CS 6300: Artificial Intelligence

Partially Observable Markov Decision Processes

Instructor: Daniel Brown

University of Utah

[Based on slides from Intro to Al at UC Berkeley and Geoff Hollinger at CMU]



Types of Markov Models

System state is System state Is
fully observable partially observable

System is Markov chain Hidden Markov
autonomous model (HMM)

System is Markov decision Partially observable

controlled process (MDP) Markov decision

process (POMDP)



Markov Decision Processes

An MDP is defined by:

m Asetofstatess €S
m AsetofactionsaceA
= A transition function T(s, a, s’)

= Probability that a from sleadsto s’, i.e., P(s’| s, a)
= Also called the model or the dynamics

A reward function R(s, a, s’)

= Sometimes just R(s), R(s,a), or R(s’)
A start state distribution
Maybe a terminal state

MDPs are non-deterministic search problems

= One way to solve them is with expectimax search
= We’ll have a new tool soon

[Demo — gridworld manual intro (L8D1)]



Partially Observable Markov Decision Processes

= A POMDP is defined by:

= Asetofstatess e S
= Aset of actionsa € A
= A transition function T(s, a, s')

= Probability that a from sleadsto s’, i.e., P(s’| s, a)
= Also called the model or the dynamics

= Areward function R(s, a, s’)
= Sometimes just R(s), R(s,a), or R(s’)
= A start state distribution
= Maybe a terminal state
= QObservations Z
= Emission Model O(s,z) = P(z|s)

= POMDPs are non-deterministic search problems
where you don’t know where you are!



Examples of POMPDs



MDP vs POMDP

* MDP

" + Tractable to solve
= + Relatively easy to specify
= -Assumes perfect knowledge of state

= POMDP

= +Models the real world
= +Allows for information gathering actions

= -Hugely intractable to solve optimally



Quiz: Show POMDPs Generalize MDPs

MDP: S,A,T,R
POMDP: §,A,Z,T,R,0O



Simple Example

1.0

1.0

Al

nitial distribution: [0.9, 0.1]

Discount factor: 0.5

Reward: S1=10,S2=0

Observations: S1 emits Z1 with prob 1.0, S2 emits Z2 with prob 1.0




Simple Example

1.0

1.0

Al

nitial distribution: [0.9, 0.1]

Discount factor: 0.5

Reward: S1=10,S2=0

Observations: S1 emits Z1 with prob 0.75, S2 emits Z2 with prob 0.75




Simple Example

1.0

1.0

Al

nitial distribution: [0.5, 0.5]

Discount factor: 0.5

Reward:s1=10,s2=0

Observations: s1 emits z1 with prob 0.5, s2 emits z2 with prob 0.5




How should we solve a POMDP?

= Solution #1
" |[gnore the fact that it’s a POMDP and just act like MDP
= Policy just maps observations Z to actions A
" Problems?




" Learn to play Pong




How should we solve a POMDP?

= Solution #2
= Use the history to try to make the POMDP an MDP

" Policy now maps observation histories hy = (z¢,a4 ..., a;_1, ;) t0
actions A

" Problems?




Deep Q-Network

Q-value LEFT

=y Convolutional ' Q-value RIGHT |

Layers

Q value SHOOT




How should we solve a POMDP?

= Solution #3
» Use belief states: b(s) = P(s|h) (probability we are in state s)

= Policy now maps belief state vectors b to actions A

= Goal: Turn POMDP into a Belief State MDP
= We need to model transitions b, a,z — b’

b'(s") = P(s’|b,a,z)

o &
@ ®




The Forward Algorithm

= We are given evidence at each time and want to know

Bi(X) = P(Xtle1:t)

= We can derive the following recursive update

P(x;leq.r) = P(x¢leg.c—1, er) Divide up evidence
o P(eelxe, eq.0-1)P(xe|€q.4-1) Bayes' rule
= P(e¢lx;)P(x¢|e1.0—1) Sensor Markov assumption
= P(e¢|x;) z P(x¢ xp—1l€1.621) Reverse marginalization
This is variable elimination Xi_q

with ordering X4, X5, ...
= P(e|x¢) 2 P(x¢leq.e—1, xe—1)P(xr—1le1.t-1) Product rule

Xt—1

= P(e¢|x;) z P(xelxe—1)P(xr—1l€1.6-1) Markov assumption

Xt—1



How should we solve a POMDP?

