
CS 6300: Artificial Intelligence
Reinforcement Learning II: Function Approximation

Instructor: Daniel Brown --- University of Utah
[Based on slides created by Dan Klein and Pieter Abbeel http://ai.berkeley.edu.]

Reinforcement Learning

▪ Basic idea:
▪ Receive feedback in the form of rewards

▪ Agent’s utility is defined by the reward function

▪ Must (learn to) act so as to maximize expected rewards

▪ All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r

Reinforcement Learning

▪ We still assume an MDP:

▪ A set of states s S

▪ A set of actions (per state) A

▪ A model T(s,a,s’)

▪ A reward function R(s,a,s’)

▪ Still looking for a policy (s)

▪ New twist: don’t know T or R, so must try out actions

▪ Big idea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, * Value / policy iteration

Evaluate a fixed policy Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, * VI/PI on approx. MDP

Evaluate a fixed policy PE on approx. MDP

Goal Technique

Compute V*, Q*, * Q-learning

Evaluate a fixed policy Value Learning

Model-Free Learning

▪ Model-free (temporal difference) learning

▪ Experience world through episodes

▪ Update estimates each transition

▪ Over time, updates will mimic Bellman updates

r

a

s

s, a

s’

a’

s’, a’

s’’

Q-Learning

▪ We’d like to do Q-value updates to each Q-state:

▪ But can’t compute this update without knowing T, R

▪ Instead, compute average as we go
▪ Receive a sample transition (s,a,r,s’)

▪ This sample suggests

▪ But we want to average over results from (s,a) (Why?)

▪ So keep a running average

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼(𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎))

Useful alternate form of

update for Q-learning.

We want to push the Q-

value towards the sample!

Q-Learning Properties

▪ Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

▪ This is called off-policy learning

▪ Caveats:

▪ You have to explore enough

▪ You have to eventually make the learning rate

small enough

▪ … but not decrease it too quickly

▪ Basically, in the limit, it doesn’t matter how you select actions (!)

Exploration vs. Exploitation

How to Explore?

▪ Several schemes for forcing exploration
▪ Simplest: random actions (-greedy)

▪ Every time step, flip a coin

▪ With (small) probability , act randomly

▪ With (large) probability 1-, act on current policy

▪ Problems with random actions?
▪ You do eventually explore the space, but keep

thrashing around once learning is done

▪ One solution: lower over time

▪ Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)]
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]

Exploration Functions

▪ When to explore?

▪ Random actions: explore a fixed amount

▪ Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

▪ Exploration function

▪ Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g.

▪ Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Approximate Q-Learning

Generalizing Across States

▪ Basic Q-Learning keeps a table of all q-values

▪ In realistic situations, we cannot possibly learn
about every single state!
▪ Too many states to visit them all in training

▪ Too many states to hold the q-tables in memory

▪ Instead, we want to generalize:
▪ Learn about some small number of training states from

experience

▪ Generalize that experience to new, similar situations

▪ This is a fundamental idea in machine learning, and we’ll
see it over and over again

[demo – RL pacman]

Example: Pacman

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)]
[Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Video of Demo Q-Learning Pacman – Tiny – Watch All

Video of Demo Q-Learning Pacman – Tiny – Silent Train

Feature-Based Representations

▪ Solution: describe a state using a vector of
features (properties)
▪ Features are functions from states to real numbers

(often 0/1) that capture important properties of the
state

▪ Example features:
▪ Distance to closest ghost
▪ Distance to closest dot
▪ Number of ghosts
▪ 1 / (dist to dot)2

▪ Is Pacman in a tunnel? (0/1)
▪ …… etc.
▪ Is it the exact state on this slide?

