
Large Language Models and 
RL from Human Feedback

Instructor: Daniel Brown

[Some slides adapted from Ana Marasovic, SpinningUp in Deep RL, and others] 



Course feedback is open

• Extra credit if class response rate is 70% or higher
• Sliding scale if we reach 70%:

• Extra credit points = response_rate_percentage / 10

• Currently at 23%
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Why not just imitate behavior?
(Behavioral Cloning)

Action

Observation

What would the 
human do?

Policy 𝜋

Action

Observation
Action
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Reward Learning 
(Inverse Reinforcement Learning)

Action

Observation

Why? What is the 
human’s reward

function?

Reward

Reward

Action

Observation
Action

Reward
4



What if I can’t demonstrate something?

≻



Reinforcement Learning from Human 
Feedback (RLHF)

Prior approaches to Inverse RL

1. Typically couldn’t do much better than 
the demonstrator.

Find a reward function that explains the 
ranking, allowing for extrapolation.

2. Were hard to scale to complex 
problems.

Reward learning becomes a supervised 
learning problem.

Ranked Examples



RLHF

• Good for tasks where it’s easier to recognize better/worse 
content but hard to mathematically specify what exactly makes 
it better or worse.

• Natural Language Interactions are a good example!





High-Level Recipe for ChatGPT

1. Unsupervised pre-training

2. Supervised finetuning (behavioral cloning) from human 
demonstrations

3. Collect preference rankings over outputs to train a reward 
function

4. Perform policy gradient updates using RL with learned 
reward



Preliminaries: Language Models

• Models that assign probabilities to sequences of words are 
called language models or LMs

• Language modeling: The task of predicting the next word in a 
sequence given the sequence of preceding words.



Neural language modeling

[BOS] ⟶                     ⟶ Sylvester 
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[BOS] Sylvester ⟶                     ⟶ Stallone 

12

Neural language modeling



[BOS] Sylvester Stallone ⟶                     ⟶ has 
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Neural language modeling



[BOS] Sylvester Stallone has ⟶                     ⟶ made 
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Neural language modeling



“+” softmax   

i-th dimension ～ 

the “probability” [not 
really] that the next 
token is the i-th token 

in the vocabulary 

the size of the 
vector 
representation
up to and 
including the 
current 
token 

✕

the number of tokens in the vocabulary

=

the logits vector

representation(current token) output matrix

select the token with 
the high(est) 
“probability” as a 
token to display 
(generate)

Read about other sampling strategies here: https://huggingface.co/blog/how-to-generate 

[BOS] Sylvester Stallone has 

https://huggingface.co/blog/how-to-generate


[BOS] Sylvester Stallone has ⟶                     ⟶ made 
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Neural language modeling

Problems:
• How do we deal with different length inputs?
• How do we model long-range dependencies?



Large Language Models













Perform dot product between query and all keys to get a raw 
score for each previous word (including current word).



Normalize these scores via a softmax to get a probability 
distribution. Then return a weighted sum of the values.







High-Level Recipe for ChatGPT

1. Unsupervised pre-training

2. Supervised finetuning (behavioral cloning) from human 
demonstrations

3. Collect preference rankings over outputs to train a reward 
function

4. Perform policy gradient updates using RL with learned 
reward



Learning a language model by reading 
the internet!

https://arxiv.org/pdf/2401.02038.pdf



Learning a language model by reading 
the internet!
• Maximize the conditional probability next token of the given 

text sequence.

https://arxiv.org/pdf/2401.02038.pdf



What’s the problem?

Prompt: “Define behavioral cloning”

What we might get: “Define reinforcement 
learning. Define imitation learning. Define inverse 
reinforcement learning. Define Q-learning ….”

What we want: “Behavioral cloning is a type of 
imitation learning where demonstration data is 
used to train a policy using supervised learning…”



Solution #1: Few-shot prompting
Prompt: 
“Question: Define reinforcement learning.
 Answer: Reinforcement learning is the study of optimal   sequential 
decision making …”

Question: Define inverse reinforcement learning.
Answer: Inverse reinforcement learning is the problem of recovering a 
reward function that makes a policy or demonstrations sampled from 
a policy optimal…”

Question: Define behavioral cloning”

Response: 
Answer: Behavioral cloning is a type of imitation learning where…



Other forms of useful prompting

• “Let’s think step by step.”
• 17% to 78% improvement on some problems!

• “Large Language Models are Zero-Shot Reasoners”

• “You are an extremely helpful expert in reinforcement learning 
and sequential decision making …”

• Chain-of-thought prompting
• “Chain-of-Thought Prompting Elicits Reasoning in Large Language 

Models “



https://arxiv.org/abs/2201.11903



High-Level Recipe for ChatGPT

1. Unsupervised pre-training

2. Supervised finetuning (behavioral cloning) from human 
demonstrations

3. Collect preference rankings over outputs to train a reward 
function

4. Perform policy gradient updates using RL with learned 
reward



Give specific demonstrations of what we 
want.

https://medium.com/mantisnlp/supervised-fine-tuning-customizing-llms-a2c1edbf22c3



Give specific demonstrations of what we want.

