

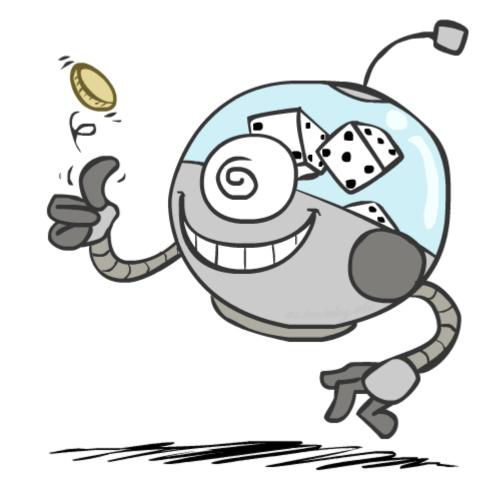
Instructor: Daniel Brown --- University of Utah

[Based on slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. http://ai.berkeley.edu.]

Today

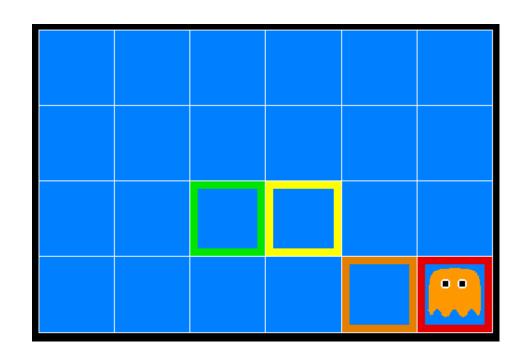
Probability

- Random Variables
- Joint and Marginal Distributions
- Conditional Distribution
- Product Rule, Chain Rule, Bayes' Rule
- Inference
- Independence
- You'll need all this stuff A LOT for the next few weeks, so make sure you go over it now!



Inference in Ghostbusters

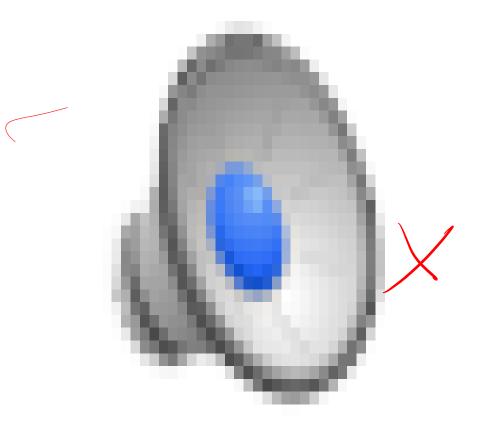
- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: red
 - 1 or 2 away: orange
 - 3 or 4 away: yellow
 - 5+ away: green



Sensors are noisy, but we know P(Color | Distance)

P(red 3)	P(orange 3)	P(yellow 3)	P(green 3)
0.05	0.15	0.5	0.3

Video of Demo Ghostbuster – No probability

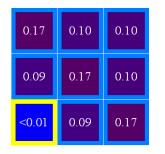


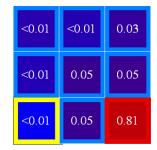
Uncertainty

• General situation:

- Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
- Unobserved variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
- Model: Agent knows something about how the known variables relate to the unknown variables
- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

0.11	0.11	0.11
0.11	0.11	0.11
0.11	0.11	0.11

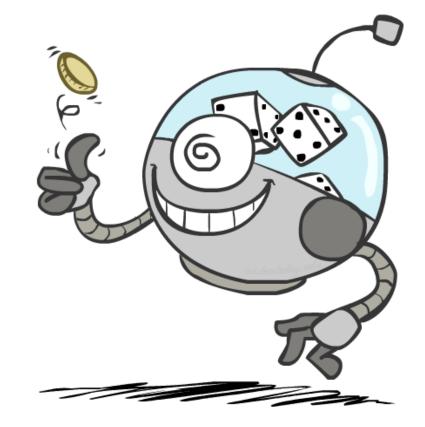




Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?

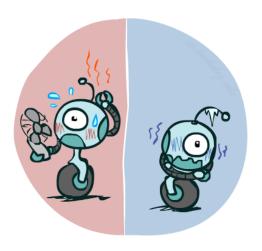
- T = Is it hot or cold?
- D = How long will it take to drive to work?
- L = Where is the ghost?
- We denote random variables with capital letters

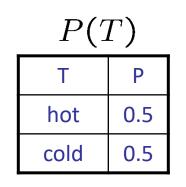


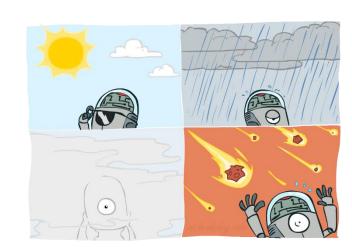
Probability Distributions

- Associate a probability with each value
 - Temperature:

