@cadence.com

Compiling source file ‘‘see4.v’’
Compiling source file ‘‘seetest.v’’

Warning! Code following ‘include command is ignored
[Verilog-CAICI]

‘‘seetest.v’’, 6:
Compiling included source file ‘‘testfixture.v’’
Continuing compilation of source file ‘‘seetest.v’’
Highest level modules:
test

Saw4 simulation is finished...
If there were no ’ERROR’ statements, then everything worked!

L17 ‘‘testfixture.v’’: $finish at simulation time 13200
1 warning
0 simulation events (use +profile or +listcounts option to count)
CPU time: 0.0 secs to compile + 0.0 secs to link + 0.0 secs in
simulation
End of Tool: VERILOG-XL 05.10.004-s Jul 29, 2006 20:50:02
--->

Figure 4.35: Output of stand-alone Verilog-XL simulation of seetest.v

47

<previous text not included...>
Compiling included source file ‘‘testfixture.v’’
Continuing compilation of source file ‘‘seetest.v’’
Highest level modules:
test

ERROR - didn’t recognize 1111 at pat 10,
ERROR - didn’t recognize 1111 at pat 11,
ERROR - didn’t recognize 1111 at pat 5,
ERROR - didn’t recognize 1111 at pat 6,
ERROR - didn’t recognize 1111 at pat 15,
ERROR - didn’t recognize 1111 at pat 16,
ERROR - didn’t recognize 1111 at pat 17,
ERROR - didn’t recognize 1111 at pat 18,
ERROR - didn’t recognize 1111 at pat 20,
ERROR - didn’t recognize 1111 at pat 21,
ERROR - didn’t recognize 1111 at pat 27,
ERROR - didn’t recognize 1111 at pat 28,
ERROR - didn’t recognize 1111 at pat 29,
ERROR - didn’t recognize 1111 at pat 30,

Saw4 simulation is finished...
If there were no ’ERROR’ statements, then everything worked!

L17 ‘‘testfixture.v’’: $finish at simulation time 13200
1 warning
0 simulation events (use +profile or +listcounts option to count)
CPU time: 0.0 secs to compile + 0.0 secs to link + 0.0 secs in
simulation
End of Tool: VERILOG-XL 05.10.004-s Jul 29, 2006 21:21:49

Figure 4.36: Result of executing a faulty version of see4.v

48 CHAPTER 4: Verilog Simulation

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.37: Control console for stand-alone Verilog-XL simulation using SimVision

49

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.38: Hierarchy browser for the see4 example

50 CHAPTER 4: Verilog Simulation

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.39: Waveform viewer after running the see4 example

51

---> sim-nc -f test.files
ncverilog: 05.10-s014: (c) Copyright 1995-2004 Cadence Design Systems,
Inc.
file: see4.v

module worklib.see4:v
errors: 0, warnings: 0

file: seetest.v
module worklib.test:v

errors: 0, warnings: 0
Caching library ’worklib’ Done

Elaborating the design hierarchy:
Building instance overlay tables: Done
Generating native compiled code:

worklib.see4:v <0x3d4ece8f>
streams: 5, words: 1771

worklib.test:v <0x37381383>
streams: 6, words: 4703

Loading native compiled code: Done
Building instance specific data structures.
Design hierarchy summary:

Instances Unique
Modules: 2 2
Registers: 7 7
Scalar wires: 4 -
Always blocks: 3 3
Initial blocks: 1 1
Cont. assignments: 1 1
Pseudo assignments: 3 4

Writing initial simulation snapshot: worklib.test:v
Loading snapshot worklib.test:v Done
ncsim> source
/uusoc/facility/cad_tools/Cadence/LDV/tools/inca/files/ncsimrc
ncsim> run

Saw4 simulation is finished...
If there were no ’ERROR’ statements, then everything worked!

Simulation complete via $finish(1) at time 13200 NS + 0
./testfixture.v:17 $finish;
ncsim> exit
--->

Figure 4.40: Output of stand-alone NC Verilog simulation of seetest.v

52 CHAPTER 4: Verilog Simulation

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.41: Control console for NC Verilog through SimVision

53

---> sim-vcs -f test.files
Chronologic VCS (TM)

Version X-2005.06-SP2 -- Sat Jul 29 21:49:35 2006
Copyright (c) 1991-2005 by Synopsys Inc.

ALL RIGHTS RESERVED

This program is proprietary and confidential information of Synopsys
Inc.
and may be used and disclosed only as authorized in a license
agreement
controlling such use and disclosure.

