CS 6300: Artificial Intelligence

Midterm Review

Midterm Logistics

In our classroom during normal class time
" Wednesday from 3-4:20pm

1 sheet of notes (front and back)

Simple calculator allowed but not needed (all math will be
simple)

Lots of extra-credit.

" Choose your own adventure.

" Focus on solving the easiest problems first and then move to the harder
ones.

Topics you’ll need to know

A* and consistent/admissible heuristics
Alpha-Beta pruning for min-max search
Expectimax search

Probability

= conditional prob, (cond.) independence, Bayes’ rule, chain rule

MDPs

= Value Iteration

= Policy Iteration (iterative version, not the closed form solution)

» Temporal difference learning

3

Topics you’ll need to know

Q-Learning
Linear value function approximation

Policy Gradients
= Be able to follow math for policy gradient derivation in slides.
" | won’t ask you to rederive full policy gradient

AlphaGo
* Understand high-level pieces and how they connect

Search Problems

= A search problem consists of:

s |0 0 0 I O

= A successor function N 1.0 n

(WItII actiot 1S, COStS)
\ !
“E”, 1.0

= A start state and a goal test

= A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE|problem]), fringe)
loop do
if fringe is empty then return failure
node <— REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node

if STATE[node| is not in closed then
add STATE[node] to closed
for child-node in EXPAND(STATE|node|, problem) do

if STATE[child-node] is not in closed then fringe <— INSERT(child-node, fringe)

end
end

A-star: Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

h=2 h=0

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

Admissible Heuristics
= A heuristic h is admissible (optimistic) if:
0 < h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

o -

= Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

Consistency of Heuristics

= Main idea: estimated heuristic costs < actual costs

= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost fromAto G

= Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to C) A<

= Consequences of consistency:

= The f value along a path never decreases

h(A) < cost(A to C) + h(C)

= A* graph search is optimal

Adversarial Search

10

f Minimax Values

W
ZC&tatest’hder Agent’s Control: States Under Opponent’s Control:
V(s) = max V(s) Vi(s') = min V(s)

s’ €successors(s) s€esuccessors(s’)

Terminal States:
V(s) = known

Minimax Implementation

/def max-value(state):)
initialize v = -0
for each successor of state:
v = max(v, min-value(successor))

returnv

- _/
V(s) = max V(')

s’ €successors(s)

(4

ef min-value(state):

initialize v = +oo

for each successor of state:
v = min(v, max-value(successor))

\

\ returnv /
V(s') = min V(s)

s€successors(s’)

Minimax Implementation (Dispatch)

P

def value(state):

A\

if the state is a terminal state: return the state’s utility
if the next agent is MIAX: return max-value(state)
if the next agent is MIN: return min-value(state)

\

4

/def max-value(state): \
initialize v = -0
for each successor of state:

v = max(v, value(successor))
return v

_ J

4

4

/def min-value(state): \
initialize v = +o0
for each successor of state:

v = min(v, value(successor))
return v

_ J

Minimax Example

Alpha-Beta Implementation

a: MAX’s best option on path to root
B: MIN’s best option on path to root

At root you should
Initialize ¢ = —oo
and f = 4o

\

/def max-value(state, a, B):

initialize v = -0

for each successor of state:
v = max(v, value(successor, a, B))
if v> B returnv
o = max(a, v)

\ return v /

@ N

ef min-value(state, a, B):

initialize v = +oo

for each successor of state:
v = min(v, value(successor, a,))
ifv<areturnv

B =min(pB, v)

\ return v /

a: MAX’s best option on path to root
B: MIN’s best option on path to root

Y

\ /FDO/%@X \) Yg/—*oOj

Q.

ef max-value(state, a, B):

initialize v = -0
for each successor of state:
v =max(v, value(successor, a, B))