• Weather:





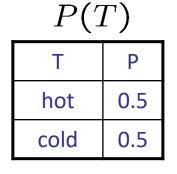


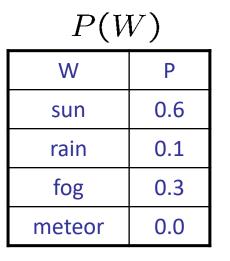
P(W)

W	Р	
sun	0.6	
rain	0.1	
fog	0.3	
meteor	0.0	
	j0 e	10

Probability Distributions

Unobserved random variables have distributions





- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

P(W = rain) = 0.1

Must have:

$$\forall x \ P(X = x) \ge 0$$
 and

$$\sum_{x} P(X = x) = 1$$

$$P(hot) = P(T = hot),$$

$$P(cold) = P(T = cold),$$

$$P(rain) = P(W = rain),$$

....

Shorthand notation:

OK *if* all domain entries are unique

Joint Distributions

A joint distribution over a set of random variables: X₁, X₂,... X_n specifies a real number for each assignment (or outcome):

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

 $P(x_1, x_2, \dots, x_n)$

• Must obey: $P(x_1, x_2, \dots x_n) \ge 0$

$$\sum_{(x_1,x_2,\ldots,x_n)} P(x_1,x_2,\ldots,x_n) = 1$$

- Size of distribution if n variables with domain sizes d?
 - For all but the smallest distributions, impractical to write out!

P	(T	ר י	W)
	-			-

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

TN

Probabilistic Models

- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
 - (Random) variables with domains
 - Assignments are called *outcomes*
 - Joint distributions: say whether assignments (outcomes) are likely
 - *Normalized:* sum to 1.0
 - Ideally: only certain variables directly interact

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Distribution over T,W

Events

 \bigcirc, \checkmark

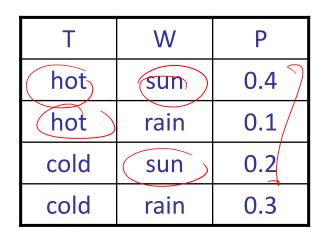
0.5

• An *event* is a set E of outcomes

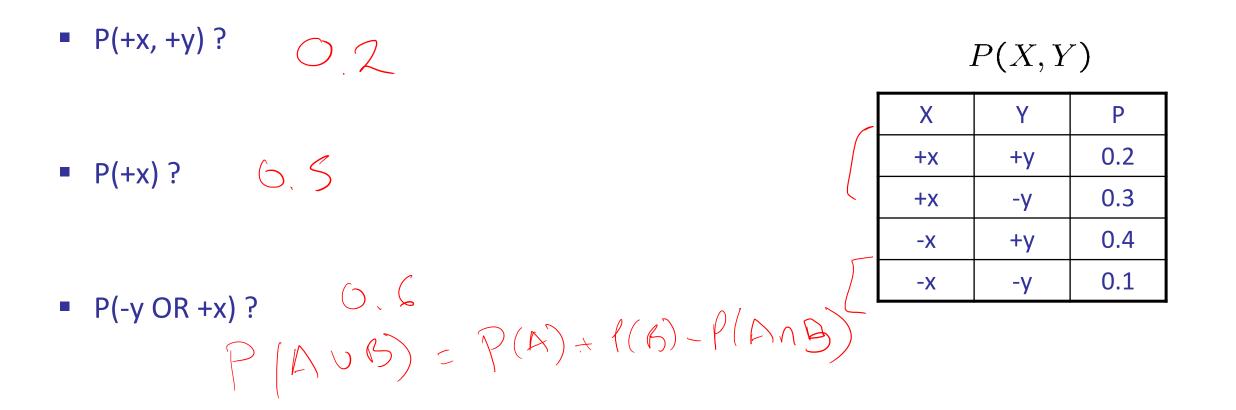
$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)

P(T, W)