= Solution #3
» Use belief states: b(s) = P(s|h) (probability we are in state s)

= Policy now maps belief state vectors b to actions A



Policies in POMDPs

" Need to map from belief states (probability distributions over
states) to actions

" Toy example: 2-state MDP
" P(s1) =p, P(s2)=1-p

0 P 1
1D belief space for a 2 state POMDP

https://www.pomdp.org/tutorial/pomdp-solving.htmi



State Estimation

" |f we start with a particular belief state b and take action a, then
we will receive observation z

" |f finite actions and observations, then finite number of possible
next belief states, but we don’t know ahead of time what z will
be.

al
1D belief space for a 2 state POMDP



How should we solve a POMDP?

= Solution #3
» Use belief states: b(s) = P(s|h) (probability we are in state s)

= Policy now maps belief state vectors b to actions A

= Goal: Turn POMDP into a Belief State MDP
= We need to model transitions b, a,z — b’

estimation like HMMs!

bI(SI) o P(lel)z P(S,|S, a)b(S) This is just state
S



State space: B
Action space: A

Belief State MDP

Transition Function: P(b’|b,a)

P(b'|b, ) = ZP(b’,z
e

state estimation

Reward function:

R(b,a) =
Problems?

b(s)r(s,a)

b, a) = ZP(b’Ib, a,2)P(z|b, a)

0 or 1 depending 0/

‘\ Variable elimination in
orderS, S’

Z P(z|s") z P(s'|s,a)b(s)



Value lteration in MDPs

= Bellman Equation

V*(s) = max R(s,a) + yz T(s,a,s)V*(s")

= |terate until convergence:

Vk+1(s) = max R(s,a) +y E T(s,a,s)Vi(s")
a
S/




Value lteration in POMDPs?

= Bellman Equation
V*(b) = max R(b, a) + yz T(b,a,b")V*(b")
a
b1

= max R(b,a) +y Xy, P(b'1b,)V"(b")

= max R(b, @) + yz 2 P(b'|b,a, 2)P(z|b,a) V*(b")

br e

= max R(b, @) + yz P(z|b, )V*(SE(b, a,2))



How do we deal with the continuous state space?

" We can’t simply keep a table of values any more...

V(b)

0 b 1
Value function over belief space



Value Functions for POMDPs

" For a fixed horizon, the value function is piecewise linear and
convex!

= Each iteration of value iteration only requires a finite number of linear

segments.
Let the utility of a conditional plan that starts in state s
AN be a, (s) Then the expected utility is linear in b:

V(ip) = mI?XE b(s)ay,(s)

* Value function for each horizon can be
represented as a set of vectors [}

! 1  V.(b) =max a-b

Sample PWLC value function a€el’;




Value Functions for POMDPs

" For a fixed horizon, the value function is piecewise linear and
convex!

= Each iteration of value iteration only requires a finite number of linear

segments.
Let the utility of a conditional plan that starts in state s
N be a, (s) Then the expected utility is linear in b:

N V(p) = max ) b(s)ay(s)
P S
_ * Value function for each horizon can be

0 ' ' 1 represented as a set of vectors I}

Partitioning belief space! e V.(b) = max a - b
aclt




Value Functions for POMDPs

" For a fixed horizon, the value function is piecewise linear and
convex!

= Each iteration of value iteration only requires a finite number of linear

segments.
* Value function for each horizon can be

AN represented as a set of vectors I}
\ e V.(b) =max a-b
e et aEFt

_ Good News: Don’t have to worry about infinite states to
0 | | 1 represent V
Partitioning belief space! Bad News: We still don’t know how to go from V/; to ;4




Example

= Two states (s1, s2), Two actions (al,a2), three observations
(z1,z2,z3), R(s1,al) =0, R(s1,a2)=1.5, R(s2,al) =1, R(s2,a2) =0

" Consider first horizon. Best we can do if we only take one action:

Vi(b) = max R(b,a) + yz P(z|b,a)V*(SE(b,a,z))
= max Z b(s)R(s,a)

Quiz: What is the value of taking action al or
a2 if b=[0.75, 0.25]?

