
CS 6300: Artificial Intelligence

Midterm Review

Midterm Logistics

▪ In our classroom during normal class time

▪ Wednesday from 3-4:20pm

▪ 1 sheet of notes (front and back)

▪ Simple calculator allowed but not needed (all math will be
simple)

▪ Lots of extra-credit.

▪ Choose your own adventure.

▪ Focus on solving the easiest problems first and then move to the harder
ones.

2

Topics you’ll need to know

▪ A* and consistent/admissible heuristics

▪ Alpha-Beta pruning for min-max search

▪ Expectimax search

▪ Probability

▪ conditional prob, (cond.) independence, Bayes’ rule, chain rule

▪ MDPs

▪ Value Iteration

▪ Policy Iteration (iterative version, not the closed form solution)

▪ Temporal difference learning
3

Topics you’ll need to know

▪ Q-Learning

▪ Linear value function approximation

▪ Policy Gradients

▪ Be able to follow math for policy gradient derivation in slides.

▪ I won’t ask you to rederive full policy gradient

▪ AlphaGo

▪ Understand high-level pieces and how they connect

4

Search Problems

▪ A search problem consists of:

▪ A state space

▪ A successor function
(with actions, costs)

▪ A start state and a goal test

▪ A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

Graph Search Pseudo-Code

if STATE[child-node] is not in closed then

A-star: Combining UCS and Greedy

▪ Uniform-cost orders by path cost, or backward cost g(n)

▪ Greedy orders by goal proximity, or forward cost h(n)

▪ A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G

h=5

h=6

h=2

1

8

1

1

2

h=6
h=0

c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

Admissible Heuristics

▪ A heuristic h is admissible (optimistic) if:

where is the true cost to a nearest goal

▪ Examples:

▪ Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

4
15

Consistency of Heuristics

▪ Main idea: estimated heuristic costs ≤ actual costs

▪ Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

▪ Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

▪ Consequences of consistency:

▪ The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

▪ A* graph search is optimal

3

A

C

G

h=4 h=1
1

h=2

Adversarial Search

10

Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

Minimax Implementation

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Implementation (Dispatch)

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Minimax Example

12 8 14 53 2 24 6

Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

At root you should

initialize 𝛼 = −∞

and 𝛽 = +∞

Alpha-Beta Quiz

Alpha-Beta Example 2

Uncertain Search

18

Expectimax Pseudocode

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def exp-value(state):
initialize v = 0
for each successor of state:
 p = probability(successor)

v += p * value(successor)
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Expectimax Pseudocode

def exp-value(state):
initialize v = 0
for each successor of state:
 p = probability(successor)

v += p * value(successor)
return v 5 78 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10

Mixed Layer Types

▪ E.g. Backgammon

▪ Expectiminimax

▪ Environment is an
extra “random
agent” player that
moves after each
min/max agent

▪ Each node
computes the
appropriate
combination of its
children

4 -2 3 7 1 5 11 -5

Probability

22

Shorthand notation:

OK if all domain entries are unique

Probability Distributions

▪ Unobserved random variables have distributions

▪ A distribution is a TABLE of probabilities of values

▪ A probability (lower case value) is a single number

▪ Must have: and

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

Joint Distributions

▪ A joint distribution over a set of random variables:
specifies a real number for each assignment (or outcome):

▪ Must obey:

▪ Size of distribution if n variables with domain sizes d?

▪ For all but the smallest distributions, impractical to write out!

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

Quiz: Events

▪ P(+x, +y) ?

▪ P(+x) ?

▪ P(-y OR +x) ?

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

Marginal Distributions

▪ Marginal distributions are sub-tables which eliminate variables

▪ Marginalization (summing out): Combine collapsed rows by adding

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4

Quiz: Marginal Distributions

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

X P

+x

-x

Y P

+y

-y

Conditional Probabilities

▪ A simple relation between joint and conditional probabilities
▪ In fact, this is taken as the definition of a conditional probability

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(b)P(a)

P(a,b)

Quiz: Conditional Probabilities

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

▪ P(+x | +y) ?

▪ P(-x | +y) ?

▪ P(-y | +x) ?

The Product Rule

▪ Sometimes have conditional distributions but want the joint

The Product Rule

▪ Example:

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

D W P

wet sun 0.08

dry sun 0.72

wet rain 0.14

dry rain 0.06

The Chain Rule

▪ More generally, can always write any joint distribution as an
incremental product of conditional distributions

▪ You can pick any order.

▪ Why is the Chain Rule always true?

