
CS 6300: Artificial Intelligence

Probability

Instructor: Daniel Brown --- University of Utah
[Based on slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  http://ai.berkeley.edu.]



Today

▪ Probability

▪ Random Variables

▪ Joint and Marginal Distributions

▪ Conditional Distribution

▪ Product Rule, Chain Rule, Bayes’ Rule

▪ Inference

▪ Independence

▪ You’ll need all this stuff A LOT for the 
next few weeks, so make sure you go 
over it now!



Inference in Ghostbusters

▪ A ghost is in the grid 
somewhere

▪ Sensor readings tell how 
close a square is to the 
ghost
▪ On the ghost: red

▪ 1 or 2 away: orange

▪ 3 or 4 away: yellow

▪ 5+ away: green

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)

0.05 0.15 0.5 0.3

▪  Sensors are noisy, but we know P(Color | Distance)

[Demo: Ghostbuster – no probability (L12D1) ]



Video of Demo Ghostbuster – No probability



Uncertainty

▪ General situation:

▪ Observed variables (evidence): Agent knows certain 
things about the state of the world (e.g., sensor 
readings or symptoms)

▪ Unobserved variables: Agent needs to reason about 
other aspects (e.g. where an object is or what disease is 
present)

▪ Model: Agent knows something about how the known 
variables relate to the unknown variables

▪ Probabilistic reasoning gives us a framework for 
managing our beliefs and knowledge



Random Variables

▪ A random variable is some aspect of the world about 
which we (may) have uncertainty

▪ R = Is it raining?

▪ T = Is it hot or cold?

▪ D = How long will it take to drive to work?

▪ L = Where is the ghost?

▪ We denote random variables with capital letters



Probability Distributions

▪ Associate a probability with each value

▪ Temperature:

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

▪ Weather: 



Shorthand notation:

OK if all domain entries are unique

Probability Distributions

▪ Unobserved random variables have distributions

▪ A distribution is a TABLE of probabilities of values

▪ A probability (lower case value) is a single number

▪ Must have: and

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0



Joint Distributions

▪ A joint distribution over a set of random variables:
specifies a real number for each assignment (or outcome): 

▪ Must obey:

▪ Size of distribution if n variables with domain sizes d?

▪ For all but the smallest distributions, impractical to write out!

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3



Probabilistic Models

▪ A probabilistic model is a joint distribution 
over a set of random variables

▪ Probabilistic models:
▪ (Random) variables with domains 
▪ Assignments are called outcomes
▪ Joint distributions: say whether assignments 

(outcomes) are likely
▪ Normalized: sum to 1.0
▪ Ideally: only certain variables directly interact

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

Distribution over T,W



Events

▪ An event is a set E of outcomes

▪ From a joint distribution, we can 
calculate the probability of any event

▪ Probability that it’s hot AND sunny?

▪ Probability that it’s hot?

▪ Probability that it’s hot OR sunny?

▪ Typically, the events we care about 
are partial assignments, like P(T=hot)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3



Quiz: Events

▪ P(+x, +y) ?

▪ P(+x) ?

▪ P(-y OR +x) ?

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1



Marginal Distributions

▪ Marginal distributions are sub-tables which eliminate variables 

▪ Marginalization (summing out): Combine collapsed rows by adding

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4



Quiz: Marginal Distributions

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

X P

+x

-x

Y P

+y

-y



Conditional Probabilities

▪ A simple relation between joint and conditional probabilities
▪ In fact, this is taken as the definition of a conditional probability

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(b)P(a)

P(a,b)



Quiz: Conditional Probabilities

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

▪ P(+x | +y) ?

▪ P(-x | +y) ?

▪ P(-y | +x) ?



Conditional Distributions

▪ Conditional distributions are probability distributions over 
some variables given fixed values of others

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.8

rain 0.2

W P

sun 0.4

rain 0.6

Conditional Distributions
Joint Distribution



Normalization Trick

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.4

rain 0.6



SELECT the joint 
probabilities 
matching the 

evidence

Normalization Trick

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.4

rain 0.6

T W P

cold sun 0.2

cold rain 0.3

NORMALIZE the 
selection

(make it sum to one)



Normalization Trick

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.4

rain 0.6

T W P

cold sun 0.2

cold rain 0.3

SELECT the joint 
probabilities 
matching the 

evidence

NORMALIZE the 
selection

(make it sum to one)

▪ Why does this work? Sum of selection is P(evidence)!  (P(T=c), here)



Quiz: Normalization Trick

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

SELECT the joint 
probabilities 
matching the 

evidence

NORMALIZE the 
selection

(make it sum to one)

▪ P(X | Y=-y) ?



