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Abstract

How can we train an assistive human-machine interface (e.g., an electromyography-
based limb prosthesis) to translate a user’s raw command signals into the actions
of a robot or computer when there is no prior mapping, we cannot ask the user
for supervision in the form of action labels or reward feedback, and we do not
have prior knowledge of the tasks the user is trying to accomplish? The key idea
in this paper is that, regardless of the task, when an interface is more intuitive,
the user’s commands are less noisy. We formalize this idea as a completely
unsupervised objective for optimizing interfaces: the mutual information between
the user’s command signals and the induced state transitions in the environment. To
evaluate whether this mutual information score can distinguish between effective
and ineffective interfaces, we conduct a large-scale observational study on 540K
examples of users operating various keyboard and eye gaze interfaces for typing,
controlling simulated robots, and playing video games. The results show that
our mutual information scores are predictive of the ground-truth task completion
metrics in a variety of domains, with an average Spearman’s rank correlation of
ρ = 0.43. In addition to offline evaluation of existing interfaces, we use our
unsupervised objective to learn an interface from scratch: we randomly initialize
the interface, have the user attempt to perform their desired tasks using the interface,
measure the mutual information score, and update the interface to maximize mutual
information through reinforcement learning. We evaluate our method through
a small-scale user study with 12 participants who perform a 2D cursor control
task using a perturbed mouse, and an experiment with one expert user playing the
Lunar Lander game using hand gestures captured by a webcam. The results show
that we can learn an interface from scratch, without any user supervision or prior
knowledge of tasks, with less than 30 minutes of human-in-the-loop training.

1 Introduction

Imagine communicating with an intelligent extraterrestrial for the first time. They are trying to get us
to do something (e.g., synthesize a novel molecule and build a space elevator out of it), but we do not
know what that task is, and we cannot understand their language. They might speak, write, wave
their limbs at us in a video, or send us messages through some other modality. They might even be
watching how we act on their messages, and adapting the content of their messages to our behavior.
How do we translate their messages into the actions they want us to take?

To make progress on this problem in the absence of (known) alien signals, we study the related
problem of helping humans communicate their intent to machines via arbitrary command signals;
for example, controlling a robotic arm through a brain-computer interface [1]. When designing
human-machine interfaces, we typically either (a) use human ingenuity to design an interface that is
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Figure 1: (a) The user is trying to perform a task (e.g., land a quadrotor), which the interface π cannot directly
observe. The user communicates with the interface π by observing the environment state st, then providing
a command signal xt (e.g., the raw audio of a voice command). The interface π observes the state st and
command xt, then takes an action at that causes the next state st+1. We assume that the user partially adapts
their command xt to any given interface π, and that the extent of this user adaptation depends on the intuitiveness
of the interface. We search for an interface π that maximizes the rate of information transfer from user to the
environment (orange) and from the environment to the user (blue), which we formalize as the mutual information
I(xt, (st, st+1)). (b) The more intuitive the interface (e.g., a QWERTY keyboard where the ‘a’, ‘s’, ‘d’, and ‘f’
keys are arranged in that order), the less noisy the user’s commands (e.g., keypresses). The less intuitive the
interface (e.g., a randomly-permuted keyboard where “asdf” is scrambled to “dfas”), the noisier the user.

intuitive for a human to operate; (b) get direct supervision on how commands should map to actions,
so we can train the interface through supervised learning; or (c) get reward feedback on the system’s
performance, so that we can improve the interface through reinforcement learning (see Sec. 4 for prior
work). Unfortunately, none of this is possible with alien users: we do not know what is intuitive for
them; we cannot ask them to perform specific tasks so that we can collect labeled data for supervised
learning; we do not know what tasks they are trying to accomplish; and we cannot understand any
feedback they might give on the quality of our actions. Existing approaches are also inconvenient for
human users who would like to perform highly-personalized tasks using non-traditional interfaces,
such as controlling a vehicle through a microphone [2], but do not want to be interrupted and asked
for supervision or feedback.1

Without any source of supervision or prior knowledge about the user’s desired tasks, it seems
impossible to design a good interface. Recent work proposes optimizing for the user’s ability to
control their environment [3]. This is useful, but there tend to be many different interfaces that enable
the user to influence the environment, and most of them are unintuitive to operate (e.g., compare
the QWERTY keyboard to a keyboard with randomly-permuted keybindings). How do we capture
what is intuitive, not only when the user is a human, but also when the user is an alien whose prior
over ‘natural’ interfaces may not overlap with those of a human? The key idea (and assumption) in
this paper: the more intuitive the interface, the less noisy the user’s commands (Fig. 1b). Thus, a
good interface should not only maximize the user’s ability to influence the environment, but also
minimize the entropy of the user’s commands. We show that this corresponds to maximizing the
mutual information between the user’s command and the induced state transition (Sec. 2.1).

Of course, we cannot optimize this mutual information objective without interacting with the user.
What we thus propose is a co-adaptation process, wherein we start with a random interface, the
user learns about it as they use it, we measure the mutual information, and update the interface to
maximize the mutual information through reinforcement learning. As the interface improves, the
user’s ability to complete their desired tasks using the interface also increases. We call this method
the mutual information-maximizing interface (MIMI).