Bayes’ Rule

▪ Two ways to factor a joint distribution over two variables:

▪ Dividing, we get:

▪ Why is this at all helpful?

▪ Lets us build one conditional from its reverse
▪ Often one conditional is tricky but the other one is simple
▪ Foundation of many systems (e.g. ASR, MT, IRL)

▪ In the running for most important AI equation!

That’s my rule!

http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg

Independence

▪ Two variables are independent in a joint distribution if:

▪ Says the joint distribution factors into a product of two simple ones

▪ Usually variables aren’t independent!

▪ Can use independence as a modeling assumption
▪ Independence can be a simplifying assumption

▪ Empirical joint distributions: at best “close” to independent

▪ What could we assume for {Weather, Traffic, Cavity}?

▪ Independence is like something from CSPs: what?

Example: Independence?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4

Conditional Independence

▪ Unconditional (absolute) independence very rare (why?)

▪ Conditional independence is our most basic and robust form
of knowledge about uncertain environments.

▪ X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if

Probability Recap

▪ Conditional probability

▪ Product rule

▪ Chain rule

▪ X, Y independent if and only if:

▪ X and Y are conditionally independent given Z if and only if:

Markov Decision Processes

▪ An MDP is defined by:
▪ A set of states s  S
▪ A set of actions a  A
▪ A transition function T(s, a, s’)

▪ Probability that a from s leads to s’, i.e., P(s’| s, a)
▪ Also called the model or the dynamics

▪ A reward function R(s, a, s’)
▪ Sometimes just R(s) or R(s’)

▪ A start state
▪ Maybe a terminal state

▪ MDPs are non-deterministic search problems
▪ One way to solve them is with expectimax search
▪ We’ll have a new tool soon

[Demo – gridworld manual intro (L8D1)]

What is Markov about MDPs?

▪ “Markov” generally means that given the present state, the
future and the past are independent

▪ For Markov decision processes, “Markov” means action
outcomes depend only on the current state

▪ This is just like search, where the successor function could only
depend on the current state (not the history)

Andrey Markov
(1856-1922)

Important Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

▪ The optimal policy:
*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

[Demo – gridworld values (L8D4)]

Bellman Equations

▪ Fundamental operation: compute the (expectimax) value of a state

▪ Expected utility under optimal action

▪ Average sum of (discounted) rewards

▪ This is just what expectimax computed!

▪ Recursive definition of value:

a

s

s, a

s,a,s’

s’

Value Iteration

▪ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

▪ Given vector of Vk(s) values, do one ply of expectimax from each state:

▪ Repeat until convergence

▪ Complexity of each iteration: O(S2A)

▪ Theorem: will converge to unique optimal values
▪ Basic idea: approximations get refined towards optimal values
▪ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Bellman Update Equation

Policy Iteration

▪ Alternative approach for optimal values:

▪ Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

▪ Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

▪ Repeat steps until policy converges

▪ This is policy iteration

▪ It’s still optimal!

▪ Can converge (much) faster under some conditions

Policy Iteration

▪ Evaluation: For fixed current policy , find values with policy evaluation:
▪ Iterate until values converge:

▪ Improvement: For fixed values, get a better policy using policy extraction
▪ One-step look-ahead:

Temporal Difference Learning

▪ Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)

▪ Likely outcomes s’ will contribute updates more often

▪ Temporal difference learning of values
▪ Policy still fixed, still doing evaluation!

▪ Move values toward value of whatever successor occurs: running average

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Same update:

Q-Learning

▪ Q-Learning: sample-based Q-value iteration

▪ Learn Q(s,a) values as you go

▪ Receive a sample (s,a,s’,r)

▪ Consider your old estimate:

▪ Consider your new sample estimate:

▪ Incorporate the new estimate into a running average:

Linear Value Functions

▪ Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

▪ Advantage: our experience is summed up in a few powerful numbers

▪ Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

▪ Q-learning with linear Q-functions:

▪ Intuitive interpretation:
▪ Adjust weights of active features
▪ E.g., if something unexpectedly bad happens, blame the features that were on:

disprefer all states with that state’s features

▪ Formal justification: online least squares

Exact Q’s

Approximate Q’s

DQN

49

▪ Approximate Q-
Learning at scale.

▪ Uses Neural Network
for Q-value function
approximation.

Two approaches to model-free RL

▪ Learn Q-values

▪ Trains Q-values to be consistent. Not directly optimizing for
performance.

