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Types of Markov Models



Markov Decision Processes

▪ An MDP is defined by:
▪ A set of states s  S
▪ A set of actions a  A
▪ A transition function T(s, a, s’)

▪ Probability that a from s leads to s’, i.e., P(s’| s, a)
▪ Also called the model or the dynamics

▪ A reward function R(s, a, s’) 
▪ Sometimes just R(s), R(s,a), or R(s’)

▪ A start state distribution
▪ Maybe a terminal state

▪ MDPs are non-deterministic search problems
▪ One way to solve them is with expectimax search
▪ We’ll have a new tool soon

[Demo – gridworld manual intro (L8D1)]



Partially Observable Markov Decision Processes

▪ A POMDP is defined by:
▪ A set of states s  S
▪ A set of actions a  A
▪ A transition function T(s, a, s’)

▪ Probability that a from s leads to s’, i.e., P(s’| s, a)
▪ Also called the model or the dynamics

▪ A reward function R(s, a, s’) 
▪ Sometimes just R(s), R(s,a), or R(s’)

▪ A start state distribution
▪ Maybe a terminal state
▪ Observations Z
▪ Emission Model O(s,z) = P(z|s)

▪ POMDPs are non-deterministic search problems 
where you don’t know where you are!



Examples of POMPDs



MDP vs POMDP

▪ MDP

▪ + Tractable to solve

▪ + Relatively easy to specify

▪ -Assumes perfect knowledge of state

▪ POMDP

▪ +Models the real world

▪ +Allows for information gathering actions

▪ -Hugely intractable to solve optimally



Quiz: Show POMDPs Generalize MDPs

▪ MDP: S,A,T,R

▪ POMDP: S,A,Z,T,R,O

▪ Z =

▪ O(s,z) = P(z|s) = 

S

1 iff e == s



Simple Example

▪ Initial distribution: [0.9, 0.1]

▪ Discount factor: 0.5 

▪ Reward: S1 = 10, S2 = 0 

▪ Observations: S1 emits Z1 with prob 1.0, S2 emits Z2 with prob 1.0



Simple Example

▪ Initial distribution: [0.9, 0.1]

▪ Discount factor: 0.5 

▪ Reward: S1 = 10, S2 = 0 

▪ Observations: S1 emits Z1 with prob 0.75, S2 emits Z2 with prob 0.75



Simple Example

▪ Initial distribution: [0.5, 0.5]

▪ Discount factor: 0.5 

▪ Reward: s1 = 10, s2 = 0 

▪ Observations: s1 emits z1 with prob 0.5, s2 emits z2 with prob 0.5



How should we solve a POMDP?

▪ Solution #1

▪ Ignore the fact that it’s a POMDP and just act like MDP

▪ Policy just maps observations Z to actions A 

▪ Problems?



▪ Learn to play Pong



How should we solve a POMDP?

▪ Solution #2

▪ Use the history to try to make the POMDP an MDP

▪ Policy now maps observation histories ℎ𝑡 = (𝑧1, 𝑎1 … , 𝑎𝑡−1, 𝑧𝑡) to 
actions A 

▪ Problems?





How should we solve a POMDP?

▪ Solution #3

▪ Use belief states: 𝑏 𝑠 = 𝑃(𝑠|ℎ) (probability we are in state s)

▪ Policy now maps belief state vectors 𝑏 to actions A 

▪ Goal: Turn POMDP into a Belief State MDP

▪ We need to model transitions 𝑏, 𝑎, 𝑧 → 𝑏′

𝑏′ 𝑠′ = 𝑃(𝑠′|𝑏, 𝑎, 𝑧)

