CS 6300: Artificial Intelligence

Midterm Review

Midterm Logistics

- In our classroom during normal class time
- Wednesday from 3-4:20pm
- 1 sheet of notes (front and back)
- Simple calculator allowed but not needed (all math will be simple)
- Lots of extra-credit.
- Choose your own adventure.
- Focus on solving the easiest problems first and then move to the harder ones.

Topics you'll need to know

- A* and consistent/admissible heuristics
- Alpha-Beta pruning for min-max search
- Expectimax search
- Probability
- conditional prob, (cond.) independence, Bayes' rule, chain rule
- MDPs
- Value Iteration
- Policy Iteration (iterative version, not the closed form solution)
- Temporal difference learning

Topics you'll need to know

- Q-Learning
- Linear value function approximation
- Policy Gradients
- Be able to follow math for policy gradient derivation in slides.
- I won't ask you to rederive full policy gradient
- AlphaGo
- Understand high-level pieces and how they connect

Search Problems

- A search problem consists of:
- A state space

- A successor function (with actions, costs)

- A start state and a goal test
- A solution is a sequence of actions (a plan) which transforms the start state to a goal state

Graph Search Pseudo-Code

```
function Graph-SEARCH(problem, fringe) return a solution, or failure
    closed }\leftarrow\mathrm{ an empty set
    fringe }\leftarrow\operatorname{INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
    loop do
        if fringe is empty then return failure
        node }\leftarrow\mathrm{ REMOVE-FRONT(fringe)
        if GOAL-TEST(problem, STATE[node]) then return node
        if STATE[node] is not in closed then
            add STATE[node] to closed
        for child-node in EXPAND(STATE[node], problem) do
                    if STATE[child-node] is not in closed then fringe }\leftarrow\operatorname{INSERT(child-node, fringe)
        end
    end
```


A-star: Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

- A* Search orders by the sum: $f(n)=g(n)+h(n)$

Admissible Heuristics

- A heuristic h is admissible (optimistic) if:

$$
0 \leq h(n) \leq h^{*}(n)
$$

where $h^{*}(n)$ is the true cost to a nearest goal

- Examples:

- Coming up with admissible heuristics is most of what's involved in using A^{*} in practice.

Consistency of Heuristics

- Main idea: estimated heuristic costs \leq actual costs

- Admissibility: heuristic cost \leq actual cost to goal

$$
h(A) \leq \text { actual cost from } A \text { to } G
$$

- Consistency: heuristic "arc" cost \leq actual cost for each arc

$$
h(A)-h(C) \leq \operatorname{cost}(A \text { to } C)
$$

- Consequences of consistency:
- The f value along a path never decreases

$$
h(A) \leq \operatorname{cost}(A \text { to } C)+h(C)
$$

- A* graph search is optimal

Adversarial Search

Minimax Values

2 estatesUUnder Agent's Control:
States Under Opponent's Control:

Terminal States:

$$
V(s)=\text { known }
$$

Minimax Implementation

def max-value(state):
initialize $v=-\infty$
for each successor of state:
$v=\max (v$, min-value(successor)) return v

```
def min-value(state):
```

initialize $v=+\infty$
for each successor of state:

$$
v=\min (v, \text { max-value(successor)) }
$$

return v

$$
V\left(s^{\prime}\right)=\min _{s \in \operatorname{successors}\left(s^{\prime}\right)} V(s)
$$

Minimax Implementation (Dispatch)

def value(state):
 if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state) if the next agent is MIN: return min-value(state)

def max-value(state): initialize $v=-\infty$ for each successor of state: v = max(v, value(successor)) return v
def min-value(state):
initialize $v=+\infty$
for each successor of state:

$$
v=\min (v, \text { value(successor }))
$$

return v

Minimax Example

Alpha-Beta Implementation

α : MAX's best option on path to root β : MIN's best option on path to root

At root you should initialize $\alpha=-\infty$ and $\beta=+\infty$
def max-value(state, α, β):
initialize $v=-\infty$
for each successor of state:
$v=\max (v$, value(successor, $\alpha, \beta)$)
if $v \geq \beta$ return v
$\alpha=\max (\alpha, v)$
return v
def min-value (state , α, β):
initialize $v=+\infty$
for each successor of state:
$v=\min (v$, value(successor, $\alpha, \beta)$)
if $v \leq \alpha$ return v
$\beta=\min (\beta, v)$
return v