“ a

\(C?) ~

if v preturnv
a = max(a, v)

turnv
\ re
(4

ef min-value(state , a, B):

initialize v = +oo

for each successor of state:
v = min(v, value(successor, a, B))

ifv<areturnv 4/ 10 8 4 50

B =min(B, v)

return v
o /

/
\ A

Alpha-Beta Example 2

‘ 10 100 ‘

00
=
N
o

Uncertain Search

18

Expectimax Pseudocode

def value(state):

o

if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

~

J

o

/def max-value(state):

~

initialize v = -0
for each successor of state:

v = max(v, value(successor))
return v

5

EL

<

)

;Z?(%%

ef exp-value(state):
initialize v=0
for each successor of state:
p = probability(successor)
v += p * value(successor)

\ return v

~

5

Expectimax Pseudocode

/def exp-value(state):
initialize v=0

~

for each successor of state:
p = probability(successor)
v += p * value(successor)

\ return v

1/2

/

1/3

v=(1/2)(8)+(1/3) (24) + (1/6) (-12) = 10

1/6

-12

Mixed Layer Types

= E.g. Backgammon
= Expectiminimax

= Environment is an
extra “random
agent” player that
moves after each
min/max agent

= Each node
computes the
appropriate
combination of its
children

Probability

22

Unobserved random variables have distributions

P(T)
T p
hot 0.5
cold | 0.5

A distribution is a TABLE of probabilities of values

Probability Distributions

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0

Shorthand notation:

P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),

OK if all domain entries are unique

A probability (lower case value) is a single number

Must have:

P(W =rain) = 0.1

Ve P(X =x2)>0

and

Y P(X=uz)=1

Joint Distributions

" A joint distribution over a set of random variables: X4, X»,... X,

specifies a real number for each assignment (or outcome):

P(X1=21,Xo0=xo,... Xy, = xn)

P(T,W)
P(x1,20,...2n)
T W P
= Must obey: P(xz1,25,...2n) >0 hot | sun | 0.4
hot | rain 0.1
Z P(fﬁlana e xn) =1 cold | sun 0.2
(21,22,...0n) cold | rain | 0.3

Size of distribution if n variables with domain sizes d?

= For all but the smallest distributions, impractical to write out!

" P(+x, +y) ?

Quiz: Events

= P(+x)? - ZQ(X;W’\/:V)B

" P(-yOR+x)?

)

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

Marginal Distributions

Marginal distributions are sub-tables which eliminate variables

Marginalization (summing out): Combine collapsed rows by adding

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

——-
P(t) =) P(ts)

—
P(s) = Z P(t, s)
t

P(X1=uz1) =) P(X1=u11,Xo =)

P(T)

T P
hot 0.5
cold 0.5

P(W)
W P
sun 0.6
rain 0.4

Quiz: Marginal Distributions

—

P(z) =) P(z,y)
Y

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

—

P(y) =) P(xz,y)

Conditional Probabilities

= Asimple relation between joint and conditional probabilities

= |n fact, this is taken as the definition of a conditional probability

P(a,b)

P(alb) = P ()

P(T, W)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(a)

— 5T = 2
PW=sT=c)= LW=85T=c)_ 02
P(T = c) 0.5

__—

=PW=s,T=c)+P(W=r,T=c)
= 02403 =0.5

= 0.4

Quiz: Conditional Probabilities

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

= P(+x | +y)?

= P(-x|+y)?

" Py | +x)?

The Product Rule

= Sometimes have conditional distributions but want the joint

P(y)P(z|y) = P(x,y) <> ran="7500

\J

~ =l

The Product Rule

P(y)P(z|y) = P(x,y)

= Example:
P(D|W) P(D,W)
P(W) D W | P D W
R p wet sun 0.1 wet sun
sun | 0.8 ary sun | 09 <:> ary el
ain 02 wet rain 0.7 wet rain
dry rain | 0.3 dry rain

The Chain Rule

More generally, can always write any joint distribution as an
incremental product of conditional dlsw (= /%

o

P(z1,72,23) = P(21) P(22]21) P(z3|z1, 2)

\> ? (V{ YC >(3>

P(x1,z2,...20) ZHP(zcikcl...a:?;_l) /?/_d
2

)Nz
You can pick any order.