X2

Z1

X1 X3

Z2 Z3



The Forward Algorithm

▪ We are given evidence at each time and want to know

▪ We can derive the following recursive update

𝑃 𝑥𝑡 𝑒1:𝑡 = 𝑃(𝑥𝑡|𝑒1:𝑡−1, 𝑒𝑡) Divide up evidence

∝ 𝑃 𝑒𝑡 𝑥𝑡, 𝑒1:𝑡−1 𝑃(𝑥𝑡|𝑒1:𝑡−1) Bayes’ rule

= 𝑃 𝑒𝑡 𝑥𝑡 𝑃(𝑥𝑡|𝑒1:𝑡−1) Sensor Markov assumption

= 𝑃 𝑒𝑡 𝑥𝑡 ෍

𝑥𝑡−1

𝑃(𝑥𝑡 , 𝑥𝑡−1|𝑒1:𝑡−1) Reverse marginalization

= 𝑃 𝑒𝑡 𝑥𝑡 ෍

𝑥𝑡−1

𝑃 𝑥𝑡 𝑒1:𝑡−1, 𝑥𝑡−1 𝑃(𝑥𝑡−1|𝑒1:𝑡−1) Product rule

= 𝑃 𝑒𝑡 𝑥𝑡 ෍

𝑥𝑡−1

𝑃 𝑥𝑡 𝑥𝑡−1 𝑃(𝑥𝑡−1|𝑒1:𝑡−1) Markov assumption

This is variable elimination 

with ordering 𝑋1, 𝑋2, …



How should we solve a POMDP?

▪ Solution #3

▪ Use belief states: 𝑏 𝑠 = 𝑃(𝑠|ℎ) (probability we are in state s)

▪ Policy now maps belief state vectors 𝑏 to actions A 



Policies in POMDPs

▪ Need to map from belief states (probability distributions over 
states) to actions

▪ Toy example: 2-state MDP

▪ P(s1) = p, P(s2) = 1-p

p

https://www.pomdp.org/tutorial/pomdp-solving.html



State Estimation

▪ If we start with a particular belief state b and take action a, then 
we will receive observation z

▪ If finite actions and observations, then finite number of possible 
next belief states, but we don’t know ahead of time what z will 
be.



How should we solve a POMDP?

▪ Solution #3

▪ Use belief states: 𝑏 𝑠 = 𝑃(𝑠|ℎ) (probability we are in state s)

▪ Policy now maps belief state vectors 𝑏 to actions A 

▪ Goal: Turn POMDP into a Belief State MDP

▪ We need to model transitions 𝑏, 𝑎, 𝑧 → 𝑏′

𝑏′ 𝑠′ ∝ 𝑃 𝑧 𝑠′ ෍
𝑠

𝑃 𝑠′ 𝑠, 𝑎 𝑏 𝑠 This is just state 
estimation like HMMs!



Belief State MDP

▪ State space: 

▪ Action space:

▪ Transition Function:

▪ Reward function:

▪ Problems?

𝑃 𝑏′ 𝑏, 𝑎 = ෍

𝑒

𝑃 𝑏′, 𝑧 𝑏, 𝑎 =  ෍

𝑒

𝑃 𝑏′ 𝑏, 𝑎, 𝑧 𝑃(𝑧|𝑏, 𝑎)

S S’

Z

A

0 or 1 depending on 
state estimation

෍

𝑠′

𝑃(𝑧|𝑠′) ෍

𝑠

𝑃 𝑠′ 𝑠, 𝑎 𝑏(𝑠)

Variable elimination in 
order S, S’

𝑅 𝑏, 𝑎 =  ෍

𝑠

𝑏 𝑠 𝑟(𝑠, 𝑎)

𝐵

A

P(b’|b,a)



Value Iteration in MDPs

▪ Bellman Equation

▪ Iterate until convergence:

𝑉∗ 𝑠 = max
𝑎

 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑉∗(𝑠′)

𝑉𝑘+1 𝑠 = max
𝑎

 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑉𝑘(𝑠′)



Value Iteration in POMDPs?