1“‘The van is under voice command,’ [Ng] explains. ‘I removed the steering-wheel-and-pedal interface
because I found verbal commands more convenient. This is why I will sometimes make unfamiliar sounds with
my voice – I am controlling the vehicle’s systems...Ng makes a yapping sound, and the van pulls out onto the
frontage road...Ng laughs sharply, like distant ack-ack, and the van almost swerves off the road...Ng sings a little
song. A robot arm unfolds itself from the ceiling of the van, crisply yanks the vial from her hand, swings it
around, and holds it in front of a video camera set into the dashboard.” [2]
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Our primary contribution is an unsupervised mutual information objective for evaluating interfaces
that can be used even when the ground-truth reward function for the user’s desired task is unknown.
To evaluate whether this unsupervised objective can be used to distinguish between effective and
ineffective interfaces, we analyze offline datasets of users operating various interfaces in five different
domains from prior work, and measure the correlation between the ground-truth rewards for each task
and our unsupervised mutual information scores (Sec. 5.1). The results show that, in each domain, the
interface with the largest mutual information score also has the largest ground-truth reward (Fig. 5 in
the appendix). We also contribute the MIMI algorithm for training an interface to understand human
commands from scratch, without prior knowledge of the user’s desired tasks or explicit feedback from
the user. We evaluate MIMI through an online user study with 12 participants who use a perturbed
mouse to perform a 2D cursor control task (Sec. 5.2). The results show that, in under 30 minutes of
human-in-the-loop training, MIMI learns an interface that is intuitive for users to operate and enables
users to reach their goals more quickly than a random interface. We also showcase MIMI’s ability to
scale to more complex tasks and command modalities through a study with one expert user (the first
author) who uses hand gestures to play the Lunar Lander game (Sec. 5.3).

2 An Unsupervised Mutual Information Objective for Evaluating Interfaces

In our problem setting, users cannot directly act in the environment, and must rely on an interface to
take actions for them (e.g., due to a motor impairment, or because they are remotely operating space
robots, or because they are aliens communicating with humans over long distances). The interface
does not have direct access to the user’s desired task, but can observe command signals that the user
provides to the interface (e.g., through a webcam or microphone). We formulate the command-to-
action translation problem as a contextual Markov decision process (CMDP) [4]. Each observation
is decomposed into two variables: the environment state st (e.g., the position and orientation of a
robot arm) and the user’s command signal xt (e.g., a webcam image of their eye gaze). The interface
π(at|st,xt) takes an action at given the state st and command xt. We do not assume access to the
user’s desired task (which represents the ‘context’ in the CMDP), the space of desired tasks, the
ground-truth reward function R(st,at), or the state transition dynamics. We approach this problem
by defining a surrogate reward function that correlates positively with the ground-truth reward. We
define this surrogate to be the information rate of the interface, which we formalize as the mutual
information between the user’s command xt and the induced state transition (st, st+1). Fig. 1a
outlines our method.

2.1 Characterizing the Information Rate of the Interface

Viewing our system through the lens of information theory [5, 6], the user interacts with the en-
vironment through a noisy communication channel that mediates perception (blue in Fig. 1) and
control (orange in Fig. 1). When the environment sends a message st to the user, the user’s internal
decision-making process noisily converts the message st into a command xt. When the user sends a
message xt to the interface, the interface converts the message xt into an action at ∼ π(at|st,xt),
and the environment converts the action at into a next state st+1 ∼ p(st+1|st,at) following unknown
dynamics. In this section, we derive the information rate of this channel, and show how maximizing
it enables the user to perform their desired tasks.

The amount of information that is transmitted from the user to the environment can be characterized
as the conditional mutual information I(xt, st+1|st) (orange in Fig. 1). Maximizing this term enables
the user to influence the next state st+1 by modulating their command xt. However, there can be
many different interfaces that achieve an equally-high value of I(xt, st+1|st). For example, consider
typing on a QWERTY keyboard. Randomly permuting the keybindings would preserve the value
of I(xt, st+1|st), since there would still be a one-to-one mapping between physical keys and typed
characters, but the resulting layout would probably not be as intuitive to use as QWERTY. In order to
maximize the intuitiveness of the interface, we need to consider the amount of information that gets
transmitted in the other direction: from the environment to the user.

The amount of information that gets transmitted from the environment to the user can be characterized
as the mutual information I(st,xt) (blue in Fig. 1). The main assumption in our method is that
maximizing I(st,xt), which can be rewritten asH(xt)−H(xt|st), leads to an intuitive interface.
The idea behind penalizing the conditional entropy H(xt|st) is that, when the user operates an
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Algorithm 1 MIMI-EVALUATE(π)
1: D ← ∅
2: while |D|< k do
3: xt ∼ p(xt|st;π) . user gives command that is partially adapted to interface π
4: at ∼ π(at|st,xt) . interface takes action
5: st+1 ∼ p(st+1|st,at) . environment transitions to next state (following unknown dynamics)
6: D ← D ∪ {(st,xt, st+1)}
7: Split D into training set Dtrain and validation set Dval
8: φ∗, ψ∗ ← arg maxφ,ψ ITUBA(φ, ψ;Dtrain) . optimize MI lower bound in Eqn. 2
9: Return ITUBA(φ∗, ψ∗;Dval) . return optimized MI lower bound evaluated on validation set

unintuitive interface, they provide noisier commands xt given the current state st (similar to the
maximum causal entropy model of noisily-rational user behavior [7]). This is because an unintuitive
interface can confuse users, cause them to provide random commands when they are under time
pressure to perform tasks, or cause them to keep trying different commands to see which ones will
trigger their desired actions. On the other hand, an intuitive interface makes it easy for the user to
determine which command will induce their desired next state, leading to more deterministic user
behavior (Fig. 1b). Penalizing the conditional entropyH(xt|st) alone is not enough, however. For
example, consider an interface that minimizes the conditional entropy to zero by frustrating the user
and causing them to always provide the same command, no matter the state or desired task (e.g., a
constant ‘no op’ signal). Hence, we must also maximize the marginal entropyH(xt), which leads to
an interface that encourages the user to provide a wide distribution of commands overall (e.g., by
enabling the user to visit a variety of states).