Why is the Chain Rule always true?

Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P.s) = PGIDPW= PGP ||y o | TEEPE

= Dividing, we get:

Plaly) = 50 Pa)

= Why is this at all helpful?

= Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
» Foundation of many systems (e.g. ASR, MT, IRL)

= |n the running for most important Al equation!

http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg

Independence

= Two variables are independent in a joint distribution if:

P(X,Y) = P(X)P(Y)

Ve,y P(x,y) = P(x)P(y)

= Says the joint distribution factors into a product of two simple ones
= Usually variables aren’t independent!

X11Y

= Can use independence as a modeling assumption
= Independence can be a simplifying assumption
= Empirical joint distributions: at best “close” to independent
= What could we assume for {Weather, Traffic, Cavity}?

" |ndependence is like something from CSPs: what?

P1(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

Example: Independence?

Ps (Ta W) —
T W P
hot sun 0.3
hot rain 0.2
cold sun 0.3
cold rain 0.2

P(T)
T P
hot 0.5
cold 0.5
P(W)
W P
sun 0.6
rain 0.4

Conditional Independence

= Unconditional (absolute) independence very rare (why?)

" Conditional independence is our most basic and robust form
of knowledge about uncertain environments.

= X is conditionally independent of Y given Z XJ_|_Y|Z

if and only if:
Vz,y, 2 P(z,ylz) = P(z|z) P(yl|2)
or, equivalently, if and only if

Va,y,z 1 Px|z,y) = P(z|2)

Probability Recap

Conditional probability P(xly) =
Product rule P(z,y)
Chain rule P(X1,X2,...Xn) =

P(z,y) (5“7{5 KW%N PN
P(y) O(% m’

= P(z|y)P(y)

T
— H P(X’ilxla"°7Xi—1)

1=1

X, Y independent if and only if: Va,y : P(z,y) = P(z)P(y)

X and Y are conditionally independent given Z if and only if:

Vz,y,z . P(x,y|z)

= P(z|2)P(y|2)

P(X1)P(X2|X1)P(X3]X1,X2)...

X1Y|Z

Markov Decision Processes

= An MDP is defined by:

m Asetofstatess €S
m AsetofactionsaceA

= A transition function T(s, a, s’)
= Probability that a from sleadsto s’, i.e., P(s’| s, a)
= Also called the model or the dynamics

= Areward function R(s, a, s’)
= Sometimes just R(s) or R(s’)

= A start state

= Maybe a terminal state

o X ot (i X

= MDPs are non-deterministic search problems

= One way to solve them is with expectimax search
= We’ll have a new tool soon

[Demo — gridworld manual intro (L8D1)]

What is Markov about MDPs?

= “Markov” generally means that given the present state, the
future and the past are independent

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(St—i—l = 3”575 — StaAt = a¢, St—1 = 8t—1,At—1, ...5 = So)
— P(St—H — Sl‘St = 54, Ay = CLt)

Andrey Markov
(1856-1922)

= This is just like search, where the successor function could only
depend on the current state (not the history)

Important Quantities

"= The value (utility) of a state s:

V7(s) = expected utility starting in s and A 52
acting optimally state

ol (s,a)isa
= The value (utility) of a g-state (s,a): B g-state
Q’(s,a) = expected utility starting out o - N
having taken action a from state s and ‘ (s,a,8') is a
(thereafter) acting optimally / g transition

" The optimal policy:
n"(s) = optimal action from state s

[Demo — gridworld values (L8D4)]

Bellman Equations

* Fundamental operation: compute the (expectimax) value of a state
= Expected utility under optimal action
= Average sum of (discounted) rewards
" This is just what expectimax computed!

= Recursive definition of value: ,
V*(s) = maxQ*(s, a)

Q*(s,a) => T(s,a, s {R(s, a,s’) + *yV*(s’)]

V*i(s) = mngT(s, a,s’) {R(S,CL, s + ’)/V*(S/)}

S

Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Vit1(s) maaxZT(s, a,s’) {R(s,a, s + ’YV]{(S,)}

5 Bellman Update Equation

Repeat until convergence

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

= Repeat steps until policy converges

= This is policy iteration
" |t's still optimal!