▪ Bellman Equation

𝑉∗ 𝑏 = max
𝑎

 𝑅 𝑏, 𝑎 + 𝛾 ෍

𝑏′

𝑇 𝑏, 𝑎, 𝑏′ 𝑉∗(𝑏′)

       
= max

𝑎
 𝑅 𝑏, 𝑎 + 𝛾 σ𝑏′ 𝑃 𝑏′|𝑏, 𝑎 𝑉∗(𝑏′)

= max
𝑎

 𝑅 𝑏, 𝑎 + 𝛾 ෍

𝑏′

෍

𝑒

𝑃 𝑏′ 𝑏, 𝑎, 𝑧 𝑃(𝑧|𝑏, 𝑎) 𝑉∗(𝑏′)

= max
𝑎

 𝑅 𝑏, 𝑎 + 𝛾 ෍

𝑧

𝑃 𝑧 𝑏, 𝑎 𝑉∗(𝑆𝐸 𝑏, 𝑎, 𝑧 )



How do we deal with the continuous state space?

▪ We can’t simply keep a table of values any more…



Value Functions for POMDPs

▪ For a fixed horizon, the value function is piecewise linear and 
convex!

▪ Each iteration of value iteration only requires a finite number of linear 
segments.

𝑉 𝑝 = max
𝑝

෍

𝑠

𝑏 𝑠 𝛼𝑝(𝑠)

Let the utility of a conditional plan that starts in state s 
be 𝛼𝑝(𝑠) Then the expected utility is linear in b:

• Value function for each horizon can be 
represented as a set of vectors Γ𝑡

• 𝑉𝑡 𝑏 = max
𝛼∈Γ𝑡

 𝛼 ⋅ 𝑏



Value Functions for POMDPs

▪ For a fixed horizon, the value function is piecewise linear and 
convex!

▪ Each iteration of value iteration only requires a finite number of linear 
segments.

𝑉 𝑝 = max
𝑝

෍

𝑠

𝑏 𝑠 𝛼𝑝(𝑠)

Let the utility of a conditional plan that starts in state s 
be 𝛼𝑝(𝑠) Then the expected utility is linear in b:

• Value function for each horizon can be 
represented as a set of vectors Γ𝑡

• 𝑉𝑡 𝑏 = max
𝛼∈Γ𝑡

 𝛼 ⋅ 𝑏Partitioning belief space!



Value Functions for POMDPs

▪ For a fixed horizon, the value function is piecewise linear and 
convex!

▪ Each iteration of value iteration only requires a finite number of linear 
segments.

• Value function for each horizon can be 
represented as a set of vectors Γ𝑡

• 𝑉𝑡 𝑏 = max
𝛼∈Γ𝑡

 𝛼 ⋅ 𝑏

Partitioning belief space!

Good News: Don’t have to worry about infinite states to 
represent V
Bad News: We still don’t know how to go from 𝑉𝑡 to 𝑉𝑡+1



Example

▪ Two states (s1, s2), Two actions (a1,a2), three observations 
(z1,z2,z3), R(s1,a1) = 0, R(s1,a2)=1.5, R(s2,a1) = 1, R(s2,a2) = 0

▪ Consider first horizon. Best we can do if we only take one action:

𝑉1(𝑏) = max
𝑎

 𝑅 𝑏, 𝑎 + 𝛾 ෍

𝑧

𝑃 𝑧 𝑏, 𝑎 𝑉∗(𝑆𝐸 𝑏, 𝑎, 𝑧 )

= max
𝑎

 ෍

𝑠

𝑏(𝑠) 𝑅 𝑠, 𝑎

Quiz: What is the value of taking action a1 or 
a2 if b= [0.75, 0.25]? 

V(a1) = 0.75 * 0 + 0.25 * 1 = 0.25 V(a2) = 0.75 * 1.5 + 0.25 * 0 = 1.125



Example

▪ Two states (s1, s2), Two actions (a1,a2), three observations 
(z1,z2,z3), R(s1,a1) = 0, R(s1,a2)=1.5, R(s2,a1) = 1, R(s2,a2) = 0

▪ Consider first horizon. Best we can do if we only take one action:

𝑉1 𝑏 = max
𝑎

 𝑅 𝑏, 𝑎 =  max
𝑎

 ෍

𝑠

𝑏(𝑠) 𝑅 𝑠, 𝑎

Just a linear function over belief space!
Partitions show where a1 or a2 are 
optimal.



