Inverse RL and Reward Learning from Preferences

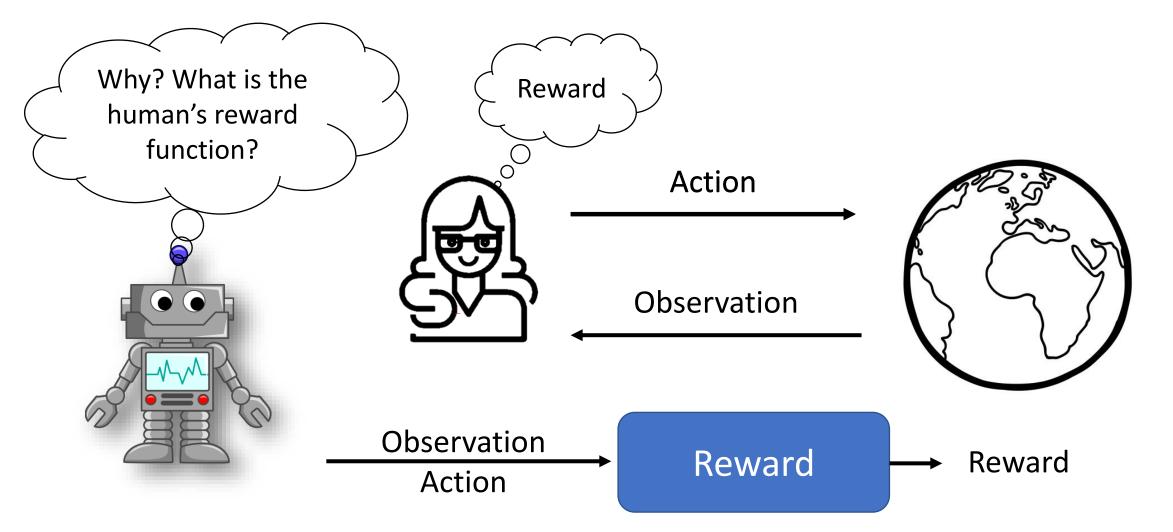
Instructor: Daniel Brown

[Some slides adapted from Sergey Levine (CS 285) and Alina Vereshchaka (CSE4/510)]

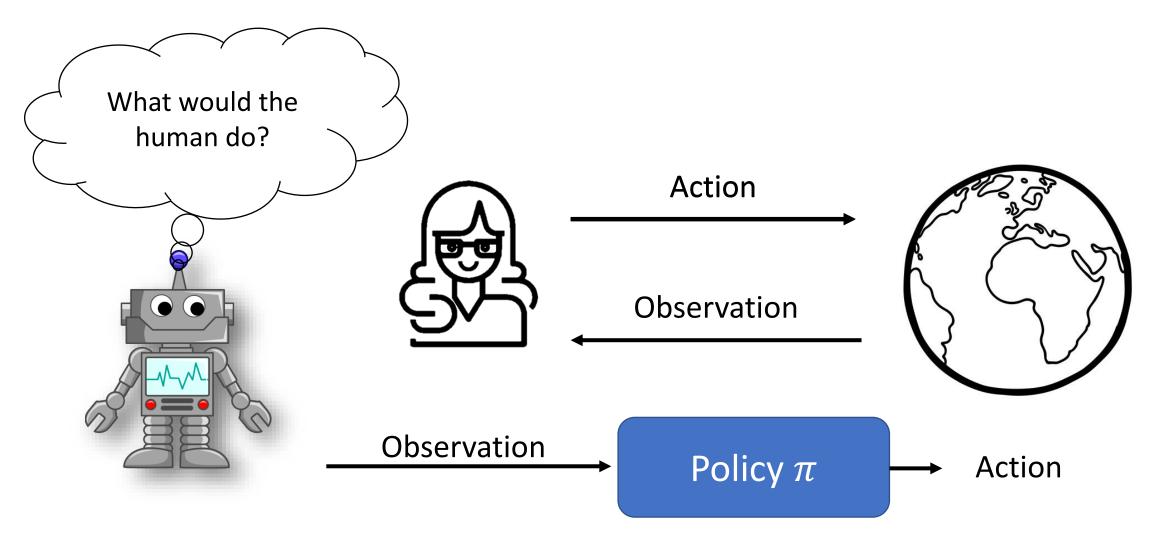
Course feedback is open

- Extra credit if class response rate is 70% or higher
 - Sliding scale if we reach 70%:
 - Extra credit points = response_rate_percentage / 10

Reward Learning (Inverse Reinforcement Learning)



Why not just imitate behavior? (Behavioral Cloning)



Human Intent Inference

Inverse Reinforcement Learning

- Given
 - MDP without a reward function
 - Demonstrations from an optimal policy π^*
- Recover the reward function *R* that makes π^* optimal

MDP/R

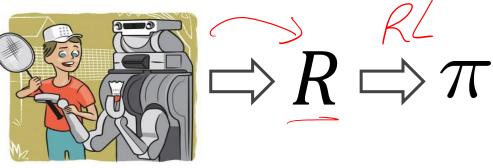
Imitation Learning

Behavioral Cloning

$$\Rightarrow \pi$$

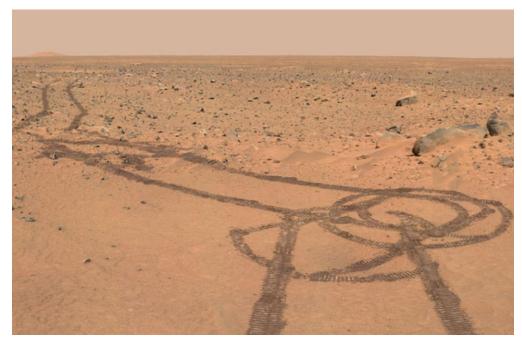
- Answers the "How?" question
- Mimic the demonstrator
- Learn mapping from states to actions
- Computationally efficient
- Compounding errors

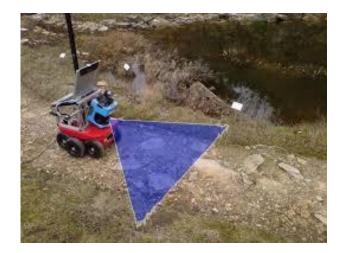
Inverse Reinforcement Learning



- Answers the "Why?" question
- Explain the demonstrator's behavior
- Learn a reward function capturing the demonstrator's intent
- Can require lots of data and compute
- Better generalization. Can recover from arbitrary states