= Can converge (much) faster under some conditions

Policy Iteration

= Evaluation: For fixed current policy =, find values with policy evaluation:

= [terate until values converge:

ka_zl'_l(s) — > T(s,m(s),s") [R(s, mi(s),s") + Vkm(sl)}

= |mprovement: For fixed values, get a better policy using policy extraction

= One-step look-ahead:

mi4+1(s) = arg maXZT(s, a,s’) [R(s, a,s’) + nyWi(sl)}

S

Temporal Difference Learning

= Bigidea: learn from every experience!
= Update V(s) each time we experience a transition (s, a, s’, r)

n(s)
= Likely outcomes s’ will contribute updates more often
S, a r S o S
" Temporal difference learning 6f valtes ° / L+ 110 =2

= Policy still fixed, still doing evaluation!
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,7(s),s) +~4V™(s)
Update to V(s): VT(s) + (1 —a)V"(s) 4+ (a)sample

Same update: V7T (s) < V"™(s) + a(sample — V"™ (s))

" Q-Learning: sample-based Q-value iteration

Qt1(s,a) « S T(s,a,8) |R(s,a,8) +7 maxQu(s',a')

" Learn Q(s,a) values as you go
= Receive a sample (s,a,s’,r)

= Consider your old estimate: Q(s,a) rw
S

= Consider your new sample estimate

sample = R(s,a,s’) + max Q(s',a")

a

" |ncorporate the new estimate into a running average:

Q(s,a) — (1 —)Q(s,a) + (o) [sample]
OL51) = O &) 4+ ok [gomgr = QLS

Linear Value Functions

Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

V(s) =wif1(s) +wafa(s) + ... + wnfn(s)
Q(s,a) = wi f1(s,a)Fwafa(s,a)+...+wnfn(s,a)
Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

QGs,0) = wifa(s,) twnfa(s @)+ Funalsia) |

" Q-learning with linear Q-functions:

transition = (s,a,r,s’)
o Q(S,CL)
Q(s,a) « Q(s,a) + «[difference] Exact Q’s

difference = [7" + v max Q(s',a")
a

w; <+ w; + « [difference] f;(s,a) Approximate Qs

= |ntuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

" Formal justification: online least squares

DQON

= Approximate Q-

-9

3] (0] (@] |@]
S| By ~ 2> v +f + +
2 3 L B
o = N
» s N

o - / ., -
2 8 & 8 8 9 9 8 0 8 O " O O S S B B

O
¥+

+

O o] &
+ +1 +
> 2 14

ge]
i
0
@
c
c
o)
o
=
=
o

> o & 2 % ¢ 9 ..\.‘ﬁ\\.. * & & 9 & & 9 D

—

b

/-
/

il , .. R
o0 0000 00000000000 e

Fully connected

=St _HW J= =

975 Ranarn eRonen

I\
OoQONpE QEOOPEE LR
\ _._ \.\. 7 A /. \ .._ \.\. Iy //f ! i

Wil
T

-4 h-4 -4 W Y4

®

Convolution
w

Convolution
-

for Q-value function

approximation.

Learning at scale.
= Uses Neural Network

Two approaches to model-free RL

= | earn Q-values

" Trains Q-values to be consistent. Not directly optimizing for
performance.

= Use an objective based on the Bellman Equation

Qt1(s,a) « S T(s,a,8) | R(s,a,8) +7 maxQu(s',a)

= Learn Policy Directly
" Have a parameterized policy mg

» Update the parameters 6 to optimize performance of policy.
50

Policy Gradient RL

" Find a policy that maximizes expected utility (discounted
cumulative rewards)

m* = argmax E,, E v'R(s,m(s),s")
T
Lt=0

Notation

(o \
. . / /
= Trajectory (rollout, episode) T = (s, ao,“sl,al,v...)