Quiz: Events



Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(t) = \sum_{s} P(t, s)$$

$$P(T)$$

$$P(T)$$

$$P(T)$$

$$P(T)$$

$$P(T)$$

$$P(T)$$

$$P(T)$$

$$P(T)$$

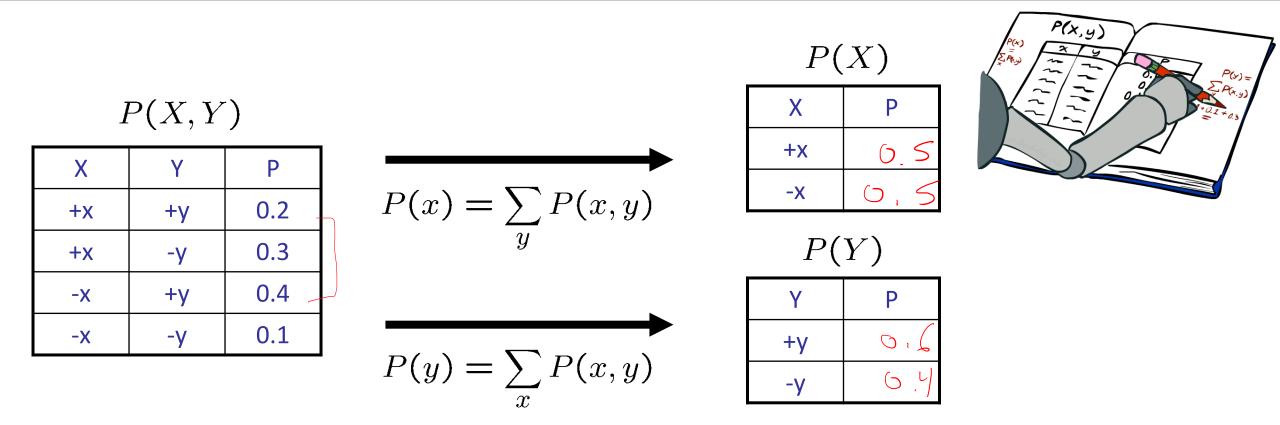
$$P(t) = \sum_{s} P(t, s)$$

$$P(W)$$

$$P(W$$

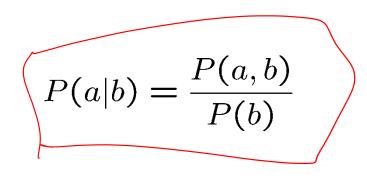
$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$

Quiz: Marginal Distributions



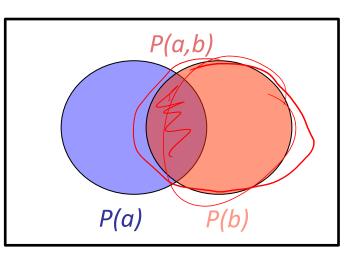
Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the *definition* of a conditional probability



P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3



$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$
$$= P(W = s, T = c) + P(W = r, T = c)$$
$$= 0.2 + 0.3 = 0.5$$

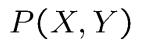
Quiz: Conditional Probabilities

•
$$P(+x | +y)? = P(+x, +y) = \frac{G.2}{P(+y)} = \frac{G.2}{G.6} = \frac{1}{3}$$

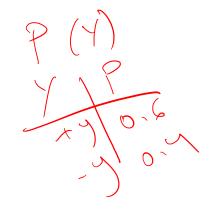
•
$$P(-x | +y)? | - \frac{1}{3} = \frac{2}{3} \frac{P(-x + y)}{P(+y)} = \frac{0, y}{0, \zeta}$$

$$P(-y, +x) = 0.3$$

 $-p(+x) = -0.5$



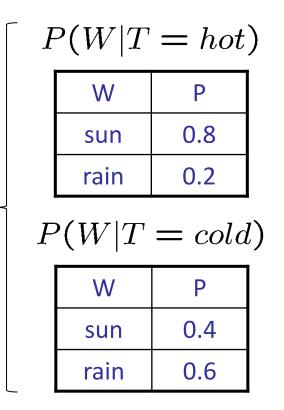
Х	Y	Р
+x	+y	0.2
+x	-у	0.3
-X	+у	0.4
-X	-у	0.1



Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions



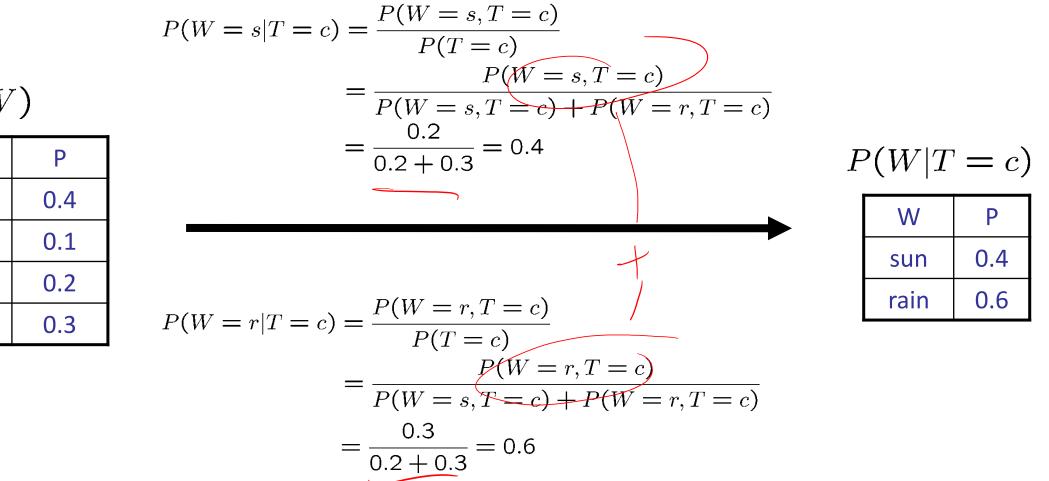
P(W|T)