Alpha-Beta Quiz

α : MAX's best option on path to root
β : MIN's best option on path to root
def max-value(state, α, β):
initialize $v=-\infty$
for each successor of state:
$v=\max (v$, value(successor, $\alpha, \beta)$)
if $v \geq \beta$ return v
$\alpha=\max (\alpha, v)$
return v

def min-value(state , α, β):

initialize $v=+\infty$
for each successor of state:
$v=\min (v$, value(successor, $\alpha, \beta))$
if $v \leq \alpha$ return $v \vee$
$\beta=\min (\beta, v)$
return v

Alpha-Beta Example 2

Uncertain Search

Expectimax Pseudocode

def value(state):

if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state) if the next agent is EXP: return exp-value(state)
def max-value(state): initialize $v=-\infty$ for each successor of state:
v = max(v, value(successor)) return v
$[x]=\sum_{x} P(x)$
def exp-value(state):
initialize $v=0$
for each successor of state:
p = probability(successor)
v += p * value(successor)
return v

Expectimax Pseudocode

```
def exp-value(state):
    initialize v = 0
        for each successor of state:
        p = probability(successor)
        v += p * value(successor)
    return v
```


$$
v=(1 / 2)(8)+(1 / 3)(24)+(1 / 6)(-12)=10
$$

Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
- Environment is an extra "random agent" player that moves after each min/max agent

- Each node computes the appropriate
 combination of its children

Probability

Probability Distributions

- Unobserved random variables have distributions

$P(T)$	
T	P
hot	0.5
cold	0.5

$P(W)$	
W	P
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

- A distribution is a TABLE of probabilities of values

Shorthand notation:

$$
\begin{aligned}
P(\text { hot }) & =P(T=\text { hot }) \\
P(\text { cold }) & =P(T=\text { cold }) \\
P(\text { rain }) & =P(W=\text { rain })
\end{aligned}
$$

OK if all domain entries are unique

- A probability (lower case value) is a single number

$$
P(W=\operatorname{rain})=0.1
$$

- Must have: $\forall x \quad P(X=x) \geq 0 \quad$ and $\quad \sum_{x} P(X=x)=1$

Joint Distributions

- A joint distribution over a set of random variables: $X_{1}, X_{2}, \ldots X_{n}$ specifies a real number for each assignment (or outcome):

$$
\begin{aligned}
& P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots X_{n}=x_{n}\right) \\
& P\left(x_{1}, x_{2}, \ldots x_{n}\right)
\end{aligned}
$$

- Must obey:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right) \geq 0
$$

$$
\sum_{\left(x_{1}, x_{2}, \ldots x_{n}\right)} P\left(x_{1}, x_{2}, \ldots x_{n}\right)=1
$$

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Size of distribution if n variables with domain sizes d ?
- For all but the smallest distributions, impractical to write out!

Quiz: Events

- $P(+x,+y)$?
- $P(+x) ?=\sum_{y} p(x=+x, y-y)$
- P(-y OR +x) ?

X	Y	P
$+x$	$+y$	0.2
$+x$	$-y$	0.3
$-x$	$+y$	0.4
$-x$	$-y$	0.1

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

$$
P\left(X_{1}=x_{1}\right)=\sum_{x_{2}} P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)
$$

Quiz: Marginal Distributions

Conditional Probabilities

- A simple relation between joint and conditional probabilities
- In fact, this is taken as the definition of a conditional probability

$$
P(a \mid b)=\frac{P(a, b)}{P(b)}
$$

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$
\begin{aligned}
& P(W=s \mid T=c)=\frac{P(W=s, T=c)}{P(T=c)}=\frac{0.2}{0.5}=0.4 \\
& =P(W=s, T=c)+P(W=r, T=c) \\
&
\end{aligned}
$$

Quiz: Conditional Probabilities

- $P(+x \mid+y)$?