Summing the two mutual information terms, we get the total amount of information that the user
sends and receives, which simplifies to the mutual information between the user’s command xt and
the induced state transition (st, st+1),

R(π) , I(st,xt) + I(xt, st+1|st)
= (H(xt)−H(xt|st)) + (H(xt|st)−H(xt|st, st+1))

= H(xt)−H(xt|st, st+1)

= I(xt, (st, st+1)). (1)

2.2 Estimating Mutual Information Rewards

Computing the mutual information reward R(π) exactly would require taking an expectation with
respect to the state transition dynamics of the environment as well as the user’s policy for giving
commands, both of which are unknown. Hence, we estimate the mutual information by collecting
samples (st,xt, st+1) of the user operating the interface π. Alg. 1 outlines this sample-based
evaluation of R(π).

To estimate I(xt, (st, st+1)) from the samples in a dataset D in our experiments, we use the TUBA
estimator [8, 9]. In particular, we fit a “statistics network” Tφ and variational parameters aψ to
maximize the mutual information lower bound,

ITUBA(φ, ψ) ,
∑

(st,xt,st+1)∈D

Tφ(xt, st, st+1)− Ex̄∼D

[
eTφ(x̄,st,st+1)

eaψ(st,st+1)
+ aψ(st, st+1)− 1

]
, (2)

where x̄ is sampled uniformly at random from the dataset D. Intuitively, Tφ is a discriminator that
learns to distinguish between realistic pairs (xt, (st, st+1)) and unrealistic pairs (x̄, (st, st+1)). In
our experiments, we represent Tφ and aψ each as a feedforward neural network that outputs a scalar.

Two practical issues emerge when applying the standard TUBA estimator to our problem setting.
First, we can only collect a small amount of data D to evaluate a given interface during our user
studies, which can lead to high-variance estimates of the mutual information. To address this issue,
we adopt the following approach from prior work on data-efficient mutual information estimation
[10]: instead of using the final training loss ITUBA as our mutual information estimate, we use the
validation loss (line 9 in Alg. 1). Second, we must avoid substantial wall-clock delays to the user
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while we optimize the mutual information lower bound in line 8 of Alg. 1. Typically, in order to
accurately estimate the mutual information, one must optimize the lower bound to convergence. This
can take many steps of stochastic gradient descent, and blocks the user from proceeding to the next
episode. In our setting, however, we find that optimizing to convergence is unnecessary. The key idea
is that, since we ultimately use the mutual information estimates as rewards to compare interfaces,
only the relative values of the estimates matter to us. Hence, we only take 1K gradient steps (with a
small batch size of 64) to fit the estimator in all our experiments. We find that, even after only 1K
steps, the mutual information estimates already tend to correlate positively with the ground-truth task
rewards (Fig. 2).

3 Learning an Interface through Mutual Information Maximization

In principle, one could represent the interface π in any manner (e.g., as a deep neural network) and
use any reinforcement learning algorithm to optimize MIMI-EVALUATE(π). In our experiments, we
parameterize the interface as a linear model πθ, where θ are the weights and biases, and maximize
MIMI-EVALUATE(π) using an off-the-shelf Bayesian optimization algorithm (scikit-optimize)
[11] based on Gaussian process regression [12]. Initially, we randomly sample the interface parame-
ters θ0, have the user attempt to perform their desired tasks using the interface πθ0 for 10 episodes, and
compute the mutual information reward MIMI-EVALUATE(πθ0 ). Given all pairs of interface parame-
ters and corresponding mutual information rewards {(θi,MIMI-EVALUATE(πθi))}hi=0 evaluated so
far, we fit a Gaussian process regression model that predicts the mutual information reward given
the interface parameters, and select the next interface θh+1 by optimizing one of three acquisition
functions—expected improvement, lower confidence bound, or probability of improvement—chosen
uniformly at random. Details in Appendix A.2.

4 Related Work

Developing an assistive human-machine interface from scratch requires translating the unknown
language of commands into actions. Translating unknown languages is a broad area of research,
encompassing linguistics [13], cryptanalysis [14], and deep neural network interpretability [15, 16,
17]. Prior work on multi-agent reinforcement learning proposes inductive biases that use mutual
information maximization to promote positive signalling and listening in cooperative tasks [18, 19].
This prior work studies the emergence of communication in autonomous agents, whereas MIMI
is intended for the unsupervised learning of co-adaptive user interfaces. Our problem setting also
differs in that we cannot train the speaker agent (i.e., the human), so we must craft an objective for
the listener agent (i.e., the interface) that indirectly promotes informative signaling from the speaker.