Horizon 2

1. We will first show how to compute the value of a single 
belief state for a given action and observation.

2.Then we show how to compute the value for every belief 
state for a given action and observation, in a finite amount 
of time.

3.Then we will show how to compute the value of a belief state 
given only an action.

4.Finally, we will show how to compute the actual value for a 
belief state.



Computing Belief State Value from an Action and Observation

▪ Given belief state b, what is the value of doing a1, if after the 
action we receive observation z1?

• We know how to go from b to b’ 
given a and z!

• Horizon 1 Value function tells us 
best values for every belief state 
when just one action left to take.



Computing All Belief State Values for an Action and Observation

▪ Transform belief state b given a and z into b’

▪ Then we add the immediate rewards to the transformed 
function.

Tells us the value of 
each belief state after 
action a1 is taken and 
observation z1 is seen.



Computing a Belief State Value for a Single Action

▪ Before we computed conditional value given observation z.

▪ Now we don’t know what observation we’ll get



▪ Best value of belief 
state b given first 
action is a1

Future strategy

(z1:a2, z2:a1, z3:a1)



Computing Final Belief State Value

▪ If we fix first action to be a1 and follow strategy (z1:a2, z2:a1, z3:a1) 
as above then we can compute value for every single belief point.

▪ Add line segment for immediate reward of a1 and line segments S() 
for future strategy. Adding lines gives us a line.

▪ But when is this strategy good?



Computing Final Belief State Value



Computing Final Belief State Value

▪ We can do the same thing for each action



Computing Final Belief State Value

▪ Combine to see where each action gives the highest value



Horizon 3

▪ Transform horizon 2 value function for action a1 all observations

▪ Each color represents a complete future strategy



▪ Find value function by adding immediate rewards and the S() 
functions for each useful strategy

▪ Only 6 useful strategies!



▪ Find value function by adding immediate rewards and the S() 
functions for each useful strategy



POMDP Summary

▪ POMDPs compute the optimal action in partially observable, 
stochastic domains. 

▪ For finite horizon problems, the resulting value functions are 
piecewise linear and convex. 

▪ In each iteration the number of linear constraints grows 
exponentially. 

▪ POMDP exact solutions only work with very small state spaces 
with small numbers of possible observations and actions.

▪ Lots of current research on approximations and faster solvers!



Next Time: Imitation Learning


	Slide 1: CS 6300: Artificial Intelligence 
	Slide 2: Types of Markov Models
	Slide 3: Markov Decision Processes
	Slide 4: Partially Observable Markov Decision Processes
	Slide 5: Examples of POMPDs
	Slide 6: MDP vs POMDP
	Slide 7: Quiz: Show POMDPs Generalize MDPs
	Slide 8: Simple Example
	Slide 9: Simple Example
	Slide 10: Simple Example
	Slide 11: How should we solve a POMDP?
	Slide 12
	Slide 13: How should we solve a POMDP?
	Slide 14
	Slide 15: How should we solve a POMDP?
	Slide 16: The Forward Algorithm
	Slide 17: How should we solve a POMDP?
	Slide 18: Policies in POMDPs
	Slide 19: State Estimation
	Slide 20: How should we solve a POMDP?
	Slide 21: Belief State MDP
	Slide 22: Value Iteration in MDPs
	Slide 23: Value Iteration in POMDPs?
	Slide 24: How do we deal with the continuous state space?
	Slide 25: Value Functions for POMDPs
	Slide 26: Value Functions for POMDPs
	Slide 27: Value Functions for POMDPs
	Slide 28: Example
	Slide 29: Example
	Slide 30: Horizon 2
	Slide 31: Computing Belief State Value from an Action and Observation
	Slide 32: Computing All Belief State Values for an Action and Observation
	Slide 33: Computing a Belief State Value for a Single Action
	Slide 34
	Slide 35: Computing Final Belief State Value
	Slide 36: Computing Final Belief State Value
	Slide 37: Computing Final Belief State Value
	Slide 38: Computing Final Belief State Value
	Slide 39: Horizon 3
	Slide 40
	Slide 41
	Slide 42: POMDP Summary
	Slide 43: Next Time: Imitation Learning