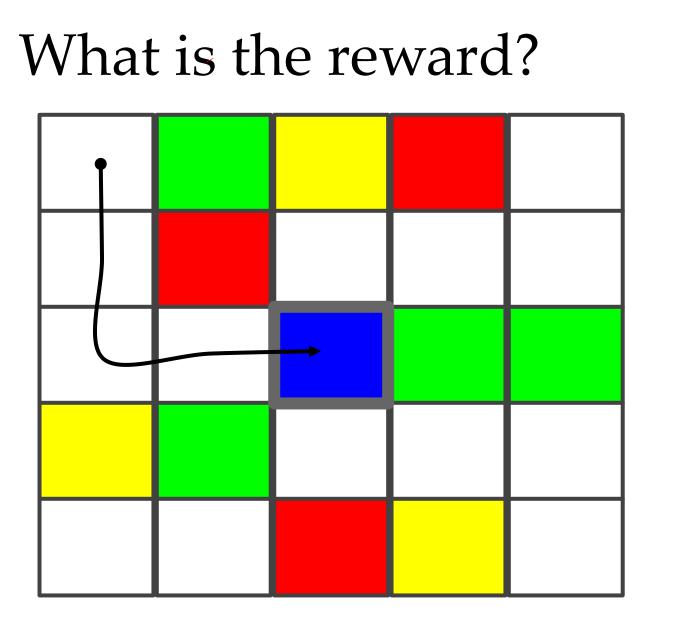
IRL Example: Teaching a robot to navigate through demonstrations