▪ (Dictionary) To bring or restore to a normal condition

▪ Procedure:
▪ Step 1: Compute Z = sum over all entries

▪ Step 2: Divide every entry by Z

▪ Example 1

To Normalize

All entries sum to ONE

W P

sun 0.2

rain 0.3 Z = 0.5

W P

sun 0.4

rain 0.6

▪ Example 2

T W P

hot sun 20

hot rain 5

cold sun 10

cold rain 15

Normalize

Z = 50

Normalize

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3



Probabilistic Inference

▪ Probabilistic inference: compute a desired 
probability from other known probabilities (e.g.
conditional from joint)

▪ We generally compute conditional probabilities 
▪ P(on time | no reported accidents) = 0.90

▪ These represent the agent’s beliefs given the evidence

▪ Probabilities change with new evidence:
▪ P(on time | no accidents, 5 a.m.) = 0.95

▪ P(on time | no accidents, 5 a.m., raining) = 0.80

▪ Observing new evidence causes beliefs to be updated



Inference by Enumeration

▪ General case:
▪ Evidence variables: 
▪ Query* variable:
▪ Hidden variables:

All variables

* Works fine with 
multiple query 
variables, too

▪ We want:

▪ Step 1: Select the 
entries consistent 
with the evidence

▪ Step 2: Sum out H to get joint 
of Query and evidence

▪ Step 3: Normalize



Inference by Enumeration

▪ P(W)?

▪ P(W | winter)?

▪ P(W | winter, hot)?

S T W P

summe
r

hot sun 0.30

summe
r

hot rain 0.05

summe
r

cold sun 0.10

summe
r

cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20



▪ Obvious problems:

▪ Worst-case time complexity O(dn) 

▪ Space complexity O(dn) to store the joint distribution

Inference by Enumeration



The Product Rule

▪ Sometimes have conditional distributions but want the joint



The Product Rule

▪ Example:

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

D W P

wet sun 0.08

dry sun 0.72

wet rain 0.14

dry rain 0.06



The Chain Rule

▪ More generally, can always write any joint distribution as an 
incremental product of conditional distributions

▪ You can pick any order.

▪ Why is the Chain Rule always true?



Bayes Rule



Bayes’ Rule

▪ Two ways to factor a joint distribution over two variables:

▪ Dividing, we get:

▪ Why is this at all helpful?

▪ Lets us build one conditional from its reverse
▪ Often one conditional is tricky but the other one is simple
▪ Foundation of many systems (e.g. ASR, MT, IRL)

▪ In the running for most important AI equation!

That’s my rule!

http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg


Inference with Bayes’ Rule

▪ Example: Diagnostic probability from causal probability:

▪ Example:
▪ M: meningitis, S: stiff neck

▪ Note: posterior probability of meningitis still very small

▪ Note: you should still get stiff necks checked out!  Why?

Example
givens



Quiz: Bayes’ Rule

▪ Given:

▪ What is P(W | dry) ? 

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3



Ghostbusters, Revisited

▪ Let’s say we have two distributions:
▪ Prior distribution over ghost location: P(G)

▪ Let’s say this is uniform

▪ Sensor reading model: P(R | G)
▪ Given: we know what our sensors do

▪ R = reading color measured at (1,1)

▪ E.g. P(R = yellow | G=(1,1)) = 0.1

▪ We can calculate the posterior 
distribution P(G|r) over ghost locations 
given a reading using Bayes’ rule:

[Demo: Ghostbuster – with probability (L12D2) ]



Video of Demo Ghostbusters with Probability



Independence

▪ Two variables are independent in a joint distribution if:

▪ Says the joint distribution factors into a product of two simple ones

▪ Usually variables aren’t independent!

▪ Can use independence as a modeling assumption
▪ Independence can be a simplifying assumption

▪ Empirical  joint distributions: at best “close” to independent

▪ What could we assume for {Weather, Traffic, Cavity}?

▪ Independence is like something from CSPs: what?



Example: Independence?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4



Example: Independence

▪ N fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5



Conditional Independence



Conditional Independence

▪ P(Toothache, Cavity, Catch)

▪ If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:
▪ P(+catch | +toothache, +cavity) = P(+catch | +cavity)

▪ The same independence holds if I don’t have a cavity:
▪ P(+catch | +toothache, -cavity) = P(+catch| -cavity)

▪ Catch is conditionally independent of Toothache given Cavity:
▪ P(Catch | Toothache, Cavity) = P(Catch | Cavity)

▪ Equivalent statements:
▪ P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
▪ P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
▪ One can be derived from the other easily



Conditional Independence

▪ Unconditional (absolute) independence very rare (why?)

▪ Conditional independence is our most basic and robust form 
of knowledge about uncertain environments.

▪ X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if



Conditional Independence

▪ What about this domain:

▪ Traffic
▪ Umbrella
▪ Raining



Conditional Independence

▪ What about this domain:

▪ Fire
▪ Smoke
▪ Alarm



Probability Recap

▪ Conditional probability

▪ Product rule

▪ Chain rule 

▪ X, Y independent if and only if:

▪ X and Y are conditionally independent given Z if and only if:



Next Time: MDPs
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