$P(X, Y)$		
X	Y	P
+x	+y	0.2
+x	-y	0.3
-x	+y	0.4
-x	-y	0.1

- $P(-x \mid+y)$?
- $P(-y \mid+x)$?

The Product Rule

- Sometimes have conditional distributions but want the joint

$$
P(y) P(x \mid y)=P(x, y) \quad \Longleftrightarrow \stackrel{P(x \mid y)=\frac{P(x, y)}{P(y)}}{ }
$$

The Product Rule

$$
P(y) P(x \mid y)=P(x, y)
$$

- Example:

$P(W)$		$P(D \mid W)$				$P(D, W)$		
		D	W	P		D	W	P
R	P	wet	sun	0.1		wet	sun	
sun	0.8	dry	sun	0.9		dry	sun	
rain	0.2	wet	rain	0.7		wet	rain	
		dry	rain	0.3		dry	rain	

The Chain Rule

- More generally, can always write any joint distribution as an incremental product of conditional distributions

$$
\begin{aligned}
& P\left(x_{1}, x_{2}, x_{3}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \\
& P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)
\end{aligned}>\frac{\left(x_{1}, x_{2}, x_{3}\right)}{P\left(x_{1}, x_{2}\right)}
$$

- You can pick any order.
- Why is the Chain Rule always true?

Bayes' Rule

- Two ways to factor a joint distribution over two variables:

$$
P(x, y)=P(x \mid y) P(y)=P(y \mid x) P(x) \text { divide }
$$

- Dividing, we get:

$$
P(x \mid y)=\frac{P(y \mid x)}{P(y)} P(x)
$$

- Why is this at all helpful?
- Lets us build one conditional from its reverse
- Often one conditional is tricky but the other one is simple
- Foundation of many systems (e.g. ASR, MT, IRL)

- In the running for most important Al equation!

Independence

- Two variables are independent in a joint distribution if:

$$
\begin{array}{cc}
P(X, Y)=P(X) P(Y) & X \Perp Y \\
\forall x, y P(x, y)=P(x) P(y) &
\end{array}
$$

- Says the joint distribution factors into a product of two simple ones
- Usually variables aren't independent!
- Can use independence as a modeling assumption
- Independence can be a simplifying assumption
- Empirical joint distributions: at best "close" to independent

- What could we assume for \{Weather, Traffic, Cavity\}?
- Independence is like something from CSPs: what?

Example: Independence?

$P_{1}(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$P(T)$

T	P
hot	0.5
cold	0.5

$$
P_{2}(T, W)=P(T) P(W)
$$

$P(W)$

W	P
sun	0.6
rain	0.4

T	W	P
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

$$
X \Perp Y \mid Z
$$

if and only if:

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

or, equivalently, if and only if

$$
\forall x, y, z: P(x \mid z, y)=P(x \mid z)
$$

Probability Recap

- Conditional probability

$$
P(x \mid y)=\frac{P(x, y)}{P(y)}
$$

$$
P(x, y)=P(x \mid y) P(y)
$$

- Product rule
- Chain rule

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots X_{n}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots \\
& =\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

- X, Y independent if and only if: $\quad \forall x, y: P(x, y)=P(x) P(y)$
- X and Y are conditionally independent given Z if and only if:

$$
X \Perp Y \mid Z
$$

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

Markov Decision Processes

- An MDP is defined by:
- A set of states $s \in S$
- A set of actions $a \in A$
- A transition function T(s, a, s')
- Probability that a from s leads to s^{\prime}, i.e., $\mathrm{P}\left(\mathrm{s}^{\prime} \mid \mathrm{s}, \mathrm{a}\right)$
- Also called the model or the dynamics
- A reward function $R\left(s, a, s^{\prime}\right)$
- Sometimes just $R(s)$ or $R\left(s^{\prime}\right)$
- A start state
- Maybe a terminal state
- discount factor
- MDPs are non-deterministic search problems
- One way to solve them is with expectimax search
- We'll have a new tool soon