Joint Distribution

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick



P(T,W)

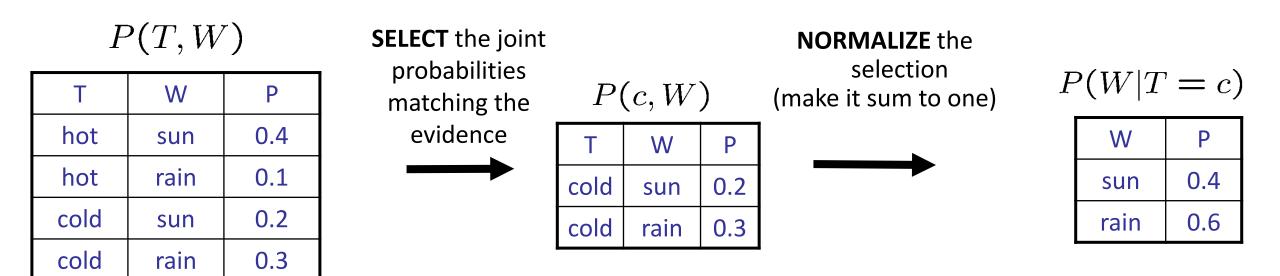
Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

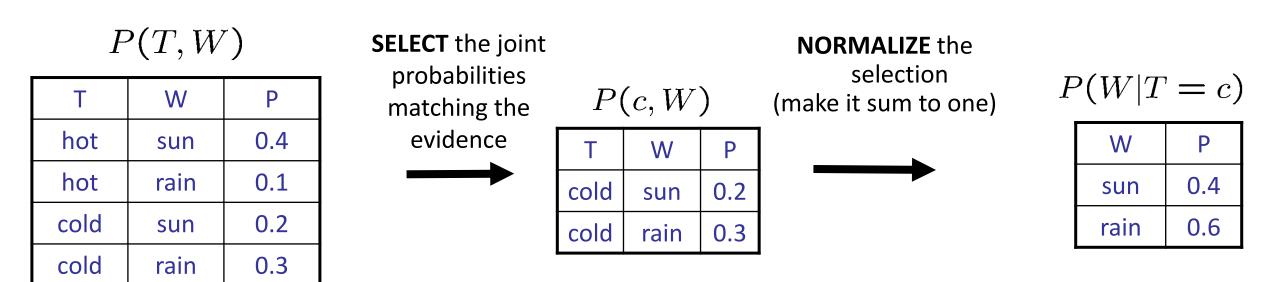
=
$$\frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

=
$$\frac{0.2}{0.2 + 0.3} = 0.4$$



$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$
$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$
$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

Normalization Trick



Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

Quiz: Normalization Trick

P(X | Y=-y) ?



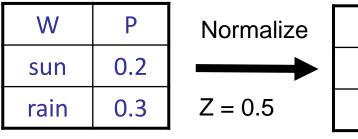
To Normalize

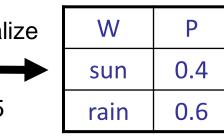
(Dictionary) To bring or restore to a normal condition

Procedure:

- Step 1: Compute Z = sum over all entries
- Step 2: Divide every entry by Z

Example 1

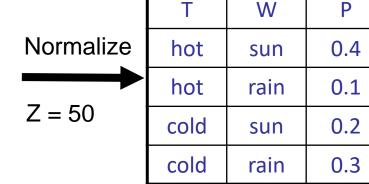




• Example 2

Т	W	Р
hot	sun	20
hot	rain	5
cold	sun	10
cold	rain	15

All entries sum to ONE



Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's *beliefs* given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Inference by Enumeration

- General case:
 - Evidence variables:
 - Query* variable:
 - Hidden variables:
- $\begin{bmatrix} E_1 \dots E_k = e_1 \dots e_k \\ Q \\ H_1 \dots H_r \end{bmatrix} X_1, X_2, \dots X_n$ All variables
- We want:

* Works fine with multiple query variables, too

 $P(Q|e_1\ldots e_k)$

 Step 1: Select the entries consistent with the evidence

-3

- 1

5

 \odot

Pa

0.05

0.25

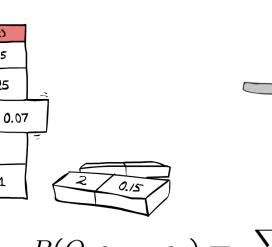
0.2

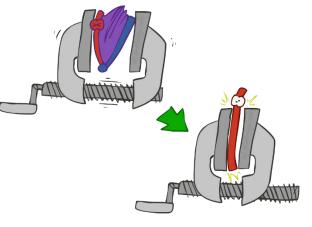
0.01

Step 3: Normalize

 $\times \frac{}{Z}$

 $Z = \sum_{q} P(Q, e_1 \cdots e_k)$ $P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$





 $P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(\underbrace{Q, h_1 \dots h_r, e_1 \dots e_k}_{X_1, X_2, \dots X_n})$

Inference by Enumeration

• P(W)? $\sum_{5,T} P(W = w, S, T) = \frac{W P}{5, 0.05}$ W = Sun = 0, SW = Vair 0, S

P(W | winter)?