▪ Can also describe a q-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

▪ Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

▪ Advantage: our experience is summed up in a few powerful numbers

▪ Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

▪ Q-learning with linear Q-functions:

▪ Intuitive interpretation:
▪ Adjust weights of active features
▪ E.g., if something unexpectedly bad happens, blame the features that were on:

disprefer all states with that state’s features

▪ Formal justification: online least squares

Exact Q’s

Approximate Q’s

Example: Q-Pacman

[Demo: approximate Q-
learning pacman (L11D10)]

Video of Demo Approximate Q-Learning -- Pacman

Q-Learning and Least Squares

0 20
0

20

40

0

10
20

30

40

0

10

20

30

20

22

24

26

Linear Approximation: Regression

Prediction: Prediction:

Optimization: Least Squares

0 20
0

Error or “residual”

Prediction

Observation

Minimizing Error

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”

Tabular Q-Learning is Special Case

“target” “prediction”

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼[𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎]

If feature is just an indicator for (s,a), then we recover

the original tabular setting.

Non-linear function approximation

v.s.

𝑉 𝑠 = 𝑓𝜃 𝑠

𝑄 𝑠, 𝑎 = 𝑓𝜃(𝑠, 𝑎)

Changing the parameters (weights) changes the function!

Neural Networks: Non-linear function approximation

Differences between RL and Supervised Learning

Input: (s,a)

Output: 𝑄𝜃(𝑠, 𝑎)
Target: 𝑟 + 𝛾max

𝑎′
𝑄𝜃 𝑠′, 𝑎′

Input: size, #bedrooms,

nearby school ratings, year

built, etc.

Output: 𝑓𝜃(𝒙)
Target: $680𝐾

Predicting House PricePredicting State-Action Value

RL has a non-stationary target! This leads to

instabilities if using non-linear function approximation.

How to get Q-Learning to work with Deep Learning?

▪ Experience Replay Buffer

▪ Don’t throw away each transition (s,a,r,s’)

▪ Save them in a buffer or “replay memory”

▪ During training randomly sample a batch of transitions to update Q

How to get Q-Learning to work with Deep Learning?

▪ Target Network

▪ Keep the network for the target fixed and only update periodically

Like before we want to update Q to minimize the error:

𝑒𝑟𝑟𝑜𝑟 =
1

2
𝑟 + 𝛾max

𝑎′
𝑄𝑇 𝑠′, 𝑎′; 𝜃− − 𝑄 𝑠, 𝑎; 𝜃

2

∇𝜃𝑒𝑟𝑟𝑜𝑟 = − 𝑟 + 𝛾max
𝑎′

𝑄𝑇 𝑠′, 𝑎′; 𝜃− − 𝑄 𝑠, 𝑎; 𝜃 ∇𝜃𝑄(𝑠, 𝑎; 𝜃)

Take step to decrease error (in the direction of the negative gradient)

Overview of DQN

44

Environment

(s, a, r, s’)

Deep RL Makes a Big Splash!

45

46

The Arcade Learning Environment

47

How do you learn from raw pixels?

▪ Too many parameters to have a weight for each pixel.

▪ Use a convolutional filter

48

How do you learn from raw pixels?

▪ Too many parameters to have a weight for each pixel.

▪ Use a convolutional filter

▪ Use several layers of multiple filters

LeCun, Yann, et al. "Gradient-based learning applied to document recognition.” 1998.

High-Level Architecture

50

▪ Learns to “see”
through trial and
error!

▪ Learns what actions
to take to maximize
game score.

▪ Epsilon-greedy
exploration.

52

53

Exploration Functions

▪ When to explore?

▪ Random actions: explore a fixed amount

▪ Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

▪ Exploration function

▪ Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g.

▪ Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Generalizing Count-Based Exploration

▪ Normal counts of a state:
𝑁𝑛(𝑠)

𝑛

▪ Pseudo-Counts:

▪ First assume access to a density model 𝜌 that measures the probability
of a state.

Generalizing Count-Based Exploration

▪ Normal counts of a state:
𝑁𝑛(𝑠)

𝑛

▪ Pseudo-Counts:

▪ First assume access to a density model 𝜌 that measures the probability
of a state.

▪ Define 𝜌𝑛 𝑠 = 𝜌(𝑠|𝑠1:𝑛) as the probability of the (n+1)-th state being s
given the first n states.