The literature on adaptive interfaces spans multiple fields, including brain-computer interfaces
[20, 21, 22, 23, 24, 25, 26], natural language interfaces [27, 28], speech interfaces [29, 30], electronic
musical instruments [31], and robotic teleoperation interfaces [32, 33, 34, 35, 3, 36]. In particular,
there is substantial prior work on human-machine co-adaptation [37, 38, 39, 40, 41, 42, 43]. In
contrast to this prior work, MIMI does not require knowledge of the user’s desired tasks or direct
supervision. [44, 45] propose an unsupervised co-adaptation method that uses principal component
analysis to fit an interface that maps commands to actions, but it requires that the interface be a linear
mapping, and it does not necessarily maximize the intuitiveness of the interface.

Prior work has trained reinforcement learning agents to optimize implicit user feedback contained in
EEG signals [46], peripheral pulse measurements [47], facial expressions [48, 49], and clicks [50].
These approaches typically assume access to a dataset of user observations (e.g., facial expressions)
and explicit rewards (e.g., labels that indicate positive or negative emotion) in order to train a reward
model that infers rewards from user observations. Other prior work on human-in-the-loop RL assumes
direct access to explicit user feedback during the RL phase [51, 32, 52, 53, 34]. MIMI, in contrast,
does not require access to explicit rewards at any time.

Mutual information maximization has previously been used to acquire diverse, complex behaviors
through reinforcement learning in the absence of extrinsic rewards [54, 55, 56, 57, 58, 59, 60].
These prior methods aim to train an autonomous agent, whereas MIMI aims to train a user interface.
Furthermore, MIMI differs in that it learns from a user who adaptively provides commands to the
interface that try to induce the user’s desired next states, whereas in these prior methods, the ‘command
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signal’ is a latent code that is randomly sampled from a fixed distribution. As a consequence, the
latent skill space discovered by these prior methods is not necessarily intuitive for a user to control,
or even human-interpretable.

Our mutual information objective in Eqn. 1 is related to empowerment [61], which measures the
channel capacity between an agent’s actions and the environment state. Empowerment has previously
been used as an intrinsic motivation for autonomous reinforcement learning agents [62], and an
auxiliary objective for assistive agents that preserve a user’s ability to reach various states [3]. Our
objective differs in that it measures not only the user’s ability to influence state transitions, but also
the intuitiveness of the interface.

Our implicit model of the user’s noisy rationality in Sec. 2.1 is similar to the widely-used maximum
causal entropy model of user behavior [7], but departs from it in that we assume the user partially
adapts their behavior to match the interface, and that the extent of this user adaptation depends on the
intuitiveness of the interface.

5 Experimental Evaluation

Our experiments focus on measuring MIMI’s effectiveness at evaluating interfaces, learning interfaces
from scratch, and scaling interface optimization to complex tasks and interface modalities where
there is no clear, intuitive solution. We aim to answer the following questions. Q1 (Sec. 5.1): Can
MIMI’s mutual information score distinguish between effective and ineffective interfaces for a variety
of users, interface modalities, environments, and tasks? Q2 (Sec. 5.2): Can we learn an interface
from scratch in a completely unsupervised manner by maximizing mutual information rewards with
MIMI? Q3 (Sec. 5.3): Does unsupervised human-in-the-loop reinforcement learning scale to more
complex interface modalities and tasks? To answer Q1, we conduct an observational study on five
datasets from prior work. To answer Q2, we conduct a user study with 12 participants who use a
perturbed mouse to perform a 2D cursor control task. To answer Q3, we study how MIMI can be
used to enable an expert user (the first author) to play the Lunar Lander game through hand gestures
captured by a webcam.

5.1 Offline Evaluation of Existing Interfaces

In this experiment, we aim to evaluate whether the mutual information score in MIMI can distinguish
between effective and ineffective interfaces for a wide variety of users, interface modalities, environ-
ments, and tasks (Q1). We take data from prior work on adaptive interfaces in which the ground-truth
rewards were measured, and check whether MIMI’s unsupervised evaluation of those interfaces
correlates with the true reward that users received when performing tasks via those interfaces. We
examine data from four prior works: X2T [63], ASHA [64], shared autonomy via deep reinforcement
learning (SAvDRL) [65], and internal-to-real dynamics transfer (ISQL) [66]. In each of these prior
works, users were asked to operate at least two different interfaces: a non-adaptive baseline interface,
and an adaptive interface that learns to assist users over time. In the X2T experiments, participants
used their eye gaze (a 128-dimensional command signal xt from their webcam) to select 1 of 8
buttons on a screen in order to type a phrase. In the ASHA experiments, participants used their eye
gaze to control a 7-DoF simulated robotic arm to either flip a light switch or reach for a bottle. In
the SAvDRL and ISQL experiments, participants used the directional keys on a keyboard to play the
Lunar Lander game [67]. The appendix describes each domain in detail. The data from these prior
user studies totals over 540K timesteps.

For each domain, each user, and each experimental condition (e.g., non-adaptive vs. adaptive
interface), we measure our mutual information score by averaging over 10 different random seeds
used to fit the estimator in Eqn. 2. The ground-truth reward function for each domain is defined in
Appendix A.3. The results in Fig. 2 show that, in 4 out of 5 domains, MIMI’s mutual information
score for an interface is predictive of the ground-truth task reward a user is able to obtain using that
interface, with an average Spearman’s rank correlation coefficient of ρ = 0.43. Furthermore, in each
domain, the interface with the largest mutual information score also has the largest ground-truth
reward (Fig. 5 in the appendix).