P(W | winter, hot)?

S	Т	W	Р	
summe	hot	sun	0.30	
r				
summe	hot	_ rain	0.05	
r				
summe	cold	sun	0.10	
r				
summe	cold	rain	0.05	
r				
winter	hot	sun	0.10	
winter	hot	rain	0.05	
winter	cold	sun	0.15	
winter	cold	rain	0.20	

Inference by Enumeration

Obvious problems:

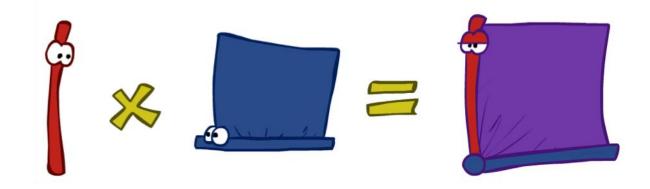
- Worst-case time complexity O(dⁿ)
- Space complexity O(dⁿ) to store the joint distribution

The Product Rule

Sometimes have conditional distributions but want the joint

$$P(y)P(x|y) = P(x,y)$$
 $(x|y) = \frac{P(x,y)}{P(y)}$

n/

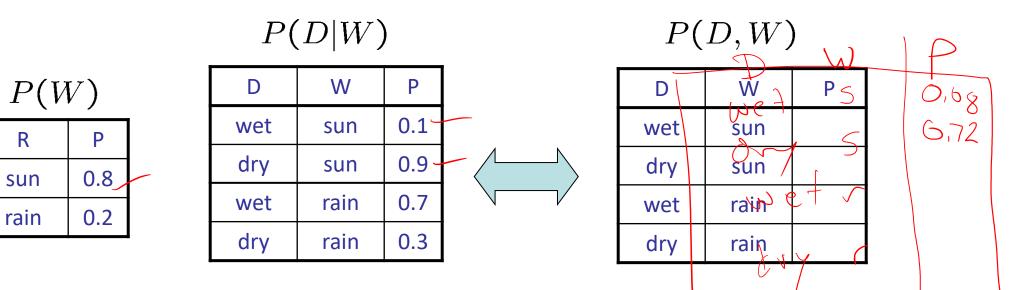


The Product Rule

$$P(y)P(x|y) = P(x,y)$$

Example:

R



The Chain Rule

More generally, can always write any joint distribution as an incremental product of conditional distributions $P(x(Y)) = \frac{P(X,Y)}{P(Y)}$

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

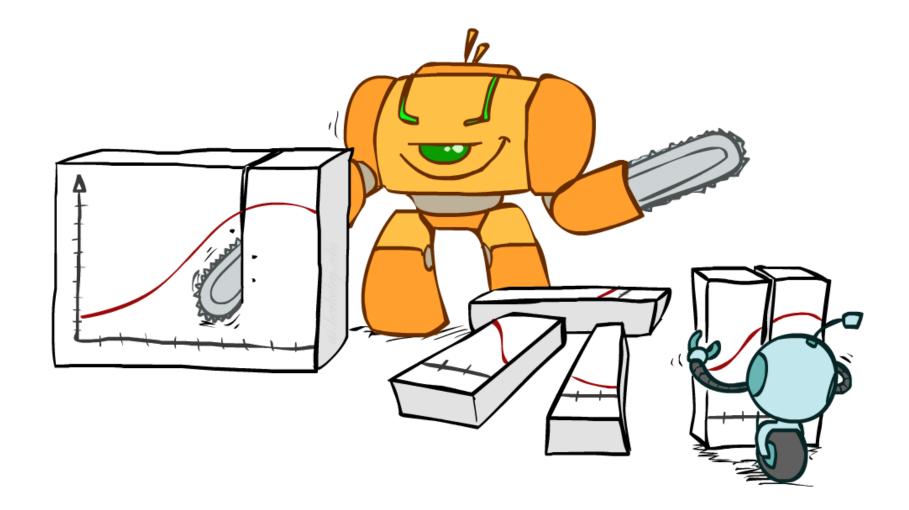
$$P(x_1, x_2, \dots, x_n) = \prod_i P(x_i | x_1 \dots x_{i-1})$$

- You can pick any order.
- Why is the Chain Rule always true?

