
Large Language Models and
RL from Human Feedback

Instructor: Daniel Brown

[Some slides adapted from Ana Marasovic, SpinningUp in Deep RL, and others]

Course feedback is open

• Extra credit if class response rate is 70% or higher
• Sliding scale if we reach 70%:

• Extra credit points = response_rate_percentage / 10

• Currently at 23%

2

Why not just imitate behavior?
(Behavioral Cloning)

Action

Observation

What would the
human do?

Policy 𝜋

Action

Observation
Action

3

Reward Learning
(Inverse Reinforcement Learning)

Action

Observation

Why? What is the
human’s reward

function?

Reward

Reward

Action

Observation
Action

Reward
4

What if I can’t demonstrate something?

≻

Reinforcement Learning from Human
Feedback (RLHF)

Prior approaches to Inverse RL

1. Typically couldn’t do much better than
the demonstrator.

Find a reward function that explains the
ranking, allowing for extrapolation.

2. Were hard to scale to complex
problems.

Reward learning becomes a supervised
learning problem.

Ranked Examples

RLHF

• Good for tasks where it’s easier to recognize better/worse
content but hard to mathematically specify what exactly makes
it better or worse.

• Natural Language Interactions are a good example!

High-Level Recipe for ChatGPT

1. Unsupervised pre-training

2. Supervised finetuning (behavioral cloning) from human
demonstrations

3. Collect preference rankings over outputs to train a reward
function

4. Perform policy gradient updates using RL with learned
reward

Preliminaries: Language Models

• Models that assign probabilities to sequences of words are
called language models or LMs

• Language modeling: The task of predicting the next word in a
sequence given the sequence of preceding words.

Neural language modeling

[BOS] ⟶ ⟶ Sylvester

11

[BOS] Sylvester ⟶ ⟶ Stallone

12

Neural language modeling

[BOS] Sylvester Stallone ⟶ ⟶ has

13

Neural language modeling

[BOS] Sylvester Stallone has ⟶ ⟶ made

14

Neural language modeling

“+” softmax

i-th dimension ～

the “probability” [not
really] that the next
token is the i-th token

in the vocabulary

the size of the
vector
representation
up to and
including the
current
token

✕

the number of tokens in the vocabulary

=

the logits vector

representation(current token) output matrix

select the token with
the high(est)
“probability” as a
token to display
(generate)

Read about other sampling strategies here: https://huggingface.co/blog/how-to-generate

[BOS] Sylvester Stallone has

https://huggingface.co/blog/how-to-generate

[BOS] Sylvester Stallone has ⟶ ⟶ made

16

Neural language modeling

Problems:
• How do we deal with different length inputs?
• How do we model long-range dependencies?

Large Language Models

Perform dot product between query and all keys to get a raw
score for each previous word (including current word).

Normalize these scores via a softmax to get a probability
distribution. Then return a weighted sum of the values.

High-Level Recipe for ChatGPT

1. Unsupervised pre-training

2. Supervised finetuning (behavioral cloning) from human
demonstrations

3. Collect preference rankings over outputs to train a reward
function

4. Perform policy gradient updates using RL with learned
reward

Learning a language model by reading
the internet!

https://arxiv.org/pdf/2401.02038.pdf

Learning a language model by reading
the internet!
• Maximize the conditional probability next token of the given

text sequence.

https://arxiv.org/pdf/2401.02038.pdf

What’s the problem?

Prompt: “Define behavioral cloning”

What we might get: “Define reinforcement
learning. Define imitation learning. Define inverse
reinforcement learning. Define Q-learning ….”

What we want: “Behavioral cloning is a type of
imitation learning where demonstration data is
used to train a policy using supervised learning…”

Solution #1: Few-shot prompting
Prompt:
“Question: Define reinforcement learning.
 Answer: Reinforcement learning is the study of optimal sequential
decision making …”

Question: Define inverse reinforcement learning.
Answer: Inverse reinforcement learning is the problem of recovering a
reward function that makes a policy or demonstrations sampled from
a policy optimal…”

Question: Define behavioral cloning”

Response:
Answer: Behavioral cloning is a type of imitation learning where…

Other forms of useful prompting

• “Let’s think step by step.”
• 17% to 78% improvement on some problems!