In analyzing the data from the SAvDRL experiments, we initially encountered an unexpected result:
a strong negative correlation between our mutual information scores and the ground-truth rewards
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(a)

(b)

(c)

(d) (e) (f)

Lunar Lander with Keyboard Lunar Lander with Keyboard

Lunar Lander with Keyboard

Robotic Control with Eye Gaze

Robotic Control with Eye GazeTyping with Eye Gaze

Figure 2: In 4 out of 5 domains, our mutual information score (y-axis) is predictive of the ground-truth reward
(x-axis) that a user is able to obtain with a given interface. (a) In X2T, ground-truth rewards correspond to the
classification accuracy of the interface, which predicts the user’s desired button (1 of 8) given the user’s eye gaze
signals. There were three conditions in the X2T experiments: the user first operated the non-adaptive baseline
interface, then operated the adaptive X2T interface, then returned to operating the non-adaptive baseline interface.
There were 12 participants in the user study, yielding a total of 12 · 3 = 36 data points in the scatter plot (one
for each user in each condition). Spearman’s rank correlation coefficient ρ = 0.45 between the ground-truth
rewards and the estimated mutual information scores. (b) Ground-truth rewards penalize distance from the robot
end effector to the position of the target switch. (c) In the internal-to-real dynamics transfer data, there were only
two conditions: the user playing the Lunar Lander game on their own, and with assistance. (d) In the SAvDRL
data, the rank correlation between the ground-truth reward and the mutual information score depends on the time
offset ∆ in the generalized mutual information objective I(xt, (st, st+∆)). (e) Following the results in (d), we
set the time offset ∆ to the maximum episode length of 103. Ground-truth rewards penalize crashing, and give a
bonus for landing between the flags. (f) Ground-truth rewards give a bonus for opening the door in front of the
desired bottle and for reaching the desired bottle. As in (e), we set the time offset ∆ to the maximum episode
length.

(Fig. 2d). The reason is that, in the SAvDRL experiments, the assistant tends to help the user play the
Lunar Lander game by preventing them from crashing, which necessarily involves ignoring a large
fraction of the user’s commands. This leads to a low mutual information between the user’s command
xt and the one-step state transition (st, st+1). However, even though the assistant appears to reduce
the user’s influence over the next state, it actually increases the user’s influence over later states in the
episode by preventing the user from crashing immediately. This leads us to propose a generalized
mutual information objective, I(xt, (st, st+∆)), in which the time offset ∆ is a hyperparameter than
can be set to a value other than ∆ = 1.

Fig. 2d shows how modifying the time offset ∆ in the generalized mutual information objective
I(xt, (st, st+∆)) affects the correlation between the mutual information scores and the ground-truth
rewards in the SAvDRL experiments: for low values of ∆ (including the default value of ∆ = 1),
there is a negative correlation, whereas for sufficiently high values of ∆ (i.e., the maximum episode
length of 103 steps), there is a positive correlation. In Figures 2e and 2f, we set ∆ to the maximum
episode length, so that the MIMI objective I(xt, (st, sT )) always measures mutual information with
respect to the final state sT of each episode. In general, choosing the value of ∆ requires prior
knowledge of the timescale of the user’s desired influence over the system (i.e., does the user’s
command indicate what should happen at the next timestep, or what should happen by the end of the
episode?). This is the primary limitation on the generality of our method.
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(a) (b) (c)

(d)

(e) (f) (g)

Figure 3: (a) Through online training, MIMI (orange) learns an interface that substantially outperforms baseline
interfaces with random parameters (gray), and approaches the performance of an oracle agent that always moves
straight to the target (green). (b) As expected, MIMI is indeed maximizing mutual information rewards through
human-in-the-loop RL. (c) Each point in the scatter plot represents a distinct user operating a distinct interface.
The ground-truth task rewards (negative average distance to target) and the mutual information rewards are
highly positively correlated (Spearman’s rank correlation ρ = 0.87), as in the offline experiments in Sec. 5.1. (d)
A polar histogram of the final interface parameter θ that MIMI converges to, for each of the 12 users. Whereas
the random baseline samples θ from a uniform distribution over perturbation angles [0, 2π), MIMI converges to
a highly non-uniform distribution over θ. In particular, MIMI tends to converge to one of two interfaces: no
perturbation of the user’s mouse (θ ≈ 0), or inversion of the user’s mouse (θ ≈ π). (e-g) In this center-out
cursor control task, the user initially tends to move in curved trajectories that wander away from the target. After
150 episodes of online training, the user tends to move in straight lines to the target.