$$P(X_1, X_2, X_3) = P(X_1) P(X_2 | X_1) P(X_3 | X_1, X_2) = P(X_1) P(X_1 | X_2) P(X_1 | X_2 | X_3)$$

$$= P(X_1) P(X_1 | X_2) P(X_1 | X_3) P(X_3 | X_1, X_2) = P(X_1) P(X_1 | X_2) P(X_1 | X_2 | X_3)$$

Bayes Rule



Bayes' Rule

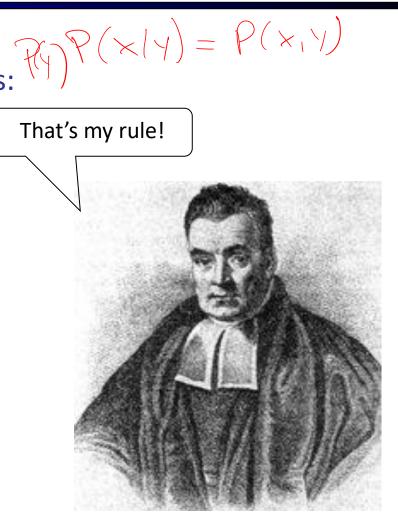
Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems (e.g. ASR, MT, IRL)
- In the running for most important AI equation!



Inference with Bayes' Rule

Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

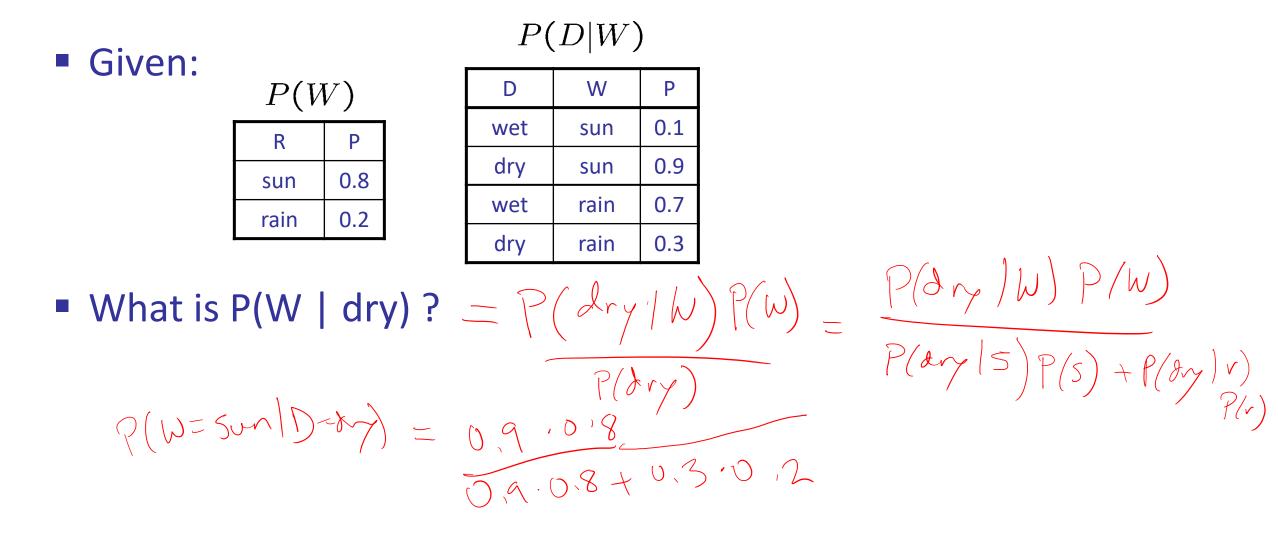
- Example:
 - M: meningitis, S: stiff neck

$$\begin{array}{c} P(+m) = 0.0001 \\ P(+s|+m) = 0.8 \\ P(+s|-m) = 0.01 \end{array} \end{array} \ \ \begin{array}{c} \mbox{Example} \\ \mbox{givens} \end{array} \ \ \end{array}$$

 $P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$

- Note: posterior probability of meningitis/still wery small (5)
- Note: you should still get stiff necks checked out! Why?

