Announcements

- Project 0: Python Tutorial
- Due Jan 16th before midnight
- Homework 1
- Due Jan $18^{\text {th }}$ before midnight
- Covers today’s lecture.
- You can start today!
- Look at the practice problems first!

CS 6300: Search

Instructor: Daniel Brown

University of Utah

Today

- Agents that Plan Ahead
- Search Problems
- Uninformed Search Methods
- Informed (heuristic) Search

Agents that Plan

Planning Agents

- Planning agents:
- Ask "what if"
- Decisions based on (hypothesized) consequences of actions
- Must have a model of how the world evolves in response to actions
- Must formulate a goal (test)
- Consider how the world WOULD BE
- Optimal Planning
- Returns a least cost solution.
- Complete Planning

- If there exists a solution it will find it.
- Planning vs. replanning

Video of Demo Mastermind

Video of Demo Replanning

Search Problems

Search Problems

- A search problem consists of:
- A state space

- A successor function (with actions, costs)

- A start state and a goal test
- A solution is a sequence of actions (a plan) which transforms the start state to a goal state

Search Problems Are Models

Example: Traveling in Romania

- State space:
- Cities
- Successor function:
- Roads: Go to adjacent city with cost $=$ distance
- Start state:
- Arad
- Goal test:
- Is state == Bucharest?
- Solution?

What's in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

- Problem: Pathing (go from location A to B)
- States: (x,y) location
- Actions: NSEW
- Successor: update location only
- Goal test: is (x, y) =END
- Problem: Eat-All-Dots
- States: $\{(\mathrm{x}, \mathrm{y})$, dot booleans $\}$
- Actions: NSEW
- Successor: update location and possibly a dot boolean
- Goal test: dots all false

State Space Sizes?

- World state:
- Agent positions: 120
- Food count: 30
- Ghost positions: 12
- Agent facing: NSEW
- How many
- World states?
$120 \times\left(2^{30}\right) \times\left(12^{2}\right) \times 4$ (~ 74 trillion)
- States for pathing?

120

- States for eat-all-dots?

$120 \times\left(2^{30}\right)$

Quiz: Safe Passage

- Problem: eat all dots while keeping the ghosts perma-scared
- What does the state space have to specify?
- (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

- State space graph: A mathematical representation of a search problem
- Nodes are (abstracted) world configurations
- Arcs represent successors (action results)
- The goal test is a set of goal nodes (maybe only one)
- In a state space graph, each state occurs only once!
- We can rarely build this full graph in memory (it's too big), but it's a useful idea

State Space Graphs

- State space graph: A mathematical representation of a search problem
- Nodes are (abstracted) world configurations
- Arcs represent successors (action results)
- The goal test is a set of goal nodes (maybe only one)
- In a search graph, each state occurs only once!
- We can rarely build this full graph in memory (it's too big), but it's a useful idea

Tiny state space graph for a tiny search problem

Search Trees

- A "what if" tree of plans and their outcomes
- The start state is the root node
- Children correspond to successors
- Nodes show states, but correspond to PLANS that achieve those states
- For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph:

What does the search tree look like?

Important: Lots of repeated structure in the search tree!

Tree Search

Search Example: Romania

Searching with a Search Tree

- Search:
- Expand out potential plans (tree nodes)
- Maintain a fringe of partial plans under consideration
- Try to expand as few tree nodes as possible

General Tree Search

function TREE-SEARCH (problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree
end

- Important ideas:
- Fringe
- Expansion
- Exploration strategy
- Main question: which fringe nodes to explore?

Example: Tree Search

Depth-First Search

Depth-First Search

Strategy: expand a deepest node first

Implementation:
Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

- Complete: Guaranteed to find a solution if one exists?
- Optimal: Guaranteed to find the least cost path?
- Time complexity?
- Space complexity?
- Cartoon of search tree:
- b is the branching factor
- m is the maximum depth
- solutions at various depths
- Number of nodes in entire tree?
- $1+b+b^{2}+\ldots . b^{m}=O\left(b^{m}\right)$

Depth-First Search (DFS) Properties

- What nodes DFS expand?
- Some left prefix of the tree.
- Could process the whole tree!
- If m is finite, takes time $O\left(b^{m}\right)$
- How much space does the fringe take?
- Only has siblings on path to root, so O(bm)
- Is it complete?

- m could be infinite, so only if we prevent cycles (more later)
- Is it optimal?
- No, it finds the "leftmost" solution, regardless of depth or cost

Breadth-First Search

Breadth-First Search

Strategy: expand a shallowest node first

Implementation: Fringe is a FIFO queue

Breadth-First Search (BFS) Properties

- What nodes does BFS expand?
- Processes all nodes above shallowest solution
- Let depth of shallowest solution be s
- Search takes time $O\left(b^{s}\right)$
- How much space does the fringe take?
- Has roughly the last tier, so $O\left(b^{s}\right)$
- Is it complete?