5.2 User Study: 2D Cursor Control with Perturbed Mouse

In the previous experiment, we showed that MIMI’s mutual information score correlates positively
with the ground-truth task rewards in a variety of offline datasets (Q1). However, it is not clear from
this result alone that maximizing mutual information rewards will yield an interface that also performs
well in terms of the ground-truth task rewards (Q2). To answer Q2, we conduct a small-scale user
study with 12 participants who use a perturbed mouse to perform a simple 2D cursor control task.
The goal of the task is to drive a cursor from the center of the screen to a randomly-sampled target
position (Fig. 3e). The ground-truth reward is the average negative distance to target throughout the
episode. The user’s 2D mouse position command is used to control the 2D velocity of the cursor
(details in Appendix A.3). The interface πθ applies a rotation to the 2D mouse position to get the
2D velocity (i.e., θ consists of a single parameter: the rotation angle). The initial interface πθ0 is a
random rotation, and is usually difficult for the user to operate (see scattered trajectories in Fig. 3f).
Users struggle to anticipate and adjust for the rotation, which leads to them initially moving away
from the target, oscillating around the target as they approach it because they keep steering in the
wrong direction, or getting stuck on the boundaries of the environment because they forget how to
steer away from the boundary.

Each of the 12 participants completed two phases of experiments: A and B. In phase A, they operate
5 interfaces with randomly-sampled parameters θ for 10 episodes each. In phase B, they operate an
adaptive interface optimized by MIMI (Sec. 3). Each interface proposed by MIMI is evaluated for 10
episodes, and we halt the experiment after at most 30 interfaces have been evaluated, yielding a total
of at most 300 episodes per participant. To avoid the confounding effect of overall user improvement
or fatigue over time, we counterbalance the order of phases A and B. Details in Appendix A.1.

The results in Fig. 3 show that, even though MIMI starts from scratch with a random interface and
only aims to maximize mutual information rewards (blue), it enables users to achieve substantially
higher ground-truth rewards (orange) than the random baseline interfaces (gray). Fig. 3d shows that
MIMI tends to converge to one of two interfaces: moving the cursor in the same direction as the
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Example of learned interface

Distance from each fingertip to thumb tip, 
normalized to [-1, 1]

[Main engine, Lateral thrusters]

Start episode Right thruster Right + main engine Left + main

Left + main Main Main Left + main

Figure 4: MIMI can learn an effective mapping from hand pose commands to thruster actions in the Lunar
Lander game. During the initial training episodes when the interface is randomly sampled, the interface can
require uncomfortable hand contortions in order to trigger certain actions, or have a very sharp threshold between
poses that trigger one action vs. a different action. Towards the end of training, MIMI learns a comfortable,
intuitive interface (one episode illustrated above) that enables occasional successful landings in a challenging
game where constantly crashing is the default behavior. Success rates are averaged over 3 different random
seeds, and smoothed using a moving average with a window size of 10 episodes. Hand tracking is performed
using a webcam and MediaPipe [68]. See Fig. 6 in the appendix for plots of the mutual information reward.
Videos available at https://sites.google.com/view/coadaptation

mouse, or rotating the mouse direction 180 degrees (which tends to be easy for users to understand
and invert; see the appendix).

5.3 Lunar Lander with Hand Gestures

In the previous experiment, we showed that MIMI is capable of learning an interface from scratch
through human-in-the-loop RL with the mutual information objective, albeit on a simple task and
interface modality (2D cursor control via 2D mouse commands). In this section, we demonstrate
that this result extends to a more complex task and interface modality (Q3): an expert user (the first
author) playing the Lunar Lander game [67] using hand gestures. To win the game, the user must
land between the flags without crashing. The user’s hand pose command is a 4D signal that consists
of the distances from the thumb tip to each of the four other fingertips. The Lunar Lander game has a
2D continuous action space that controls the main engine and lateral thrusters (details in Appendix
A.3). The interface πθ is a linear transformation from the 4D hand pose command to the 2D thruster
action space (i.e., θ consists of 8 parameters). The initial interface πθ0 is a random linear function,
and is usually difficult for the user to operate (e.g., because it requires making difficult hand gestures,
or never fires the lateral thrusters). Lunar Lander is a challenging game, even when played with a
joystick or keyboard. What makes it more challenging in this setting is that, unlike 2D cursor control,
where there is an obvious prior mapping that moves the cursor in the direction of the mouse without
any rotation, there is no obvious mapping from hand gestures to thruster actions that the user would
have in mind.

The results in Fig. 4 show that, after 200 episodes of online training, MIMI learns an interface
that enables the expert user to maneuver the lander, usually avoid crashing, and occasionally land
successfully. The interface enables the user to fire the right thruster by touching their index finger
to their thumb, fire the left thruster and main engine by touching their ring finger to their thumb,
and fire the main engine by slightly curling all fingers. The 8 interface parameter values θ learned
through MIMI would have been difficult to determine in advance, given uncertainty about the range
of comfortable hand pose commands, and the non-obvious intuitiveness of using individual fingers
for lateral thrusters vs. all fingers for the main engine. Interestingly, the final interface does not enable
the user to fire the left thruster in isolation (i.e., all gestures that fire the left thruster also fire the main
engine simultaneously). This turns out to be okay, since the user wants to descend, and alternating
between firing the left thruster and main engine together then firing the right thruster without the
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main engine is a reasonable strategy for descending without tilting. This would have been difficult to
anticipate in advance, but nevertheless emerged through co-adaptation.

6 Discussion

We presented a proof of concept that, through unsupervised human-in-the-loop reinforcement learning,
we can learn an assistive interface from scratch in less than 30 minutes without any explicit user
feedback or prior knowledge of the user’s desired tasks. Our experiments show that, for a variety
of users (12 participants in our user study, and 12 in each of the offline evaluations), command
modalities (high-dimensional eye gaze and hand gestures, and low-dimensional keyboard commands),
environments (typing, simulated robotic control, playing a video game, and cursor control), and tasks
(flipping light switches and reaching for bottles with the same simulated robotic arm), MIMI’s mutual
information objective can be used to rank interfaces without observing ground-truth rewards for the
user’s desired task.