Quiz: Bayes' Rule

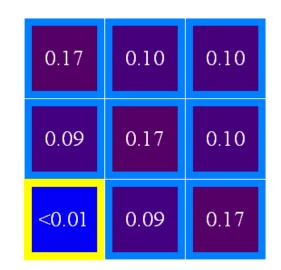


Ghostbusters, Revisited

- Let's say we have two distributions:
 - Prior distribution over ghost location: P(G)
 - Let's say this is uniform
 - Sensor reading model: P(R | G)
 - Given: we know what our sensors do
 - R = reading color measured at (1,1)
 - E.g. P(R = yellow | G=(1,1)) = 0.1
- We can calculate the posterior distribution P(G|r) over ghost locations given a reading using Bayes' rule:

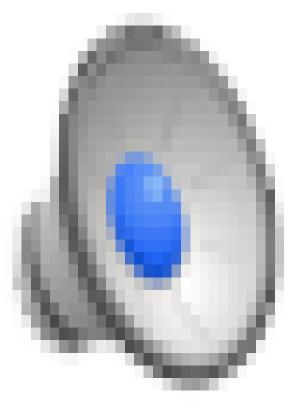
 $P(g|r) \propto P(r|g)P(g)$

0.11	0.11	0.11
0.11	0.11	0.11
0.11	0.11	0.11



[Demo: Ghostbuster – with probability (L12D2)]

Video of Demo Ghostbusters with Probability



Independence

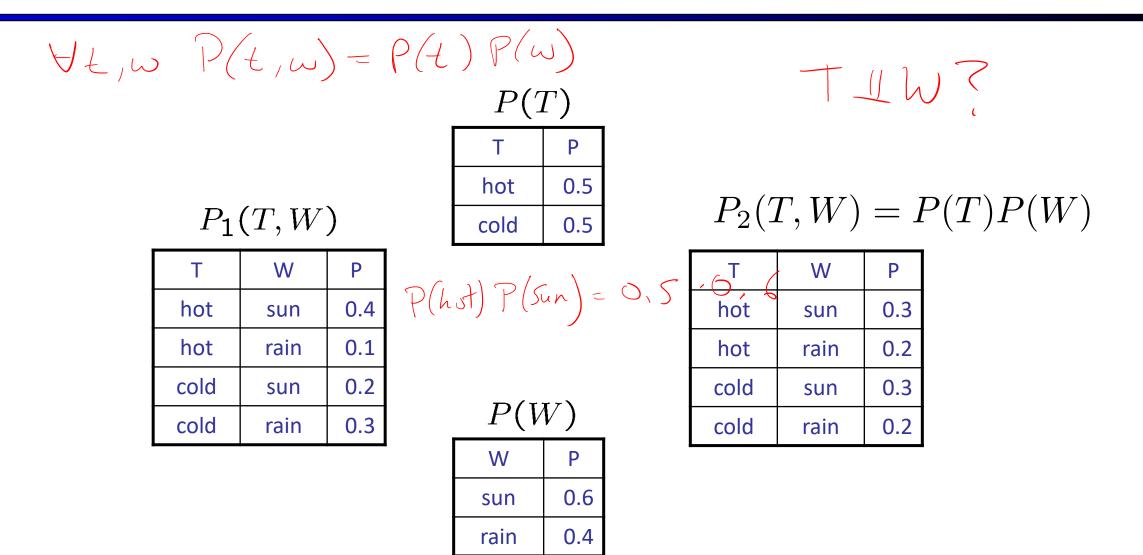
 $X \perp \!\!\!\perp Y$

Two variables are *independent* in a joint distribution if:

P(X,Y) = P(X)P(Y) $\forall x, y P(x,y) = P(x)P(y)$

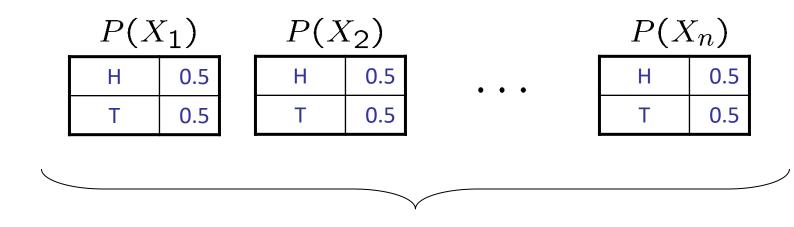
- Says the joint distribution *factors* into a product of two simple ones
- Usually variables aren't independent!
- Can use independence as a *modeling assumption*
 - Independence can be a simplifying assumption
 - Empirical joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity}?
- Independence is like something from CSPs: what?

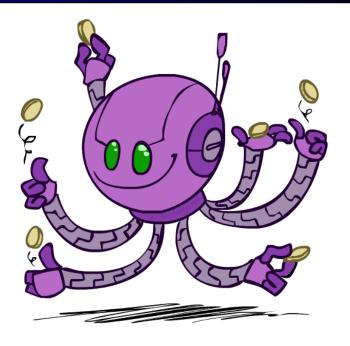
Example: Independence?