▪ Use an objective based on the Bellman Equation

▪ Learn Policy Directly

▪ Have a parameterized policy 𝜋𝜃

▪ Update the parameters 𝜃 to optimize performance of policy.
50

Policy Gradient RL

▪ Find a policy that maximizes expected utility (discounted
cumulative rewards)

𝜋∗ = 𝑎𝑟𝑔max
𝜋

𝐸𝜋 ෍

𝑡=0

∞

𝛾𝑡𝑅 𝑠, 𝜋 𝑠 , 𝑠′

Notation

▪ Trajectory (rollout, episode) 𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, …)

▪ 𝑠0 ∼ 𝜌0 ⋅ (initial state distribution)

▪ 𝑠𝑡+1 ∼ 𝑃 ⋅ 𝑠𝑡 , 𝑎𝑡 (transition probabilities)

▪ Rewards 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)

▪ Finite-horizon undiscounted return of a trajectory

𝑅 𝜏 = ෍

𝑡=0

𝑇

𝑟𝑡

▪ Actions are sampled from a stochastic parameterized policy 𝜋𝜃

𝑎𝑡 ∼ 𝜋𝜃(⋅ |𝑠𝑡)

Notation

▪ Probability of a trajectory (rollout, episode) 𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, …)

𝑃 𝜏 𝜋 = 𝜌0 𝑠0 ෑ

𝑡=0

𝑇−1

𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

▪ Expected Return of a policy J 𝜋

𝐽 𝜋 = ෍

𝜏

𝑃 𝜏 𝜋 𝑅 𝜏 = 𝐸𝜏∼𝜋[𝑅 𝜏]

▪ Goal of RL: Solve the following optimization problem
𝜋∗ = argmax

𝜋
𝐽(𝜋)

The Policy Gradient

▪ We can now perform gradient ascent to improve our policy!

∇𝜃𝐽 𝜋𝜃 = 𝐸𝜏∼𝜋𝜃
෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡) 𝑅(𝜏)

𝜃𝑘+1 ← 𝜃𝑘 + 𝛼∇𝜃𝐽 𝜋𝜃 ቚ
𝜃𝑘

≈
1

|𝐷|
෍

𝜏∈𝐷

෍

𝑡=0

𝑇

(∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡) 𝑅(𝜏))

Estimate with a

sample mean over a

set D of policy rollouts

given current

parameters

Alpha Go

There will be one short answer question about AlphaGo.

Review high-level ideas from slides. Don’t worry about nitty-gritty
details.

	Slide 1: CS 6300: Artificial Intelligence
	Slide 2: Midterm Logistics
	Slide 3: Topics you’ll need to know
	Slide 4: Topics you’ll need to know
	Slide 5: Search Problems
	Slide 6: Graph Search Pseudo-Code
	Slide 7: A-star: Combining UCS and Greedy
	Slide 8: Admissible Heuristics
	Slide 9: Consistency of Heuristics
	Slide 10: Adversarial Search
	Slide 11: Minimax Values
	Slide 12: Minimax Implementation
	Slide 13: Minimax Implementation (Dispatch)
	Slide 14: Minimax Example
	Slide 15: Alpha-Beta Implementation
	Slide 16: Alpha-Beta Quiz
	Slide 17: Alpha-Beta Example 2
	Slide 18: Uncertain Search
	Slide 19: Expectimax Pseudocode
	Slide 20: Expectimax Pseudocode
	Slide 21: Mixed Layer Types
	Slide 22: Probability
	Slide 23: Probability Distributions
	Slide 24: Joint Distributions
	Slide 25: Quiz: Events
	Slide 26: Marginal Distributions
	Slide 27: Quiz: Marginal Distributions
	Slide 28: Conditional Probabilities
	Slide 29: Quiz: Conditional Probabilities
	Slide 30: The Product Rule
	Slide 31: The Product Rule
	Slide 32: The Chain Rule
	Slide 33: Bayes’ Rule
	Slide 34: Independence
	Slide 35: Example: Independence?
	Slide 36: Conditional Independence
	Slide 37: Probability Recap
	Slide 38: Markov Decision Processes
	Slide 39: What is Markov about MDPs?
	Slide 40: Important Quantities
	Slide 41: Bellman Equations
	Slide 42: Value Iteration
	Slide 43: Policy Iteration
	Slide 44: Policy Iteration
	Slide 45: Temporal Difference Learning
	Slide 46: Q-Learning
	Slide 47: Linear Value Functions
	Slide 48: Approximate Q-Learning
	Slide 49: DQN
	Slide 50: Two approaches to model-free RL
	Slide 51: Policy Gradient RL
	Slide 52: Notation
	Slide 53: Notation
	Slide 54: The Policy Gradient
	Slide 55: Alpha Go