6.1 Limitations

MIMI is limited by the fact that the correlation between the mutual information objective
I(xt, (st, st+∆)) and the ground-truth reward function can depend on the time offset ∆ (Sec. 5.1).
Since we do not assume access to ground-truth rewards, choosing the value of the hyperparameter ∆
requires prior knowledge of the timescale of the user’s desired control over the system (i.e., whether
the user wants to be able to control what happens next, or what happens by the end of the episode).

The main limitation of our experiments is that the largest interface only has 8 parameters, due to
constraints on the duration of a user study and the data efficiency of the Bayesian optimization
algorithm we use for RL. One direction for future work is to instantiate MIMI with a data-efficient
deep RL algorithm that scales to learning high-dimensional policies, such as REDQ [69] or policy
evaluation networks [70].

6.2 Future Work

Another direction for future work is evaluating MIMI on real-world systems in which explicit user
feedback is sparse or unavailable, such as brain-computer interfaces for users with total locked-in
syndrome. MIMI could also be helpful for designing creative tools for artists and musicians where
the ‘task’ or ‘ground-truth reward function’ is inherently difficult to specify, such as a tool that helps
users navigate the high-dimensional latent space of a generative model of images using physical
gestures and virtual reality [71], an instrument that provides users with a playable, low-dimensional
latent space of music audio [72], or a tool that helps designers carve out discriminable gestures from
low-dimensional embeddings [73].

There may be cases where the user can observe the state st, but the interface cannot (e.g., the user
can look around with their eyes, but the interface is not equipped with a camera). A useful extension
of MIMI would extract implicit feedback from the stream of command signals xt alone, without
assuming access to the states st.

Biological neurons maximize the mutual information between their inputs and outputs through local,
unsupervised learning—known as the infomax principle [74]. Ideas from recent work on greedy,
self-supervised representation learning based on the infomax principle [75] could be useful for scaling
MIMI to deep neural network interfaces.
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A Appendix

A.1 User Study

We recruited 10 male, 1 female, and 1 non-binary participants, with an average age of 27. We obtained
informed consent from each participant, as well as IRB approval for our study. Each participant
was provided with the rules of the task, and a short practice period of 10 episodes to familiarize
themselves with the 2D cursor control environment. Each participant was compensated with a $10
Amazon gift card.

When prompted to “please describe your command strategy”, participants responded as follows.

User 0:
After Phase A:
Use 1-2 trials to get a sense of the angle difference
After Phase B:
same as phase A

User 1:
After Phase A:
I positioned the cursor opposite of the triangle and the green dot since most of the
physics made it such that that moved the triangle in the desired direction
After Phase B:
same as phase A

User 2:
After Phase A:
steering wheel
After Phase B:
same as phase A
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User 3:
After Phase A:
Try to predict the angle of the offset, then course adjust
After Phase B:
Initially, I twirled my mouse around to find the correct heading, eventually I was able
to predict the offset well enough to directly go to the goal position.

User 4:
After Phase A:
I looked at where the circle went in the first few seconds and adjusted
After Phase B:
Look at where the circle went in the first few seconds, then adjust the angle offset from there

User 5:
After Phase A:
I recalibrated as it started moving, it was easier to see what direction you’re going in
after you start moving
After Phase B:
If it moved in the direction of cursor, then I just clicked the green dot. If it was 180
rotation, I imagined just doing the opposite of what I normally did. If it was 90, it
was the hardest.

User 6:
After Phase A:
tried to identify the angle offset between curse and green dot so that it went straight
to green dot
After Phase B:
Put the cursor where the green dot was

User 7:
After Phase A:
try to figure out the angle over time
After Phase B:
again predicting the angle and adjusting on fly as need being. As algorithm seemed
to get better, began just hovering mouse over the target

User 8:
After Phase A:
I first tried to figure out what the constant angular offset was, and then tried to adjust
my steering accordingly
After Phase B:
Pretty much the same as the first phase, trying to figure out the offset, and then steering
accordingly

User 9:
After Phase A:
Try to learn the perturbation in the first couple episodes then adjust the cursor angle
accordingly afterwards.
After Phase B:
Initially, my strategy was unchanged from Phase 1. After 30 episodes I did not
perceive any perturbation between my cursor and the direction of the circle.

User 10:
After Phase A:
same as phase B
After Phase B:
Trying to determine the angle between the goal and where i should point my cursor,
for each batch of 10

User 11:
After Phase A:
I tried to figure out the angle that was being added to my input and then adjusted my
control to be minus that angle from the direction I actually wanted the dot to go. The
angles that were close to either 0 or 180 were easier to control than those closer to
90/270 degrees.
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(a) (b)

(c)

(d) (e)

Figure 5: In each domain, the interface with the highest mutual information score is also the interface that
enables users to achieve the highest ground-truth reward. Analogous to Fig. 2 in the main paper, but averaging
the mutual information scores and ground-truth rewards across all 12 user study participants in each experimental
condition.

Table 1: Subjective Evaluations from User Study Participants

p Random Interfaces MIMI

I felt in control > .05 4.08 4.92
The system responded to my input in the way that I expected > .05 4.17 4.75
The system improved over time < .01 3.33 5.83
I improved at using the system over time > .05 5.58 6.08

Means reported for responses on a 7-point Likert scale, where 1 = Strongly Disagree, 4 = Neither Disagree nor
Agree, and 7 = Strongly Agree. p-values from a one-way repeated measures ANOVA with the presence of MIMI
as a factor influencing responses.

After Phase B:
Sometimes I could figure out that there was some offset angle and then I would try to
adjust my control based on that. Sometimes I couldn’t tell what the transformation
of my input was and then I was just making small adjustments until the dot headed
in the right direction. Sometimes after a particularly easy block (when I just had to
point at the green dot and it would go to it) I got unfocused and had a harder time
controlling some of the more difficult blocks right after.

To account for differences in the number of online training episodes for each of the 12 participants in
Fig. 3a, we pad the sequence of true rewards with the final true reward, up to the maximum sequence
length across participants. We use the same padding scheme to account for differences in the number
of online training episodes for each of the 3 training runs in Fig. 4.

A.2 Implementation

In our cursor control and Lunar Lander user studies in Sections 5.2 and 5.3, we simplify the policy
architecture to ignore the environment state st, so that π(at|xt) is only conditioned on the user’s
command xt.

All user studies and experiments (including model training) were performed on a consumer-grade
MacBook Pro laptop computer.
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(a) (b) (c)

Figure 6: (a) From Fig. 4a. (b) Analogous to Fig. 3b, but for Lunar Lander instead of cursor control. (c)
Analogous to Fig. 3c, but for Lunar Lander instead of cursor control.

0 2 4 6 8
Number of Episodes

0.14

0.13

0.12

0.11

0.10

0.09

0.08
Tr

ue
 R

ew
ar

d 
(A

vg
. D

ist
an

ce
 to

 T
ar

ge
t) Human Adaptation to Fixed Interface in 2D Cursor Control

Random Interfaces (Baseline)
MIMI (Ours)

Figure 7: A view of the data from the user study in Fig. 3 that illustrates how a user adapts to a fixed interface.
During the user study, the user is repeatedly presented with a new interface and asked to operate it for 10 episodes.
During those 10 episodes, the user becomes more proficient at using that fixed interface. When presented with a
random interface, the user takes a longer time to learn to use the interface and achieves worse final performance,
compared to when they are presented with an interface that is being optimized by MIMI.

We use the scikit-optimize library2 to implement the Bayesian optimization algorithm for mutual
information maximization described in Sec. 3. In the cursor control user study, the first 5 interfaces
are sampled uniformly at random, then the subsequent policies are selected using acquisition functions
that measure expected improvement, lower confidence bound, and probability of improvement. In the
Lunar Lander experiments, the first 3 interfaces are sampled uniformly at random. In both domains,
we have the user operate each interface for 10 episodes.

Code and data are available at https://github.com/rddy/mimi.

A.3 Environments

The X2T experiments formulate typing as a contextual bandit problem. Hence, we format the dataset
such that each attempt to press a button is a separate episode that consists of only one state transition,
from the all-zeros initial state s0 (which represents no buttons being pressed) to a one-hot encoding
s1 of the button that was pressed. In the ASHA experiments, the state st is either a 142-dimensional
vector (switch domain) or 151-dimensional vector (bottle domain) that includes the 7 joint positions
of the arm and the 2D position and 4D orientation of the end effector–the full list of state variables
can be found in Sec. B.3 of the appendix in [64]. In our analysis of the SAvDRL and ISQL data, we
set the state st to be the 1D horizontal position of the lander.

In X2T, ground-truth rewards correspond to the classification accuracy of the interface, which predicts
the user’s desired button (1 of 8) given the user’s eye gaze signals. There were three conditions in
the X2T experiments: the user first operated the non-adaptive baseline interface, then operated the
adaptive X2T interface, then returned to operating the non-adaptive baseline interface. There were 12
participants in the X2T user study, yielding a total of 12 · 3 = 36 data points in the scatter plot in
Fig. 2 (one for each user in each condition). In the ASHA switch experiments, ground-truth rewards
penalize distance from the robot end effector to the position of the target switch. In the ISQL data,

2https://scikit-optimize.github.io/stable/auto_examples/bayesian-optimization.
html
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there were only two conditions: the user playing the Lunar Lander game on their own, and with
assistance. In the Lunar Lander game, ground-truth rewards penalize crashing, and give a bonus for
landing between the flags. In the ASHA bottle experiments, ground-truth rewards give a bonus for
opening the door in front of the desired bottle and for reaching the desired bottle.

In the 2D cursor control environment, the ground-truth reward function is the average negative
distance to target throughout the episode. The episode terminates when the user reaches the target, so
naively computing this reward would penalize the user for reaching the target quickly. To address
this issue, we treat reaching the target as entering an absorbing state, and re-weight the reward as
r′ ← |τ |·r+ (T − |τ |) · 0, where r is the average negative distance to target throughout the trajectory
τ , |τ | is the length of the trajectory, and T is the maximum episode length. The maximum episode
length is T = 300 timesteps.

In the Lunar Lander experiments in Sec. 5.3, we set the state st to be the 3D position and orientation
of the lander. The maximum episode length is 500 timesteps. The location of the landing zone is
sampled uniformly at random at the beginning of each episode.
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