V(al)=0.75*0+0.25*1=0.25 V(a2)=0.75*1.5+0.25*0=1.125



Example

= Two states (s1, s2), Two actions (al,a2), three observations
(z1,z2,z3), R(s1,al) =0, R(s1,a2)=1.5, R(s2,al) =1, R(s2,a2) =0

" Consider first horizon. Best we can do if we only take one action:

Vi(b) = max R(b,a) = max 2 b(s)R(s,a) 2

S

Just a linear function over belief space!

Partitions show where al or a2 are \
optimal. _ "~
0 1

Horizon 1 value function




Horizon 2

1. We will first show how to compute the value of a single
belief state for a given action and observation.

2. Then we show how to compute the value for every belief
state for a given action and observation, in a finite amount
of time.

3. Then we will show how to compute the value of a belief state
given only an action.

4.Finally, we will show how to compute the actual value for a
belief state.



Computing Belief State Value from an Action and Observation

" Given belief state b, what is the value of doing al, if after the
action we receive observation z1?

Immediate I Horizon 1 * We know how to go from b to b’
Rewards Value Function :
given a and z!
\ * Horizon 1 Value function tells us
\ best values for every belief state

~ when just one action left to take.
2
1

T(b,al,z1) /,j
| U

Value of a fixed action and observation




Computing All Belief State Values for an Action and Observation

" Transform belief state b given a and z into b’

= Then we add the immediate rewards to the transformed
function.

Horizon 1
Value Function

Tells us the value of
\ 31.=1> each belief state after

action al is taken and
observation z1 is seen.

S(alzl)

..

N -

0 1 0 1
Transformed value function




Computing a Belief State Value for a Single Action

" Before we computed conditional value given observation z.
" Now we don’t know what observation we’ll get

Immediate I Horizon 1
Rewrards Value Function

Transformed value function



= Best value of belief
state b given first
S(alz1) S(al,z2) S(al,z3) actionis al

zl
\< __"'- 22
i S

Future strategy

0 1 0 1 0 1
Transformed value function for all observations (z1:a2, z2:al, z3:al)




Computing Final Belief State Value

= |f we fix first action to be al and follow strategy (z1:a2, z2:al, z3:al)
as above then we can compute value for every single belief point.

" Add line segment for immediate reward of al and line segments S()
for future strategy. Adding lines gives us a line.
(al,52,al)

L 5
= But when is this strategy good: e o | (1,2,

] :

|
Z2

z3




Computing Final Belief State Value

(al,82,a1)

(82,51,a1) (82,52,81) (e, 22,22)

0 1 (a2,a1,a1) (s2,82,81)  (al,a2,a1) (al,82,82)

Partition for action a1 Value function and partition for action a1



Computing Final Belief State Value

" We can do the same thing for each action

T 1

(a2,a1,a1) (a2,02,a1)  (al,a2,a1) (al,62,82) (al,82,21) (82,2,31)

Value function and partition for action a1 Value function and partition for action a2




Computing Final Belief State Value

= Combine to see where each action gives the highest value

—= —

al al a2 b al al a2 b

Combined a1 and a2 value functions Value function for horizon 2



Horizon 3

= Transform horizon 2 value function for action al all observations

S(al,z1) N S(a1,22) \ S(al, z3)

\\ ~_

Transformed Horizon 2 Value Functions for Action al

" Each color represents a complete future strategy



" Find value function by adding immediate rewards and the S()
functions for each useful strategy

" Only 6 useful strategies!

N —

zl
z2

z3

0 1
Value function for action a1 and horizon 3



zl

z2

* Find value function by adding immediate rewards and the S()

functions for each useful strategy
0 1 0 1

Value function for action a1 and horizon 3 Value function for action a2 and horizon 3 Value fUﬂCtiOﬂ fOf hOf'iZOI'I 3

z3



POMDP Summary

POMDPs compute the optimal action in partially observable,
stochastic domains.

For finite horizon problems, the resulting value functions are
piecewise linear and convex.

In each iteration the number of linear constraints grows
exponentially.

POMDP exact solutions only work with very small state spaces
with small numbers of possible observations and actions.

Lots of current research on approximations and faster solvers!



Next Time: Imitation Learning
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