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$
\begin{aligned}
P\left(S_{t+1}\right. & \left.=s^{\prime} \mid S_{t}=s_{t}, A_{t}=a_{t}, S_{t-1}=s_{t-1}, A_{t-1}, \ldots S_{0}=s_{0}\right) \\
\quad= & P\left(S_{t+1}=s^{\prime} \mid S_{t}=s_{t}, A_{t}=a_{t}\right)
\end{aligned}
$$

Andrey Markov (1856-1922)

- This is just like search, where the successor function could only depend on the current state (not the history)

Important Quantities

- The value (utility) of a state s :
$V^{*}(s)=$ expected utility starting in s and acting optimally
- The value (utility) of a q-state (s, a):
$Q^{*}(s, a)=$ expected utility starting out having taken action a from state s and (thereafter) acting optimally

- The optimal policy:
$\pi^{*}(\mathrm{~s})=$ optimal action from state s

Bellman Equations

- Fundamental operation: compute the (expectimax) value of a state
- Expected utility under optimal action
- Average sum of (discounted) rewards
- This is just what expectimax computed!
- Recursive definition of value:

$$
\begin{aligned}
& V^{*}(s)=\max _{a} Q^{*}(s, a) \\
& Q^{*}(s, a)=\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right] \\
& V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
\end{aligned}
$$

Value Iteration

- Start with $\mathrm{V}_{0}(\mathrm{~s})=0$: no time steps left means an expected reward sum of zero
- Given vector of $\mathrm{V}_{\mathrm{k}}(\mathrm{s})$ values, do one ply of expectimax from each state:

$$
V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

- Repeat until convergence
- Complexity of each iteration: $O\left(S^{2} A\right)$
- Theorem: will converge to unique optimal values
- Basic idea: approximations get refined towards optimal values
- Policy may converge long before values do

Policy Iteration

- Alternative approach for optimal values:
- Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
- Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
- Repeat steps until policy converges
- This is policy iteration
- It's still optimal!
- Can converge (much) faster under some conditions

Policy Iteration

- Evaluation: For fixed current policy π, find values with policy evaluation:
- Iterate until values converge:

$$
V_{k+1}^{\pi_{i}}(s) \leftarrow \sum_{s^{\prime}} T\left(s, \pi_{i}(s), s^{\prime}\right)\left[R\left(s, \pi_{i}(s), s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

- Improvement: For fixed values, get a better policy using policy extraction
- One-step look-ahead:

$$
\pi_{i+1}(s)=\arg \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

Temporal Difference Learning

- Big idea: learn from every experience!
- Update $V(s)$ each time we experience a transition (s, a, s^{\prime}, r)
- Likely outcomes s' will contribute updates more often
- Temporal difference learning ôf values $r_{0}, s_{1}, a_{1}, r_{1}, s_{2}$
- Policy still fixed, still doing evaluation!

- Move values toward value of whatever successor occurs: running average

$$
\begin{array}{ll}
\text { Sample of } \mathrm{V}(\mathrm{~s}): & \text { sample }=R\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right) \\
\text { Update to } \mathrm{V}(\mathrm{~s}): & V^{\pi}(s) \leftarrow(1-\alpha) V^{\pi}(s) \pm(\alpha) \text { sample } \\
\text { Same update: } & V^{\pi}(s) \leftarrow V^{\pi}(s)+\alpha\left(\text { sample }-V^{\pi}(s)\right)
\end{array}
$$

- Q-Learning: sample-based Q-value iteration

$$
Q_{k+1}(s, a) \leftarrow \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{k}\left(s^{\prime}, a^{\prime}\right)\right]
$$