• Same loss function as pretraining. 
Cross entropy loss (classification)



High-Level Recipe for ChatGPT

1. Unsupervised pre-training

2. Supervised finetuning (behavioral cloning) from human 
demonstrations

3. Collect preference rankings over outputs to train a reward 
function

4. Perform policy gradient updates using RL with learned 
reward





How to model as an MDP?

• X: set of possible tokens (words or pieces of words)

• State space: all possible sequences of tokens (X*).

• Initial state: task specific prompt 𝑠0 = (𝑥0, ⋯ , 𝑥𝑚)

• Action space: all possible tokens X

• Transitions: Deterministic. Just append action token to state to 
get next state. 𝑠𝑡+1 = (𝑥0, ⋯ , 𝑥𝑚, 𝑎0, ⋯ , 𝑎𝑡 , 𝑎𝑡+1)

• Reward: r: 𝑆 × 𝐴 → 𝑅𝑒𝑎𝑙𝑠

https://arxiv.org/abs/2210.01241



Learn transformer-based reward model from preferences

Bradley-Terry pairwise ranking loss
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Reward shaping

• We don’t want the learned policy to deviate too much based on 
RL.

• Add a divergence term (KL divergence) to reward

Ƹ𝑟 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 − 𝛽KL(𝜋𝜃(𝑎|𝑠)||𝜋0(𝑎|𝑠)

= 𝑟 𝑠, 𝑎 − 𝛽(log 𝜋𝜃 𝑎𝑡 𝑠𝑡 − log 𝜋0(𝑎|𝑠))

Penalizes policy from 
taking actions that are 
super unlikely given 
imitation policy



Flashback: Vanilla Policy Gradient

1. Start with random policy parameters 𝜃0

2. Run the policy in the environment to collect N rollouts 
(episodes) of length T and save returns of each trajectory.

𝑎𝑡 ∼ 𝜋𝜃 ⋅ 𝑠𝑡 ⇒ (𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1, … , 𝑟𝑇 , 𝑠𝑇+1)
   𝐷 = 𝜏1, … 𝜏𝑁 ,        𝑅 = {𝑅(𝜏1), … 𝑅(𝜏𝑁)}

3. Compute policy gradient

4. Update policy parameters

5. Repeat (Go to 2)

∇𝜃𝐽 𝜋𝜃 = 𝐸𝜏∼𝜋𝜃
෍

𝑡=0

𝑇

∇𝜃  log 𝜋𝜃(𝑎𝑡|𝑠𝑡) 𝑅(𝜏)

𝜃𝑘+1 ← 𝜃𝑘 + 𝛼∇𝜃𝐽 𝜋𝜃 ቚ
𝜃𝑘



45

(Policy) (Value Function)



Advantage Actor Critic (A2C)

• Combining value learning with direct policy learning
• One example is policy gradient using the advantage function

TD error 𝛿𝑡 = 𝑟 𝑠𝑡, 𝑎𝑡 + 𝛾𝑉𝜋 𝑠𝑡+1 − 𝑉𝜋(𝑠𝑡) 

𝜃𝑘+1 ← 𝜃𝑘 + 𝛼∇𝜃𝐽 𝜋𝜃 ቚ
𝜃𝑘

𝑤𝑘+1 ← 𝑤𝑘 + 𝛼𝛿𝑡∇𝑤𝑉(𝑠, 𝑎; 𝑤) 

Policy gradient update

TD-Learning update



Proximal Policy Optimization (PPO)

• One of the most popular deep RL algorithms 

• Used to train ChatGPT and other LLMs

Motivation:

• Many Policy Gradient algorithms have stability problems. 

• This can be avoided if we avoid making too big of a policy update.

https://huggingface.co/blog/deep-rl-ppo



https://huggingface.co/blog/deep-rl-ppo



Proximal Policy Iteration (PPO)

• Measure how much current policy changed compared with old 
version using a ratio:

• Clip policy gradient update based on this ratio:



Proximal Policy Iteration (PPO)

• Simpler way to write clip objective:

where

https://spinningup.openai.com/en/latest/algorithms/ppo.html



Proximal Policy Iteration (PPO)

• Simpler way to write clip objective:

where

https://spinningup.openai.com/en/latest/algorithms/ppo.html

What if the advantage is positive?

We want to increase 𝜋𝜃 𝑎 𝑠 , but not too much!

Once 𝜋𝜃 𝑎 𝑠 > 1 + 𝜖 𝜋𝜃𝑘
(𝑎|𝑠) the min kicks in and 

limits our policy update.



Proximal Policy Iteration (PPO)

• Simpler way to write clip objective:

where

https://spinningup.openai.com/en/latest/algorithms/ppo.html

What if the advantage is negative?

We want to decrease 𝜋𝜃 𝑎 𝑠 , but not too much!

Once 𝜋𝜃 𝑎 𝑠 < 1 + 𝜖 𝜋𝜃𝑘
(𝑎|𝑠) the max kicks in 

and limits our policy update.





RLHF with PPO



Recap with alternative notations

• Start with pretrained transformer model (SFT) for policy.

• Take same model and add a linear layer that outputs a scalar for 
the reward model.

• Train reward model.

• Train PPO policy with reward and train value function.



Voila!

** We don’t know exactly what they did to train ChatGPT, but based 
on tech reports and prior work, this is probably very close.





We made it! Next time: Review
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