" 5o ~ Po(+) (initial state distribution)
" s;.q1 ~ P(:|s;, a;) (transition probabilities)
= Rewards 1 = R(S¢, ¢, Sgt1)

* Finite-horizon undiscounted return of a trajectory
T

R(T) = Zrt

t=0
= Actions are sampled from a stochastic parameterized policy g
ar ~ g (- |St)

Notation

= Probability of a trajectory (rollout, episode) T = (sg, ag, S1, A1, -+)
T—1
P(t|m) = po(so) np(5t+1|5t» ac)mg(az|se)
t=0
= Expected Return of a policy J(m)

J(m) =) P(elm) R(x) = Byl R(D)

" Goal of RL: Solve the following optimization problem
n" = argmax J (1)
T

The Policy Gradient

" We can now perform gradient ascent to improve our policy!

Or+1 < Ok +aVy/ () ‘9
k

Vo) (6) = Ern, Zve log 7p(acs) R(2)

Estimate with a
sample mean over a ZZ Y. loo ma(als) Rt
set D of policy rollouts |D| (Vo logma(aclsy) R(7))
given current TED t=

parameters

1= 4 -
4 > 4 3 ‘ /
1 h
- = ;
; e 7
Lo - L &
s { " : v {
A A / r
—— o
4
v /
\ \ -
’

ALPHAG o0 . e
00:08:32 e | ® ¢ LEE SEDOL
LA , ® el / i |« 00:00:27

eCe
® O
® ®

o el

AlphaGo

Google DeepMind

There will be one short answer question about AlphaGo.

Review high-level ideas from slides. Don’t worry about nitty-gritty
details.

	Slide 1: CS 6300: Artificial Intelligence
	Slide 2: Midterm Logistics
	Slide 3: Topics you’ll need to know
	Slide 4: Topics you’ll need to know
	Slide 5: Search Problems
	Slide 6: Graph Search Pseudo-Code
	Slide 7: A-star: Combining UCS and Greedy
	Slide 8: Admissible Heuristics
	Slide 9: Consistency of Heuristics
	Slide 10: Adversarial Search
	Slide 11: Minimax Values
	Slide 12: Minimax Implementation
	Slide 13: Minimax Implementation (Dispatch)
	Slide 14: Minimax Example
	Slide 15: Alpha-Beta Implementation
	Slide 16: Alpha-Beta Quiz
	Slide 17: Alpha-Beta Example 2
	Slide 18: Uncertain Search
	Slide 19: Expectimax Pseudocode
	Slide 20: Expectimax Pseudocode
	Slide 21: Mixed Layer Types
	Slide 22: Probability
	Slide 23: Probability Distributions
	Slide 24: Joint Distributions
	Slide 25: Quiz: Events
	Slide 26: Marginal Distributions
	Slide 27: Quiz: Marginal Distributions
	Slide 28: Conditional Probabilities
	Slide 29: Quiz: Conditional Probabilities
	Slide 30: The Product Rule
	Slide 31: The Product Rule
	Slide 32: The Chain Rule
	Slide 33: Bayes’ Rule
	Slide 34: Independence
	Slide 35: Example: Independence?
	Slide 36: Conditional Independence
	Slide 37: Probability Recap
	Slide 38: Markov Decision Processes
	Slide 39: What is Markov about MDPs?
	Slide 40: Important Quantities
	Slide 41: Bellman Equations
	Slide 42: Value Iteration
	Slide 43: Policy Iteration
	Slide 44: Policy Iteration
	Slide 45: Temporal Difference Learning
	Slide 46: Q-Learning
	Slide 47: Linear Value Functions
	Slide 48: Approximate Q-Learning
	Slide 49: DQN
	Slide 50: Two approaches to model-free RL
	Slide 51: Policy Gradient RL
	Slide 52: Notation
	Slide 53: Notation
	Slide 54: The Policy Gradient
	Slide 55: Alpha Go