• “Large Language Models are Zero-Shot Reasoners”

• “You are an extremely helpful expert in reinforcement learning
and sequential decision making …”

• Chain-of-thought prompting
• “Chain-of-Thought Prompting Elicits Reasoning in Large Language

Models “

https://arxiv.org/abs/2201.11903

High-Level Recipe for ChatGPT

1. Unsupervised pre-training

2. Supervised finetuning (behavioral cloning) from human
demonstrations

3. Collect preference rankings over outputs to train a reward
function

4. Perform policy gradient updates using RL with learned
reward

Give specific demonstrations of what we
want.

https://medium.com/mantisnlp/supervised-fine-tuning-customizing-llms-a2c1edbf22c3

Give specific demonstrations of what we want.

• Same loss function as pretraining.
Cross entropy loss (classification)

High-Level Recipe for ChatGPT

1. Unsupervised pre-training

2. Supervised finetuning (behavioral cloning) from human
demonstrations

3. Collect preference rankings over outputs to train a reward
function

4. Perform policy gradient updates using RL with learned
reward

How to model as an MDP?

• X: set of possible tokens (words or pieces of words)

• State space: all possible sequences of tokens (X*).

• Initial state: task specific prompt 𝑠0 = (𝑥0, ⋯ , 𝑥𝑚)

• Action space: all possible tokens X

• Transitions: Deterministic. Just append action token to state to
get next state. 𝑠𝑡+1 = (𝑥0, ⋯ , 𝑥𝑚, 𝑎0, ⋯ , 𝑎𝑡 , 𝑎𝑡+1)

• Reward: r: 𝑆 × 𝐴 → 𝑅𝑒𝑎𝑙𝑠

https://arxiv.org/abs/2210.01241

Learn transformer-based reward model from preferences

Bradley-Terry pairwise ranking loss

42

Reward shaping

• We don’t want the learned policy to deviate too much based on
RL.

• Add a divergence term (KL divergence) to reward

Ƹ𝑟 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 − 𝛽KL(𝜋𝜃(𝑎|𝑠)||𝜋0(𝑎|𝑠)

= 𝑟 𝑠, 𝑎 − 𝛽(log 𝜋𝜃 𝑎𝑡 𝑠𝑡 − log 𝜋0(𝑎|𝑠))

Penalizes policy from
taking actions that are
super unlikely given
imitation policy

Flashback: Vanilla Policy Gradient

1. Start with random policy parameters 𝜃0

2. Run the policy in the environment to collect N rollouts
(episodes) of length T and save returns of each trajectory.

𝑎𝑡 ∼ 𝜋𝜃 ⋅ 𝑠𝑡 ⇒ (𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1, … , 𝑟𝑇 , 𝑠𝑇+1)
 𝐷 = 𝜏1, … 𝜏𝑁 , 𝑅 = {𝑅(𝜏1), … 𝑅(𝜏𝑁)}

3. Compute policy gradient

4. Update policy parameters

5. Repeat (Go to 2)

∇𝜃𝐽 𝜋𝜃 = 𝐸𝜏∼𝜋𝜃
෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡) 𝑅(𝜏)

𝜃𝑘+1 ← 𝜃𝑘 + 𝛼∇𝜃𝐽 𝜋𝜃 ቚ
𝜃𝑘

45

(Policy) (Value Function)

Advantage Actor Critic (A2C)

• Combining value learning with direct policy learning
• One example is policy gradient using the advantage function

TD error 𝛿𝑡 = 𝑟 𝑠𝑡, 𝑎𝑡 + 𝛾𝑉𝜋 𝑠𝑡+1 − 𝑉𝜋(𝑠𝑡)

𝜃𝑘+1 ← 𝜃𝑘 + 𝛼∇𝜃𝐽 𝜋𝜃 ቚ
𝜃𝑘

𝑤𝑘+1 ← 𝑤𝑘 + 𝛼𝛿𝑡∇𝑤𝑉(𝑠, 𝑎; 𝑤)

Policy gradient update

TD-Learning update

Proximal Policy Optimization (PPO)

• One of the most popular deep RL algorithms

• Used to train ChatGPT and other LLMs

Motivation:

• Many Policy Gradient algorithms have stability problems.