- Learn Q(s,a) values as you go
- Receive a sample (s, a, s^{\prime}, r)
- Consider your old estimate: $Q(s, a)$
- Consider your new sample estimate:

$$
\text { sample }=R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)
$$

- Incorporate the new estimate into a running average:

$$
Q(s, a) \leftarrow(1-\alpha) Q(s, a)+(\alpha)[\text { sample }]
$$

Linear Value Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$
\begin{aligned}
V(s) & =w_{1} f_{1}(s)+w_{2} f_{2}(s)+\ldots+w_{n} f_{n}(s) \\
Q(s, a) & =w_{1} f_{1}(s, a)+w_{2} f_{2}(s, a)+\ldots+w_{n} f_{n}(s, a)
\end{aligned}
$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

$$
Q(s, a)=w_{1} f_{1}(s, a)+w_{2} f_{2}(s, a)+\ldots+w_{n} f_{n}(s, a)
$$

- Q-learning with linear Q-functions:

$$
\begin{array}{rlrl}
\text { transition } & =\left(s, a, r, s^{\prime}\right) & \\
\text { difference } & =\left[r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)\right]-Q(s, a) & \\
Q(s, a) & \leftarrow Q(s, a)+\alpha \text { [difference] } & \text { Exact Q's } \\
w_{i} & \leftarrow w_{i}+\alpha\left[\text { difference] } f_{i}(s, a)\right. & & \text { Approximate Q's }
\end{array}
$$

- Intuitive interpretation:

- Adjust weights of active features
- E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares

DQN

- Approximate QLearning at scale.
- Uses Neural Network for Q-value function approximation.

Two approaches to model-free RL

- Learn Q-values
- Trains Q-values to be consistent. Not directly optimizing for performance.
- Use an objective based on the Bellman Equation

$$
Q_{k+1}(s, a) \leftarrow \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{k}\left(s^{\prime}, a^{\prime}\right)\right]
$$

- Learn Policy Directly
- Have a parameterized policy π_{θ}
- Update the parameters θ to optimize performance of policy.

Policy Gradient RL

- Find a policy that maximizes expected utility (discounted cumulative rewards)

$$
\pi^{*}=\arg \max _{\pi} E_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(s, \pi(s), s^{\prime}\right)\right]
$$

Notation

- Trajectory (rollout, episode) $\tau=\left(s_{0}, a_{0}, s_{1}, a_{1}, \ldots\right)$
- $s_{0} \sim \rho_{0}(\cdot)$ (initial state distribution)
- $s_{t+1} \sim P\left(\cdot \mid s_{t}, a_{t}\right) \quad$ (transition probabilities)
- Rewards $r_{t}=R\left(s_{t}, a_{t}, s_{t+1}\right)$
- Finite-horizon undiscounted return of a trajectory

$$
R(\tau)=\sum_{t=0}^{T} r_{t}
$$

- Actions are sampled from a stochastic parameterized policy π_{θ}

$$
a_{t} \sim \pi_{\theta}\left(\cdot \mid s_{t}\right)
$$

Notation

- Probability of a trajectory (rollout, episode) $\tau=\left(s_{0}, a_{0}, s_{1}, a_{1}, \ldots\right)$

$$
P(\tau \mid \pi)=\rho_{0}\left(s_{0}\right) \prod_{t=0}^{T-1} P\left(s_{t+1} \mid s_{t}, a_{t}\right) \pi_{\theta}\left(a_{t} \mid s_{t}\right)
$$

- Expected Return of a policy $\mathrm{J}(\pi)$

$$
J(\pi)=\sum_{\tau} P(\tau \mid \pi) R(\tau)=E_{\tau \sim \pi}[R(\tau)]
$$

- Goal of RL: Solve the following optimization problem

$$
\pi^{*}=\underset{\pi}{\operatorname{argmax}} J(\pi)
$$

The Policy Gradient

- We can now perform gradient ascent to improve our policy!

$$
\begin{gathered}
\theta_{k+1} \leftarrow \theta_{k}+\left.\alpha \nabla_{\theta} J\left(\pi_{\theta}\right)\right|_{\theta_{k}} \\
\nabla_{\theta} J\left(\pi_{\theta}\right)=E_{\tau \sim \pi_{\theta}}\left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right) R(\tau)\right]
\end{gathered}
$$

Estimate with a sample mean over a set D of policy rollouts given current

$$
\approx \frac{1}{|D|} \sum_{\tau \in D} \sum_{t=0}^{T}\left(\nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right) R(\tau)\right)
$$ parameters

Alpha Go

There will be one short answer question about AlphaGo.
Review high-level ideas from slides. Don't worry about nitty-gritty details.