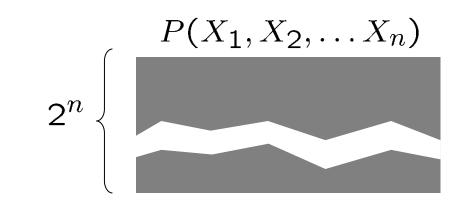


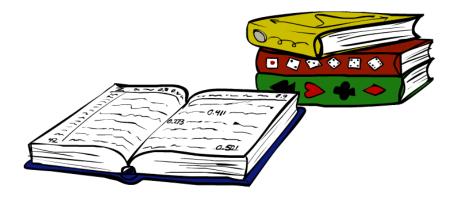
Example: Independence

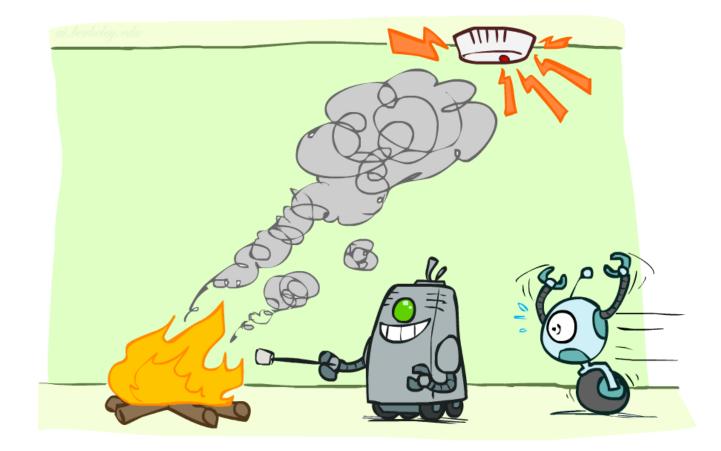
N fair, independent coin flips:





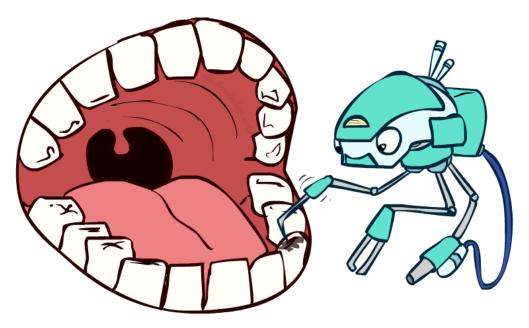






 $X \parallel Y \implies P(X, Y) = P(X) P(Y)$

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- Catch is *conditionally independent* of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily



P(x,y) = P(x)P(y|x)

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

 $X \bot\!\!\!\!\perp Y | Z$

if and only if:

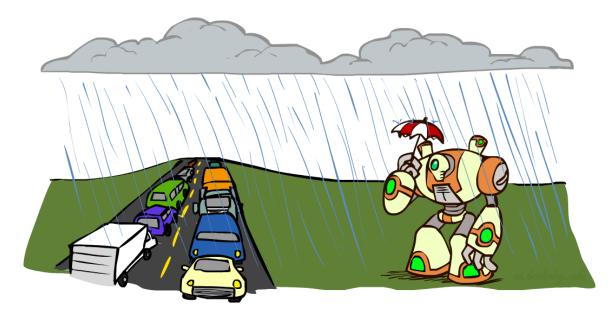
 $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$

or, equivalently, if and only if

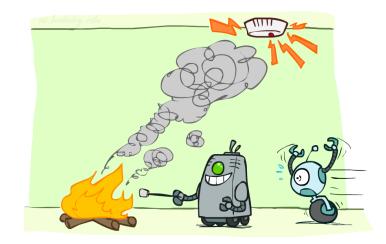
$$\forall x, y, z : P(x|z, y) = P(x|z)$$

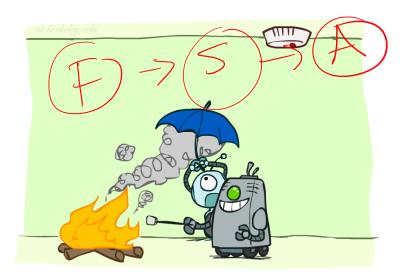
- What about this domain:
 - Traffic
 - Umbrella
 - Raining

TUUR



- What about this domain:
 - Fire
 - Smoke
 - Alarm





Probability Recap

Conditional probability

Product rule

 $P(x|y) = \frac{P(x,y)}{P(y)} \qquad \begin{array}{c} Bayes Rule & P(x|y)P(y) \\ P(y|x) = P(x|y)P(y) \\ \hline P(x,y) = P(x|y)P(y) = P(y|x)P(x) \end{array}$

• Chain rule
$$P(X_1, X_2, ..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$$

 $= \prod_{i=1}^n P(X_i|X_1, ..., X_{i-1})$
 $\gamma(\chi|\chi) = \Upsilon(\chi)$

- X, Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$
- X and Y are conditionally independent given Z if and only if: $X \perp \!\!\!\perp Y | Z$ $\forall x, y, z : P(x, y | z) = P(x | z) P(y | z)$ $P(\not \prec \!\!\!\mid \downarrow z) = P(x | z) P(y | z)$

Next Time: MDPs