▪ We could empirically estimate this as 𝜌𝑛 𝑠 =
𝑁𝑛(𝑠)

𝑛

Generalizing Count-Based Exploration

▪ Pseudo-Counts:

▪ First assume access to a density model 𝜌 that measures the probability
of a state.

▪ Define 𝜌𝑛 𝑠 = 𝜌(𝑠|𝑠1:𝑛) as the probability of the (n+1)-th state being s
given the first n states.

▪ We could empirically estimate this as 𝜌𝑛 𝑠 =
𝑁𝑛(𝑠)

𝑛

▪ Define 𝜌𝑛
′ 𝑠 = 𝜌(𝑠|𝑠1:𝑛, 𝑠) as the probability of s given we see state s

again.

▪ We could empirically estimate this as 𝜌𝑛
′ 𝑠 =

𝑁𝑛 𝑠 +1

𝑛+1

Generalizing Count-Based Exploration

▪ Pseudo-Counts:

▪ 𝜌𝑛 𝑠 =
𝑁𝑛(𝑠)

𝑛

▪ 𝜌𝑛
′ 𝑠 =

𝑁𝑛 𝑠 +1

𝑛+1

We don’t know N or n and don’t want to explicitly

count them.

But it turns out we can solve the linear system

for what they would be given the density models!

0, 0.1

0.3, 0.31

Generalizing Count-Based Exploration

▪ Pseudo-Counts:

▪ 𝜌𝑛 𝑠 = 𝜌(𝑠|𝑠1:𝑛) estimated probability density before seeing state s

▪ 𝜌𝑛
′ 𝑠 = 𝜌 𝑠 𝑠1:𝑛, 𝑠 = 𝜌𝑛+1 estimated probability density after

updating density given new observation of s

▪ Reward bonus is added to sparse true reward

60

DQN only works for discrete action spaces

▪ Next Time: How to deal with continuous action spaces

	Slide 2: CS 6300: Artificial Intelligence
	Slide 3: Reinforcement Learning
	Slide 4: Reinforcement Learning
	Slide 5: The Story So Far: MDPs and RL
	Slide 6: Model-Free Learning
	Slide 7: Q-Learning
	Slide 8: Q-Learning Properties
	Slide 10: Exploration vs. Exploitation
	Slide 11: How to Explore?
	Slide 14: Exploration Functions
	Slide 18: Approximate Q-Learning
	Slide 19: Generalizing Across States
	Slide 20: Example: Pacman
	Slide 21: Video of Demo Q-Learning Pacman – Tiny – Watch All
	Slide 22: Video of Demo Q-Learning Pacman – Tiny – Silent Train
	Slide 24: Feature-Based Representations
	Slide 25: Linear Value Functions
	Slide 26: Approximate Q-Learning
	Slide 27: Example: Q-Pacman
	Slide 28: Video of Demo Approximate Q-Learning -- Pacman
	Slide 29: Q-Learning and Least Squares
	Slide 30: Linear Approximation: Regression
	Slide 31: Optimization: Least Squares
	Slide 32: Minimizing Error
	Slide 33: Tabular Q-Learning is Special Case
	Slide 34: Non-linear function approximation
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Neural Networks: Non-linear function approximation
	Slide 40: Differences between RL and Supervised Learning
	Slide 41: How to get Q-Learning to work with Deep Learning?
	Slide 42: How to get Q-Learning to work with Deep Learning?
	Slide 44: Overview of DQN
	Slide 45: Deep RL Makes a Big Splash!
	Slide 46
	Slide 47: The Arcade Learning Environment
	Slide 48: How do you learn from raw pixels?
	Slide 49: How do you learn from raw pixels?
	Slide 50: High-Level Architecture
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Exploration Functions
	Slide 55: Generalizing Count-Based Exploration
	Slide 56: Generalizing Count-Based Exploration
	Slide 57: Generalizing Count-Based Exploration
	Slide 58: Generalizing Count-Based Exploration
	Slide 59: Generalizing Count-Based Exploration
	Slide 60
	Slide 61: DQN only works for discrete action spaces