Parsing design file ’see4.v’
Parsing design file ’seetest.v’
Parsing included file ’testfixture.v’.
Back to file ’seetest.v’.
Top Level Modules:

test
No TimeScale specified
Starting vcs inline pass...
1 module and 0 UDP read.
recompiling module test
make: Warning: File ‘filelist’ has modification time 41 s in the
future
if [-x ../simv]; then chmod -x ../simv; fi
g++ -o ../simv -melf_i386 -m32 5NrI_d.o 5NrIB_d.o gzYz_1_d.o SIM_l.o
/uusoc/facility/cad_tools/Synopsys/vcs/suse9/lib/libvirsim.a
/uusoc/facility/cad_tools/Synopsys/vcs/suse9/lib/libvcsnew.so
/uusoc/facility/cad_tools/Synopsys/vcs/suse9/lib/ctype-stubs_32.a -ldl
-lc -lm -ldl
/usr/lib64/gcc/x86_64-suse-linux/4.0.2/../../../../x86_64-suse-linux/bin/ld:
warning: libstdc++.so.5, needed by
/uusoc/facility/cad_tools/Synopsys/vcs/suse9/lib/libvcsnew.so, may
conflict with libstdc++.so.6
../simv up to date
make: warning: Clock skew detected. Your build may be incomplete.
CPU time: .104 seconds to compile + .384 seconds to link
--->

Figure 4.42: Output of running sim-vcs on files.txt

54 CHAPTER 4: Verilog Simulation

---> sim-simv simv
Chronologic VCS simulator copyright 1991-2005
Contains Synopsys proprietary information.
Compiler version X-2005.06-SP2; Runtime version X-2005.06-SP2; Jul 29
21:49 2006

Saw4 simulation is finished...
If there were no ’ERROR’ statements, then everything worked!

$finish at simulation time 13200
V C S S i m u l a t i o n R e p o r t

Time: 13200
CPU Time: 0.090 seconds; Data structure size: 0.0Mb
Sat Jul 29 21:49:54 2006
--->

Figure 4.43: Output of stand-alone VCS simulation of seetest.v using the compiled simv
simulator

55

(Reprinted by permission of Synopsys, Inc. Copyright c©2005, 2010 Synopsys, Inc. All Rights Reserved)

Figure 4.44: Console window for controlling a VCS simulation through DVE

56 CHAPTER 4: Verilog Simulation

(Reprinted by permission of Synopsys, Inc. Copyright c©2005, 2010 Synopsys, Inc. All Rights Reserved)

Figure 4.45: The result of running the see4 simulation in DVE

57

(Reprinted by permission of Synopsys, Inc. Copyright c©2005, 2010 Synopsys, Inc. All Rights Reserved)

Figure 4.46: Waveform window for DVE after running the see4 simulation

58 CHAPTER 4: Verilog Simulation

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.47: A netlisting log for the two-bit adder that stops at behavioral views of the
standard cell gates

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.48: The Setup Netlist dialog from Verilog-XL

59

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.49: The Setup Netlist dialog from NC Verilog

60 CHAPTER 4: Verilog Simulation

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.50: Netlisting result after removing behavioral from the verilogSimViewList

module NAND (out, in1, in2);
output out;
input in1, in2;

assign #10 out = ˜(in1 & in2);

endmodule

Figure 4.51: Verilog description of a NAND gate with explicit timing

module NAND (out, in1, in2);
output out;
reg out;
input in1, in2;

always @(in1 or in2)
begin

#10 out = ˜(in1 & in2);
end

endmodule

Figure 4.52: Another description of a NAND gate with explicit timing

61

module NAND (out, in1, in2);
output out;
reg out;
input in1, in2;
parameter delay = 10;

always @(in1 or in2)
begin

#delay out = ˜(in1 & in2);
end

endmodule

Figure 4.53: NAND description with a delay parameter

module nand2 (Y, A, B);
output Y;
input A;
input B;

nand _i0 (Y, A, B);

specify
(A => Y) = (1.5, 1.0);
(B => Y) = (1.7, 1.2);

endspecify

endmodule

Figure 4.54: NAND gate description with specify block

62 CHAPTER 4: Verilog Simulation

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.55: Rename Reference Library dialog box from Library Manager

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.56: Netlist log for the nand2 cell

63

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.57: Waveform from simulation of nand2 cell

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.58: Adding a property to a net

64 CHAPTER 4: Verilog Simulation

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.59: A net with a netType property

65

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.60: Nand2 cell with r nmos and trireg modifications

(Copyright c©2005, 2010, Cadence Design Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 4.61: Waveform from simulation of nand2 cell with modifications

66 CHAPTER 4: Verilog Simulation