- s must be finite if a solution exists, so yes!
- Is it optimal?
- Only if costs are all 1 (more on costs later)

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions. It does not find the least-cost path. We will now cover a similar algorithm which does find the least-cost path.

Uniform Cost Search

Uniform Cost Search

Strategy: expand a cheapest node first:

Fringe is a priority queue (priority: cumulative cost)

Uniform Cost Search (UCS) Properties

- What nodes does UCS expand?
- Processes all nodes with cost less than cheapest solution!
- If that solution costs C^{*} and arcs cost at least ε, then the "effective depth" is roughly $C * / \varepsilon$
- Takes time $\mathrm{O}\left(\mathrm{b}^{C^{*} / \varepsilon}\right)$ (exponential in effective depth)
- How much space does the fringe take?
- Has roughly the last tier, so $\mathrm{O}\left(\mathrm{b}^{C^{* / \varepsilon}}\right)$

- Is it complete?
- Assuming best solution has a finite cost and minimum arc cost is positive, yes!
- Is it optimal?
- Yes! (Proof via A*)

Uniform Cost Issues

- The bad:
- Explores options in every "direction"
- No information about goal location

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

Graph Search

Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work.

Graph Search

- In BFS, for example, we shouldn't bother expanding the circled nodes (why?)

Graph Search

- Idea: never expand a state twice
- How to implement:
- Tree search + set of expanded states ("closed set")
- Expand the search tree node-by-node, but...
- Before expanding a node, check to make sure its state has never been expanded before
- If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

Tree Search Pseudo-Code

```
function TrEE-SEARCH(problem, fringe) return a solution, or failure
    fringe \leftarrow INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
    loop do
        if fringe is empty then return failure
        node }\leftarrow\mathrm{ REMOVE-FRONT(fringe)
        if GOAL-TEST(problem, STATE[node]) then return node
        for child-node in EXPAND(STATE[node], problem) do
            fringe }\leftarrow\operatorname{INSERT}(\mathrm{ child-node, fringe)
        end
    end
```


Graph Search Pseudo-Code

```
function Graph-SEARCH(problem, fringe) return a solution, or failure
closed }\leftarrow\mathrm{ an empty set
fringe }\leftarrow\operatorname{INSERT(MAKE-NODE(INITIAL-STATE [problem]), fringe)
loop do
    if fringe is empty then return failure
    node }\leftarrow\mathrm{ REMOVE-FRONT(fringe)
    if GOAL-TEST(problem, STATE[node]) then return node
    if STATE[node] is not in closed then
        add STATE[node] to closed
        for child-node in EXPAND(STATE[node], problem) do
                        if STATE[child-node] is not in closed then fringe }\leftarrow\operatorname{INSERT(child-node, fringe)
        end
    end
```

Use this version for the homeworks, projects, and exams!

Some Hints for P1

- Implement your closed list (explored set) as a set!
- Nodes are conceptually paths, but better to represent with a state, cost, last action, and reference to the parent node.
- Pseudo code from Russell and Norvig book. Good example of how a child node is created from a parent node.

```
function CHILD-NODE(problem, parent, action) returns a node
    return a node with
        STATE = problem.RESULT(parent.STATE, action),
        PARENT = parent, ACTION = action,
        PATH-COST = parent.PATH-COST + problem.STEP-COST(parent.STATE, action)
```


The One Queue

- All these search algorithms are the same except for fringe strategies
- Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
- Practically, for DFS and BFS, you can avoid the $\log (\mathrm{n})$ overhead from an actual priority queue, by using stacks and queues
- Can even code one implementation that takes a variable queuing object

Informed Search

Search Heuristics

- A heuristic is:
- A function that estimates how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance for pathing

Example: Heuristic Function

Greedy Search

Example: Heuristic Function

Greedy Search

- Expand the node that seems closest...

Arad

Timisoara

$\frac{\text { Sibiu }}{253}>\frac{\text { Bucharest }}{0}$

- What can go wrong?

Greedy Search

- Strategy: expand a node that you think is closest to a goal state
- Heuristic: estimate of distance to nearest goal for each state

- A common case:

A* Search

A* Search

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

- A* Search orders by the sum: $f(n)=g(n)+h(n)$

When should A^{*} terminate?

- Should we stop when we enqueue a goal?

- No: only stop when we dequeue a goal

Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

Admissible Heuristics

Admissible Heuristics

- A heuristic h is admissible (optimistic) if:

$$
0 \leq h(n) \leq h^{*}(n)
$$

where $h^{*}(n)$ is the true cost to a nearest goal

- Examples:

- Coming up with admissible heuristics is most of what's involved in using A^{*} in practice.