• This can be avoided if we avoid making too big of a policy update.

https://huggingface.co/blog/deep-rl-ppo

https://huggingface.co/blog/deep-rl-ppo

Proximal Policy Iteration (PPO)

• Measure how much current policy changed compared with old
version using a ratio:

• Clip policy gradient update based on this ratio:

Proximal Policy Iteration (PPO)

• Simpler way to write clip objective:

where

https://spinningup.openai.com/en/latest/algorithms/ppo.html

Proximal Policy Iteration (PPO)

• Simpler way to write clip objective:

where

https://spinningup.openai.com/en/latest/algorithms/ppo.html

What if the advantage is positive?

We want to increase 𝜋𝜃 𝑎 𝑠 , but not too much!

Once 𝜋𝜃 𝑎 𝑠 > 1 + 𝜖 𝜋𝜃𝑘
(𝑎|𝑠) the min kicks in and

limits our policy update.

Proximal Policy Iteration (PPO)

• Simpler way to write clip objective:

where

https://spinningup.openai.com/en/latest/algorithms/ppo.html

What if the advantage is negative?

We want to decrease 𝜋𝜃 𝑎 𝑠 , but not too much!

Once 𝜋𝜃 𝑎 𝑠 < 1 + 𝜖 𝜋𝜃𝑘
(𝑎|𝑠) the max kicks in

and limits our policy update.

RLHF with PPO

Recap with alternative notations

• Start with pretrained transformer model (SFT) for policy.

• Take same model and add a linear layer that outputs a scalar for
the reward model.

• Train reward model.

• Train PPO policy with reward and train value function.

Voila!

** We don’t know exactly what they did to train ChatGPT, but based
on tech reports and prior work, this is probably very close.

We made it! Next time: Review

	Slide 1: Large Language Models and RL from Human Feedback
	Slide 2: Course feedback is open
	Slide 3: Why not just imitate behavior? (Behavioral Cloning)
	Slide 4: Reward Learning (Inverse Reinforcement Learning)
	Slide 5: What if I can’t demonstrate something?
	Slide 6: Reinforcement Learning from Human Feedback (RLHF)
	Slide 7: RLHF
	Slide 8
	Slide 9: High-Level Recipe for ChatGPT
	Slide 10: Preliminaries: Language Models
	Slide 11: Neural language modeling
	Slide 12: Neural language modeling
	Slide 13: Neural language modeling
	Slide 14: Neural language modeling
	Slide 15
	Slide 16: Neural language modeling
	Slide 19: Large Language Models
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Perform dot product between query and all keys to get a raw score for each previous word (including current word).
	Slide 26: Normalize these scores via a softmax to get a probability distribution. Then return a weighted sum of the values.
	Slide 27
	Slide 28
	Slide 29: High-Level Recipe for ChatGPT
	Slide 30: Learning a language model by reading the internet!
	Slide 31: Learning a language model by reading the internet!
	Slide 32: What’s the problem?
	Slide 33: Solution #1: Few-shot prompting
	Slide 34: Other forms of useful prompting
	Slide 35
	Slide 36: High-Level Recipe for ChatGPT
	Slide 37: Give specific demonstrations of what we want.
	Slide 38: Give specific demonstrations of what we want.
	Slide 39: High-Level Recipe for ChatGPT
	Slide 40
	Slide 41: How to model as an MDP?
	Slide 42: Learn transformer-based reward model from preferences
	Slide 43: Reward shaping
	Slide 44: Flashback: Vanilla Policy Gradient
	Slide 45
	Slide 46: Advantage Actor Critic (A2C)
	Slide 47: Proximal Policy Optimization (PPO)
	Slide 48
	Slide 49: Proximal Policy Iteration (PPO)
	Slide 50: Proximal Policy Iteration (PPO)
	Slide 51: Proximal Policy Iteration (PPO)
	Slide 52: Proximal Policy Iteration (PPO)
	Slide 53
	Slide 54: RLHF with PPO
	Slide 55: Recap with alternative notations
	Slide 56: Voila!
	Slide 57
	Slide 63: We made it! Next time: Review