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:

- A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor n, that is along the optimal path to A, is on the fringe, too (maybe A!)
- Claim: n will be expanded before B

1. $f(n)$ is less or equal to $f(A)$

$$
\begin{array}{rlrl}
f(n)=g(n)+h(n) & & \text { Definition of } \mathrm{f} \text {-cost } \\
\begin{array}{rlrl}
f(n) \leq g(n)+h^{*}(n) & & \text { Admissibility of } \mathrm{h} \\
=g(A) & \mathrm{h}=0 \text { at a goal } \\
=f(A) &
\end{array}
\end{array}
$$

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor n, that is along the optimal path to A, is on the fringe, too (maybe A!)
- Claim: n will be expanded before B

1. $f(n)$ is less or equal to $f(A)$

2. $f(A)$ is less than $f(B)$

$$
\begin{array}{ll}
g(A)<g(B) & \text { B is suboptima } \\
f(A)<f(B) & \mathrm{h}=0 \text { at a goal }
\end{array}
$$

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor n, that is along the optimal path to A, is on the fringe, too (maybe A!)
- Claim: n will be expanded before B

1. $f(n)$ is less or equal to $f(A)$

2. $f(A)$ is less than $f(B)$
3. n expands before B

- All ancestors along optimal path to

$$
f(n) \leq f(A)<f(B)
$$

A expand before B

- A expands before B
- A* search is optimal

Properties of A^{*}

UCS vs A* Contours

- Uniform-cost expands equally in all "directions"
- A* expands mainly toward the goal, but does hedge its bets to ensure optimality

[Demo: contours UCS / greedy / A* empty (L3D1)] [Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) - A*

Video of Demo Contours (Pacman Small Maze) - A*

Comparison

Greedy
Uniform Cost
A*

A* Applications

A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available

- Inadmissible heuristics are often useful too

Example: 8 Puzzle

Start State

- What are the states?

Goal State

- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- $\mathrm{h}($ start $)=8$
- This is a relaxed-problem heuristic

Start State

Goal State

	Average nodes expanded Uhen the optimal path has...		
UCS	112	6,300	3.6×10^{6}
TILES	13	39	227

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance

Start State

Goal State

- Why is it admissible?
- $\mathrm{h}($ start $)=3+1+2+\ldots=18$

	Average nodes expanded when the optimal path has...		
	. .4 steps	$\ldots .8$ steps	. .12 steps
TILES	13	39	227
MANHATTAN	12	25	73

Heuristics

- How about using the actual cost as a heuristic?
- Would it be admissible?
- Would we save on nodes expanded?
- What's wrong with it?

- With A*: a trade-off between quality of estimate and work per node
- As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Graph Search Pseudo-Code

```
function Graph-SEARCH(problem, fringe) return a solution, or failure
closed }\leftarrow\mathrm{ an empty set
fringe }\leftarrow\operatorname{INSERT(MAKE-NODE(INITIAL-STATE [problem]), fringe)
loop do
    if fringe is empty then return failure
    node }\leftarrow\mathrm{ REMOVE-FRONT(fringe)
    if GOAL-TEST(problem, STATE[node]) then return node
    if STATE[node] is not in closed then
        add STATE[node] to closed
        for child-node in EXPAND(STATE[node], problem) do
                        if STATE[child-node] is not in closed then fringe }\leftarrow\operatorname{INSERT(child-node, fringe)
        end
    end
```

Use this version for the homeworks, projects, and exams!

A* Graph Search Gone Wrong?

State space graph

Search tree

C is already in closed set
so not expanded again

Consistency of Heuristics

- Main idea: estimated heuristic costs \leq actual costs

- Admissibility: heuristic cost \leq actual cost to goal

$$
h(A) \leq \text { actual cost from } A \text { to } G
$$

- Consistency: heuristic "arc" cost \leq actual cost for each arc

$$
h(A)-h(C) \leq \operatorname{cost}(A \text { to } C)
$$

- Consequences of consistency:
- The f value along a path never decreases

$$
h(A) \leq \operatorname{cost}(A \text { to } C)+h(C)
$$

- A* graph search is optimal

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

- Dominance: $h_{a} \geq h_{c}$ if

$$
\forall n: h_{a}(n) \geq h_{c}(n)
$$

- Heuristics form a semi-lattice:
- Max of admissible heuristics is admissible

$$
h(n)=\max \left(h_{a}(n), h_{b}(n)\right)
$$

- Trivial heuristics
- Bottom of lattice is the zero heuristic (what does this give us?)
- Top of lattice is the exact heuristic

$\max \left(h_{a}, h_{b}\right)$

zero

Optimality of A* Graph Search

Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
- Fact 1: A* expands nodes in increasing total f value (f-contours)
- Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally

- Result: A* graph search is optimal

Optimality

- Tree search:
- A* is optimal if heuristic is admissible
- UCS is a special case $(h=0)$
- Graph search:
- A* optimal if heuristic is consistent
- UCS optimal ($\mathrm{h}=0$ is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from
 relaxed problems

A*: Summary

A*: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems