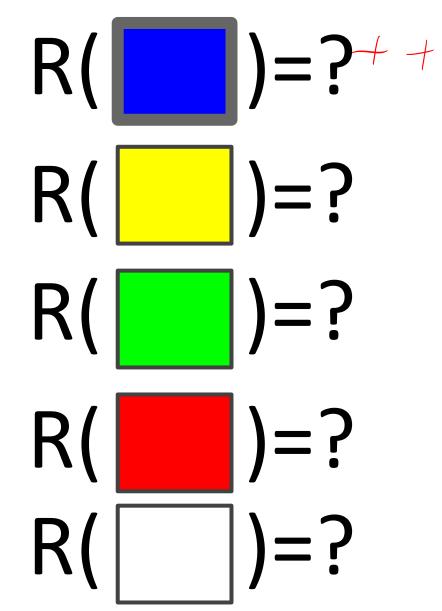


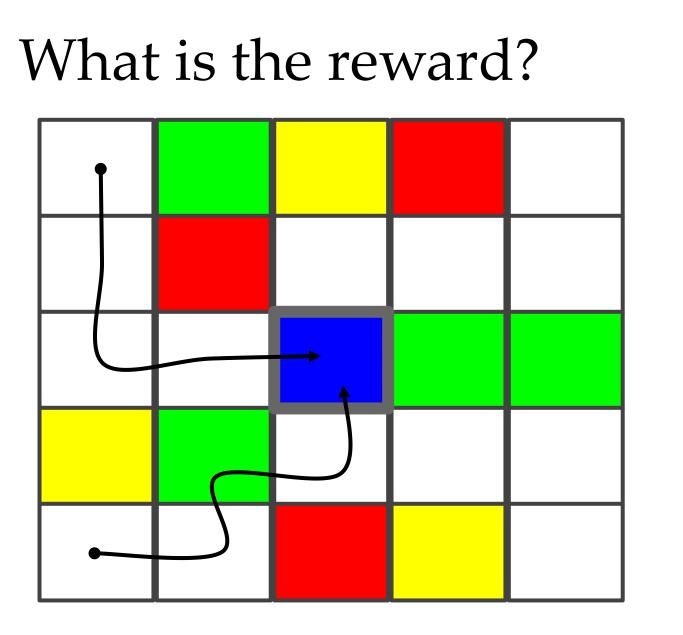


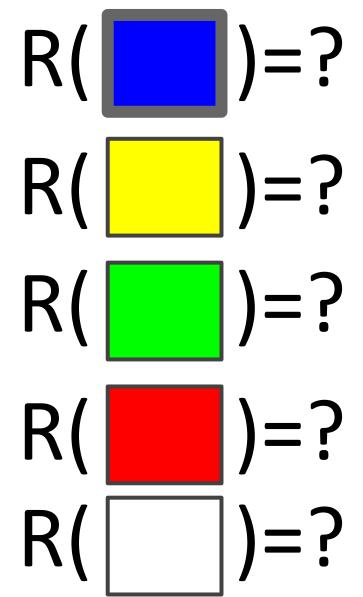
Toy version

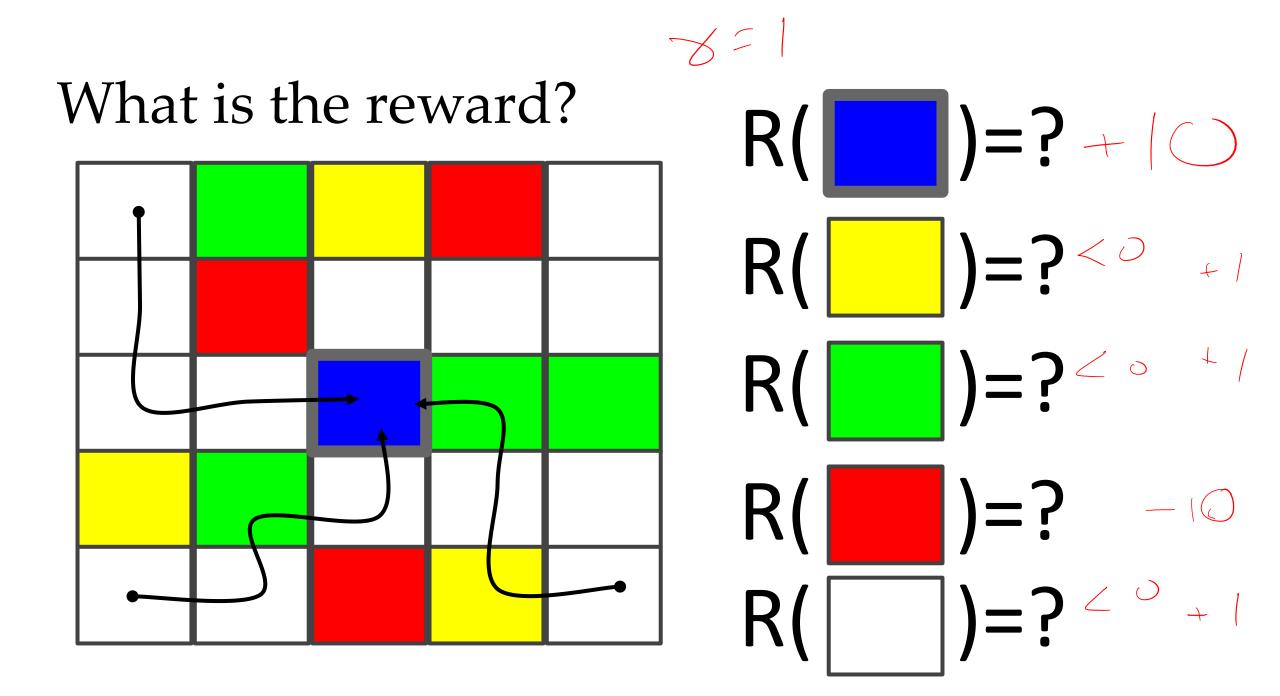
1		
 	→	
Ļ		

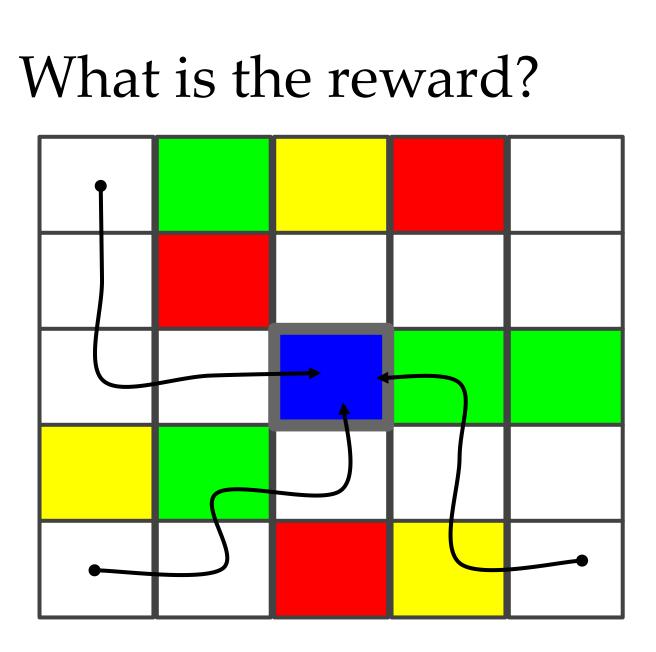


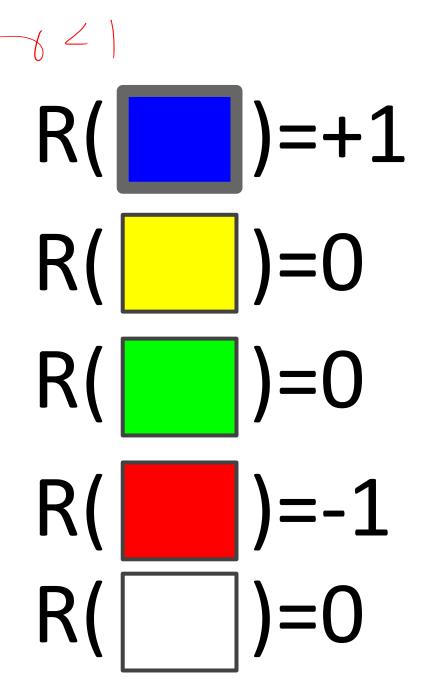


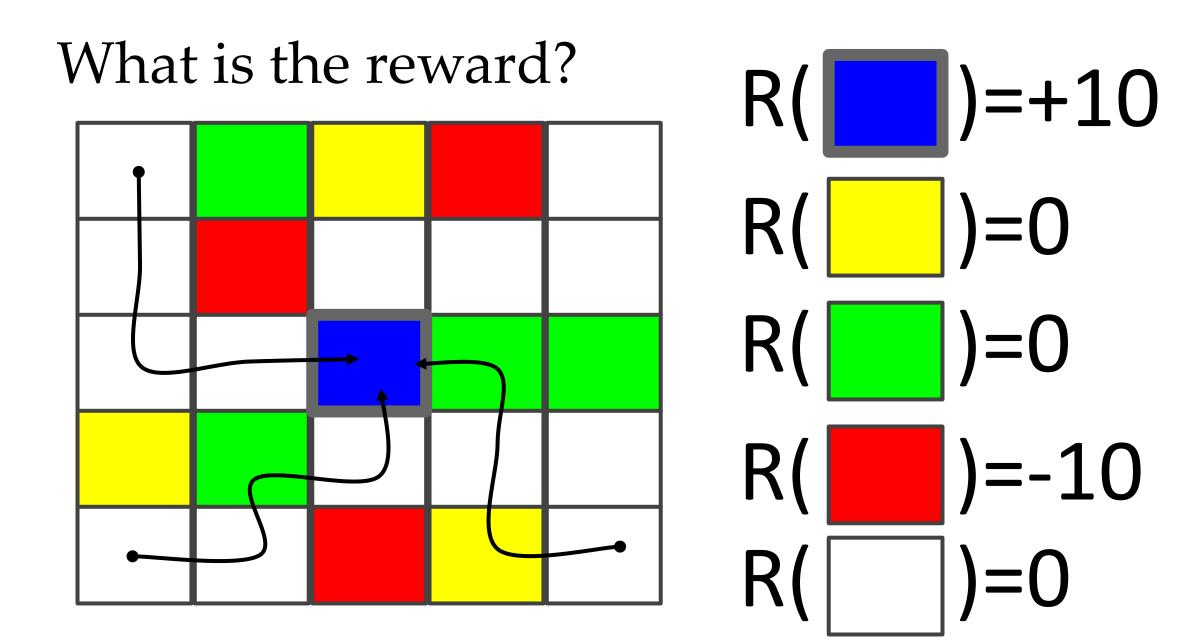


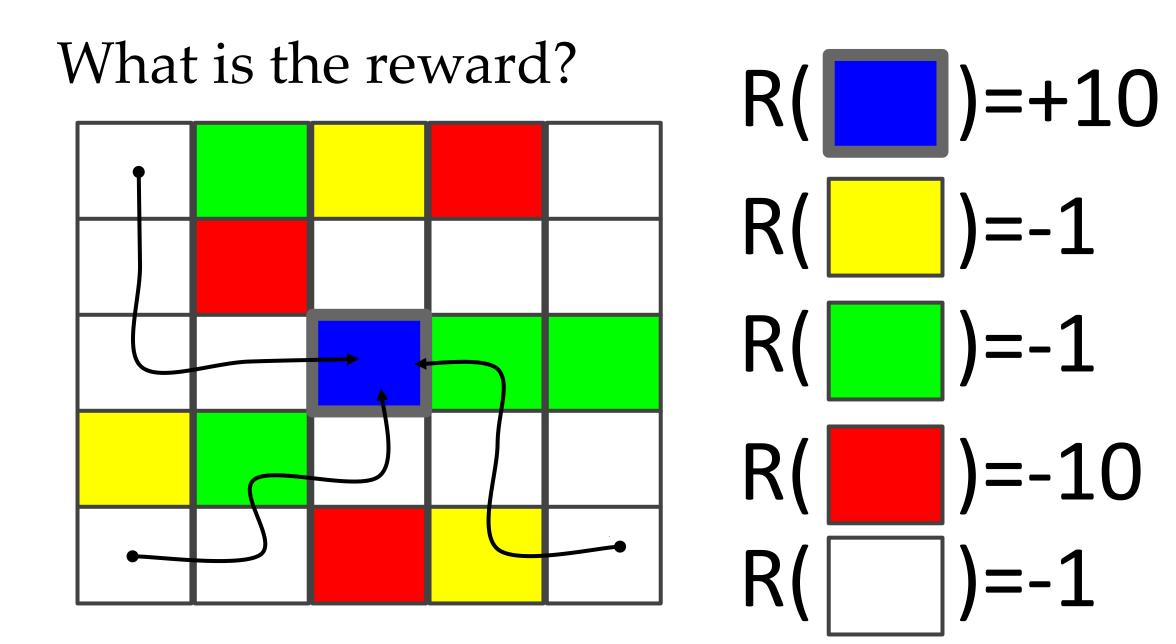


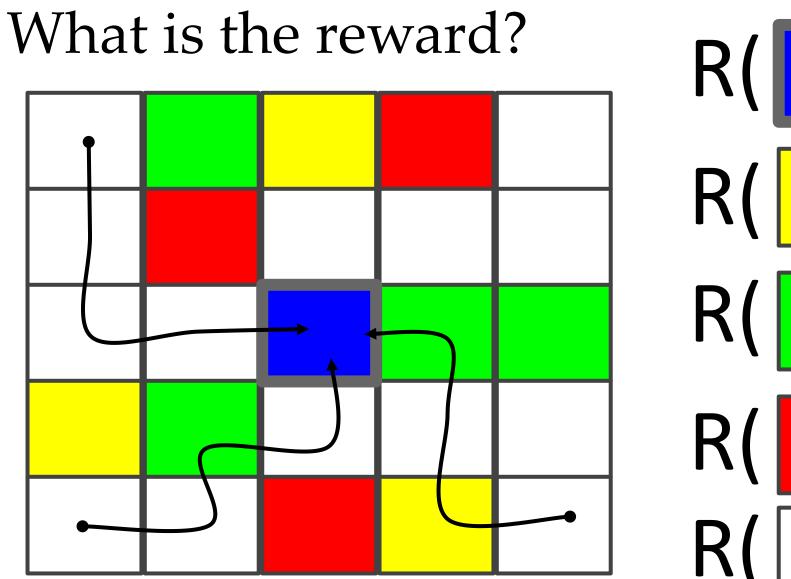


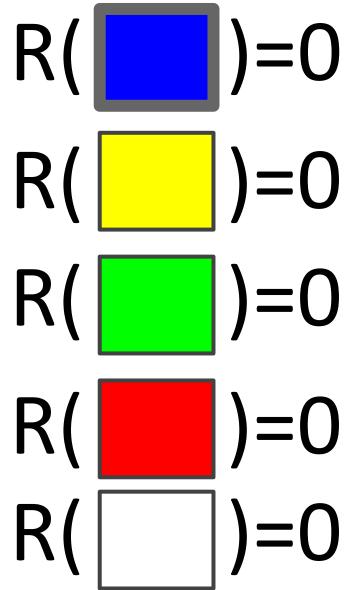






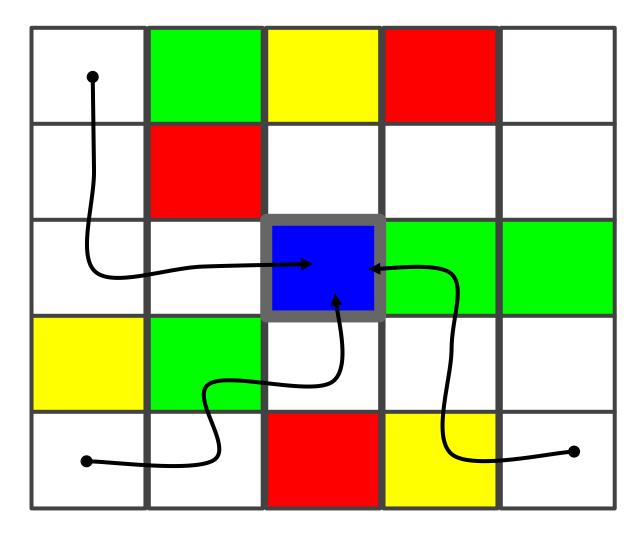


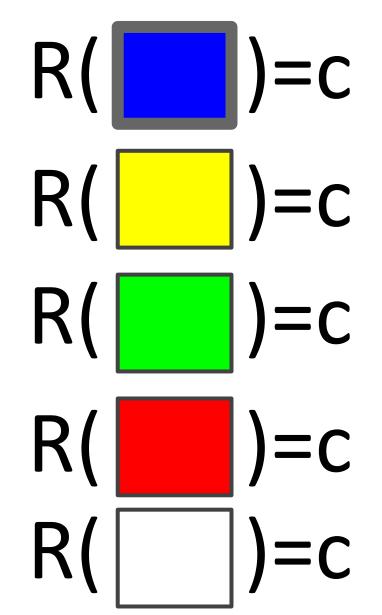




C < O

What is the reward?





Inverse Reinforcement Learning Formalism

• Given

- MDP without a reward function
- Demonstrations from an optimal policy π^*
- Recover the reward function *R* that makes π^* optimal
- Ill-Posed Problem
 - Infinite number of reward functions that can make π^* optimal
 - Trivial all zero reward
 - Constant reward
 - aR + c (positive scaling a>0, and affine shifts)

How would you do this? • maximize lifelihood of D gree R

Basic IRL Algorithm

'input

- Start with demonstrations, *D*
- Guess initial reward function R_0
- $\hat{R} = R_0$
- Loop: computationally hard Solve for optimal policy $\pi_{\hat{\rho}}^*$ 0
 - Compare *D* and $\pi_{\hat{R}}^*$ \bigcap
 - Update \hat{R} to try and make *D* and $\pi_{\hat{R}}^*$ more similar

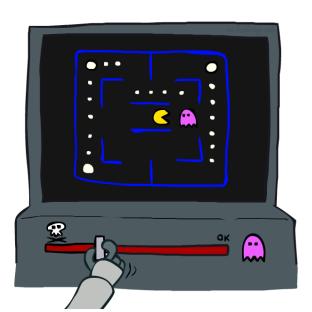
Flashback: Approximate Q-Learning $Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$

• Q-learning with linear Q-functions:

transition = (s, a, r, s')difference = $\left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a)$ $Q(s, a) \leftarrow Q(s, a) + \alpha$ [difference] $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s, a)$

- Exact Q's
- Approximate Q's

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares



Feature count matching

• Assume the reward function is a linear combination of features:

$$R(s) = \mathbf{w}^T \phi(s) \leq \omega, \ \phi(s) + \omega_z \phi(s) \dots$$

• Value function becomes linear combination of (discounted) feature expectations:

$$V_R^{\pi} = \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t) \right]$$

Feature count matching

• Assume the reward function is a linear combination of features:

$$R(s) = \mathbf{w}^T \phi(s)$$

• Value function becomes linear combination of (discounted) feature expectations:

$$V_R^{\pi} = \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t \mathbf{w}^t \phi(s_t) \right]$$

Feature count matching

• Assume the reward function is a linear combination of features:

$$R(s) = \mathbf{w}^T \phi(s)$$

Inverse reinforcement learning: feature matching (Abbeel and Ng 2004, Syed and Schapire 2007) lx = max

- If $||\mathbf{w}||_{1} \leq 1$, then $V_{R}^{\pi^{*}} - V_{R}^{\pi_{\text{robot}}} = \mathbf{w}^{T} (\mu_{\pi^{*}} - \mu_{\pi_{\text{robot}}})$ $\leq ||\mu_{\pi^{*}} - \mu_{\pi_{\text{robot}}}||_{\infty}$
- If feature expectations match, then expected returns are identical.
- Idea: Can we update the reward guess \hat{R} so the feature counts get closer?

Problem: Many different policies can lead to same expected feature counts

Maximum Entropy IRL (Ziebart et al. 2008)

 $P(\tau) = \frac{e^{R_w(\tau)}}{Z}$

 $R(s) = \mathbf{w}^T \phi(s)$

- Collect M demonstrations $D = \{\tau_1, ..., \tau_M\}$
- Initialize reward weights **w**
- Loop
 - Solve for (soft) optimal policy $\pi(a|s)$ via Value Iteration
 - Solve for expected feature counts of $\pi(a|s)$
 - Compute weight update $\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha(\mu_D \mu_\pi)$

Soft Value Iteration

$$\pi_{\Theta} \left(A_t | S_t \right) = e^{Q_{\pi_{\Theta}}^{\text{soft}}(A_t, S_t) - V_{\pi_{\Theta}}^{\text{soft}}(S_t)}$$
$$V_{\pi_{\Theta}}^{\text{soft}} \left(S_t \right) = \log \sum_{A_t \in \mathcal{A}} e^{Q_{\pi_{\Theta}}^{\text{soft}}(A_t, S_t)}$$
Soft Maximum

Policy is a softmax policy. $Q(A,5) - \log z \in Q(b,s)$ $Q(A,5) - \log z \in Q(b,s)$ $Q(A,5) - \log z \in Q(b,s)$ $= e^{Q(A,S)}$ $Ze^{Q(b,s)}$

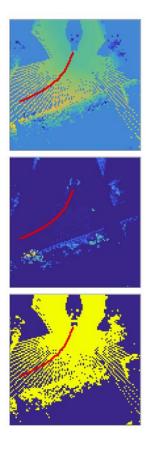
$Qo(e^{b} e^{c}) = Qo(e^{o}) = O$ Soft Maximum $\cdot \log(e^{a} + e^{b}) = 2 \circ q (e^{a} + e^{b}) + 2 \circ q e^{b} + 2 \circ q e^{b} + 2 \circ q e^{b} + 2 \circ q e^{a} + 2 \circ q e^{a$ • In general max{ x_1, x_2, \dots, x_n } $\leq \log \sum_i x_i \leq \max\{x_1, \dots, x_n\} + \log n$

Soft Value Iteration

- Initialize value of terminal states to 0 and other values to $-\infty$
- Repeat:
 - Solve for Q
 - Sove for V

Watch This: Scalable Cost-Function Learning for Path Planning in Urban Environments

Markus Wulfmeier¹, Dominic Zeng Wang¹ and Ingmar Posner¹



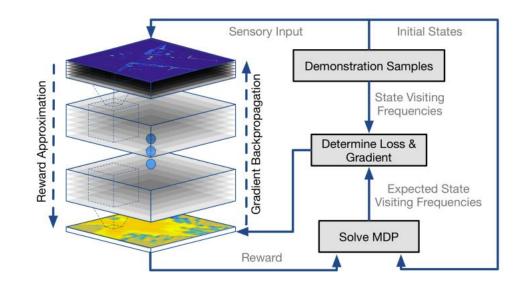


Fig. 1: Schema for training neural networks in the Maximum Entropy paradigm for IRL.

Another way to look at MaxEnt IRL

 $\int_{\tau}^{R_{\theta}(\tau)} \int_{\tau} \sum P(\tau) \approx \frac{e^{R_{\theta}(\tau)}}{Z} \qquad \max \int_{Max} \int_{0}^{0} P(\tau) \frac{e^{R_{\theta}(\tau)}}{Z} \frac{d\tau}{Z}$ Maximum Likelihood Estimation

 $\mathcal{A} = \mathcal{N}$

• Find reward function that maximizes the log likelihood of the demonstration trajectories: $M_{2} \log e^{k_{0}(-1)} \log Z$

 $\tau \in D$

 $\max_{\theta} \frac{1}{N} \sum R_{\theta}(\tau) - \log Z$

How to avoid fully solving MDP

$$\max_{\theta} \frac{1}{N} \sum_{\tau \in D} R_{\theta}(\tau) - \log Z \qquad Z = \int e^{R_{\theta}(\tau)} d\tau$$

- Estimate Z with a finite set of trajectories Z_{τ} .
- Loop:
 - Update parameters θ so demonstrations have higher reward than trajectories in Z_{τ} .
 - Update Z_{τ}

How to make this more tractable

Relative Entropy Inverse Reinforcement Learning

 Abdeslam Boularias
 Jens Kober
 Jan Peters

 Max-Planck Institute for Intelligent Systems
 72076 Tübingen, Germany

 {abdeslam.boularias,jens.kober,jan.peters}@tuebingen.mpg.de

Uniform sampling to approximate Z.

Learning Objective Functions for Manipulation

Mrinal Kalakrishnan^{*}, Peter Pastor^{*}, Ludovic Righetti^{*†}, and Stefan Schaal^{*†} kalakris@usc.edu, pastorsa@usc.edu, ludovic.righetti@a3.epfl.ch, sschaal@usc.edu *CLMC Lab, University of Southern California, Los Angeles CA 90089 [†]Max Planck Institute for Intelligent Systems, Tübingen, Germany 72076 Noisy perturbations of demonstrations to approximate Z

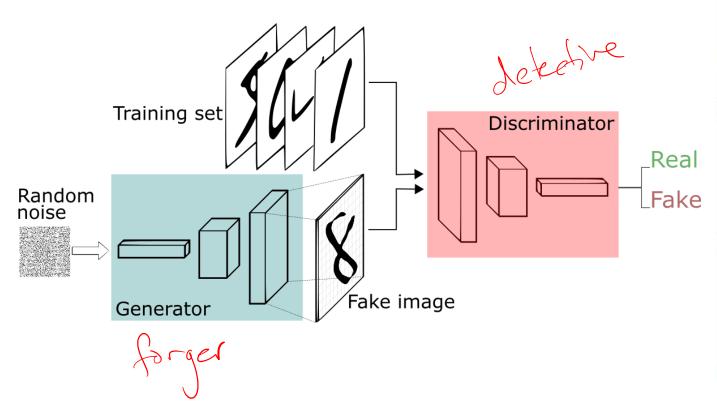
Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization

Chelsea Finn Sergey Levine Pieter Abbeel University of California, Berkeley, Berkeley, CA 94709 USA CBFINN@EECS.BERKELEY.EDU SVLEVINE@EECS.BERKELEY.EDU PABBEEL@EECS.BERKELEY.EDU Use current policy to approximate Z. Alternate between a few steps of reward updates and a few steps of policy updates.

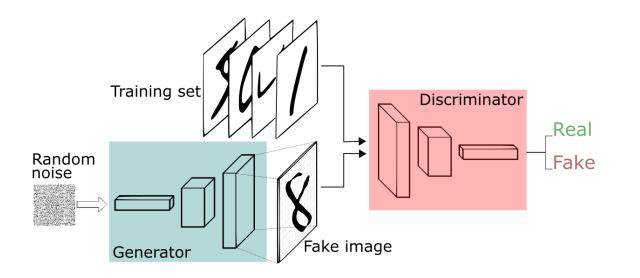
 $e^{\kappa_{\theta}(\iota)}$

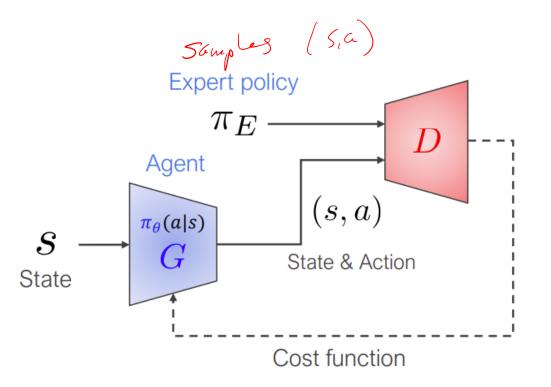
Finn et al. "Guided Cost Learning." 2016

GANs (Generative Adversarial Networks)



GAIL (Generative Adversarial Imitation Learning)





Ho and Ermon, 2016

What if we don't want just a single reward estimate?

• Can we get a samples from the full Bayesian posterior?

 $P(R|D) \propto P(D|R)P(R)$

litelihoud prior

Markov Chain Monte Carlo (MCMC)

Markov chain:

$$(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) - - - \rightarrow$$

 $P(X_1) \qquad P(X_t|X_{t-1})$

Stationary Distribution: $P_{\infty}(X) = P_{\infty+1}(X) = \sum_{x} P(X|x)P_{\infty}(x)$

MCMC is a sampling approach for Bayesian inference where we construct a Markov chain such that the stationary distribution is the posterior distribution we care about.

MCMC (Metropolis Hastings Algorithm)

O (DI C)

- We want to sample from P(R|D)
- Start with random sample r_0
- Loop proposed
 - Sample $r' \sim q(R_{t+1}|r_t)$
 - With probability $\min\left\{1, \frac{P(r'|D)}{P(r_t|D)}\right\}$ set
 - Else set $r_{t+1} = r_t$

Assume q is symmetric. For example, a Gaussian distribution with mean x_t and standard deviation σ

 $\sqrt{2} \rightarrow \sqrt{1} \rightarrow \sqrt{1} \rightarrow \sqrt{2}$

Accept!

Reject!

 $\mathcal{O}(\mathcal{D}(\mathcal{V}')\mathcal{P}(\mathcal{V}')$

P(D|r)P(r)

Normalizing constant cancels in the ratio!

Bayesian Inverse Reinforcement Learning (Ramachandran and Amir 2007)

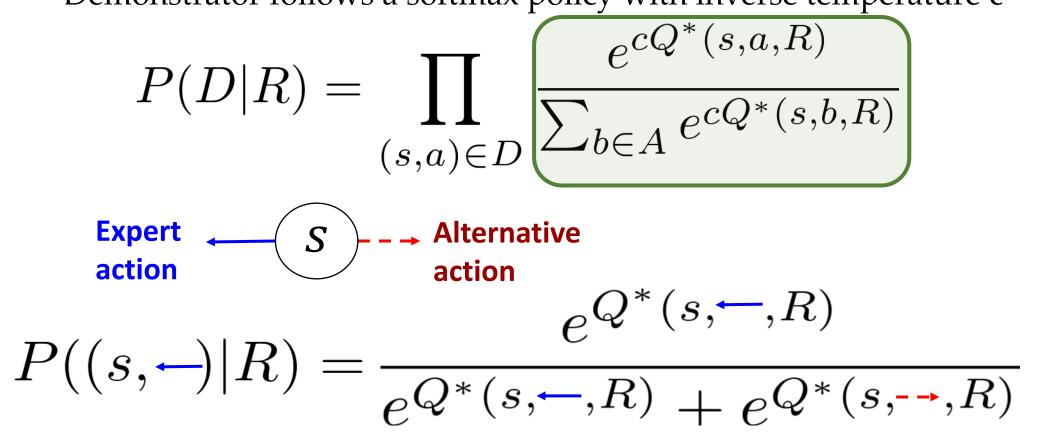
- Assume demonstrator is Boltzman rational
 - Demonstrator follows a softmax policy with inverse temperature c

$$P(D|R) = \prod_{(s,a)\in D} \frac{e^{Q^*(s,a,R)}}{\sum_{b\in A} e^{cQ^*(s,b,R)}}$$

 $Q^*(s, a, R) = {
m How \ much \ reward \ will \ I \ expect \ to \ see \ if \ I \ take \ action} \ a \ in \ state \ s \ and \ act \ optimally \ thereafter.$

Bayesian Inverse Reinforcement Learning (Ramachandran and Amir 2007)

- Assume demonstrator is Boltzman rational
 - Demonstrator follows a softmax policy with inverse temperature c



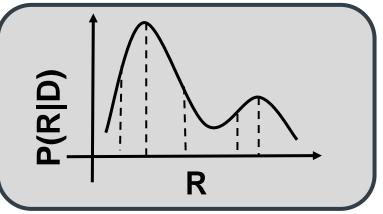
Bayesian Inverse Reinforcement Learning (Ramachandran and Amir 2007)

- Assume demonstrator is Boltzman rational
 - Demonstrator follows a softmax policy with inverse temperature c

$$P(D|R) = \prod_{(s,a)\in D} \frac{e^{cQ^*(s,a,R)}}{\sum_{b\in A} e^{cQ^*(s,b,R)}}$$

Perform Bayesian inference (MCMC) to sample from posterior distribution

$$P(R|D) \propto P(D|R)P(R)$$

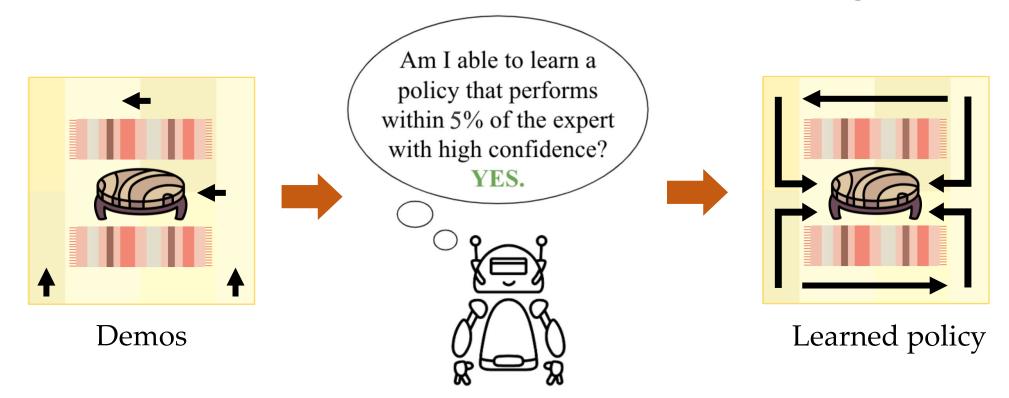


Applications of Bayesian IRL Active Learning — the algorithm picks its training data Uncontribute

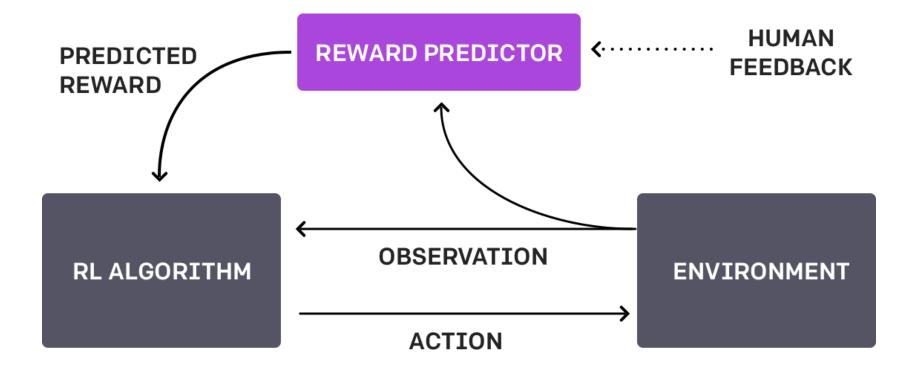
P(R/D)

- Uncertainty Estimation
- Demonstration Sufficiency

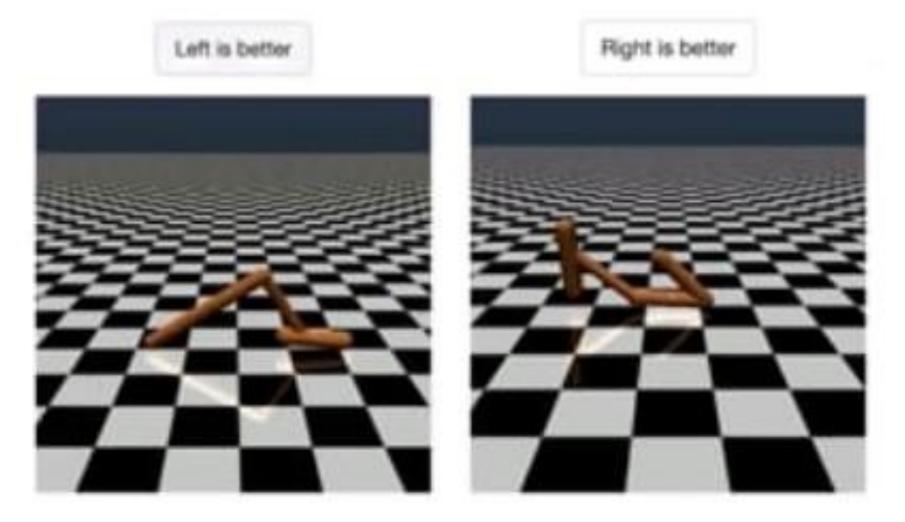
Autonomous Assessment of Demonstration Sufficiency via Bayesian Inverse Reinforcement Learning



RL from Human Feedback (RLHF)



RL from Human Preferences



https://arxiv.org/abs/1706.03741

Why would you want to learn a reward from ranked examples?

Inverse Reinforcement Learning

Prior approaches ...

1. Typically couldn't do much better than the demonstrator.

2. Were hard to scale to complex problems.

Pre-Ranked Demonstrations



Inverse Reinforcement Learning

Prior approaches ...

Pre-Ranked Demonstrations

- 1. Typically couldn't do much better than the demonstrator.
- Find a reward function that explains the ranking, allowing for extrapolation.
- 2. Were hard to scale to complex problems.



Inverse Reinforcement Learning

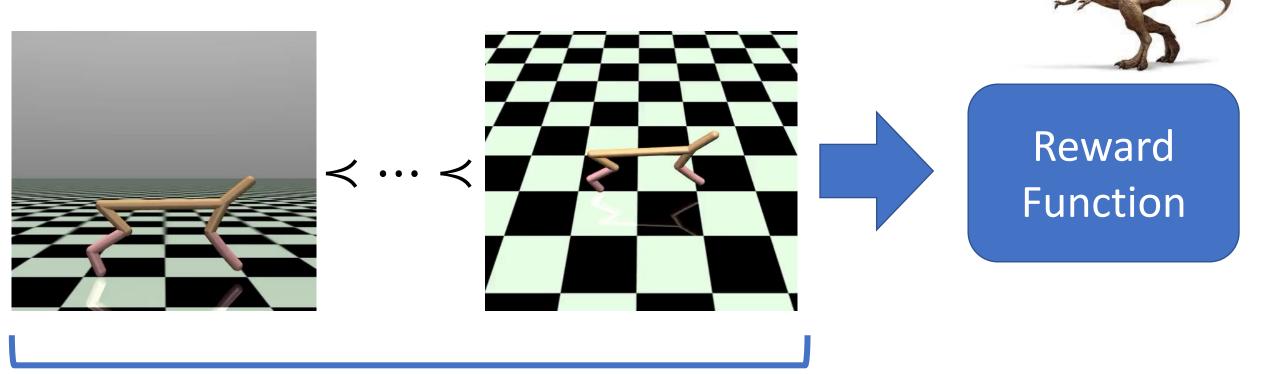
Prior approaches ...

Pre-Ranked Demonstrations

- Typically couldn't do much better than the demonstrator.
- Find a reward function that explains the ranking, allowing for extrapolation.
- 2. Were hard to scale to complex problems.

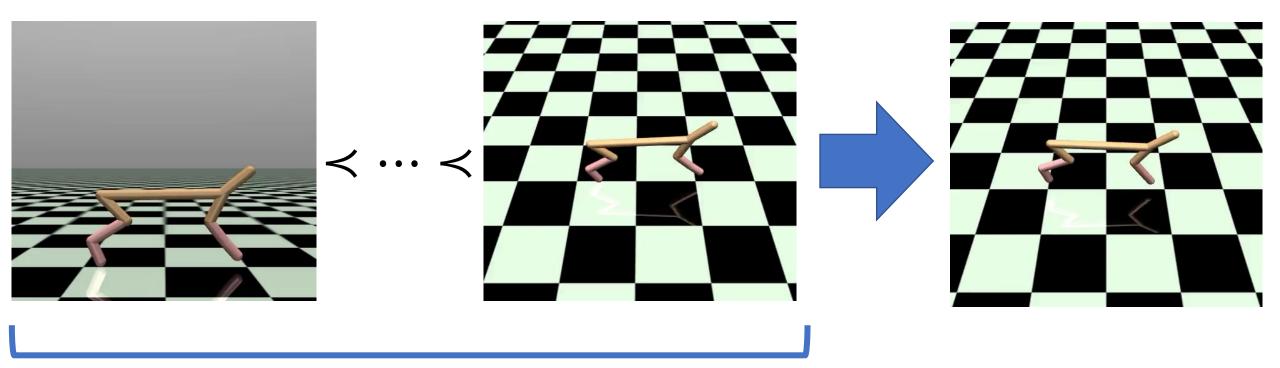
Reward learning becomes a supervised learning problem.

Trajectory-ranked Reward Extrapolation (T-REX)



Pre-ranked demonstrations

Trajectory-ranked Reward Extrapolation (T-REX)



Pre-ranked demonstrations

T-REX Policy

Reward Function

 $R_{\theta}: S \to \mathbb{R}$

Examples of S:

Current Robot Joint Angles and Velocities

$$\boxed{\swarrow} \rightarrow 0.5 \qquad \boxed{\checkmark} \rightarrow -0.7$$

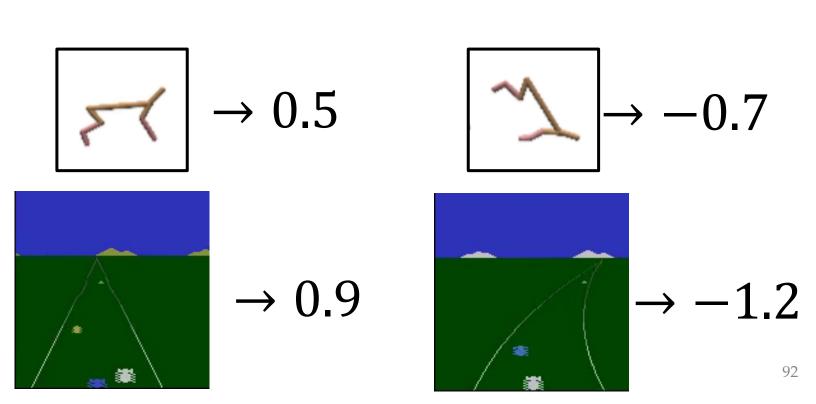
Reward Function

 $R_{\theta}: S \to \mathbb{R}$

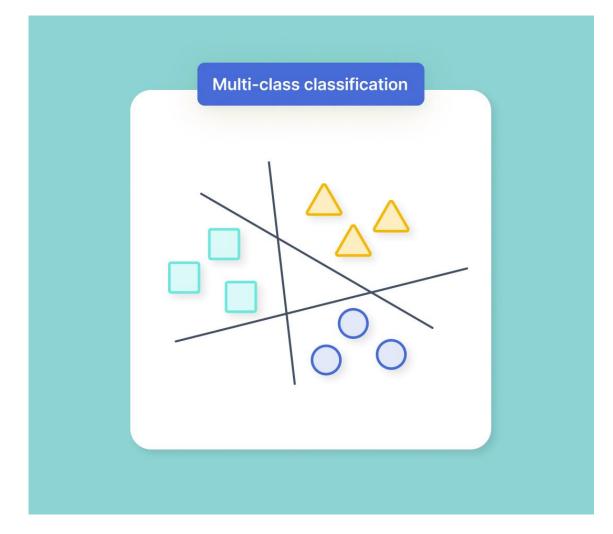
Examples of S:

Current Robot Joint Angles and Velocities

> Short Sequence of Images



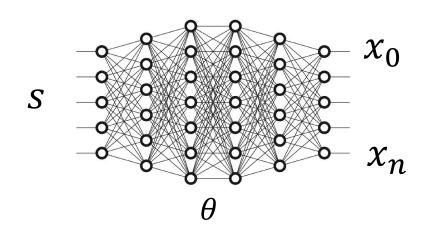
Binary Classification and the Cross Entropy Loss



https://www.v7labs.com/blog/cross-entropy-loss-guide

Flashback: How should we parameterize our policy?

- We need to be able to do two things:
 - Sample actions $a_t \sim \pi_{\theta}(\cdot | s_t)$
 - Compute log probabilities $\log \pi_{\theta}(a_t|s_t)$
- Categorical (classifier over discrete actions)
 - Typically, you output a value x_i for each action (class) and then the probability is given by a softmax equation

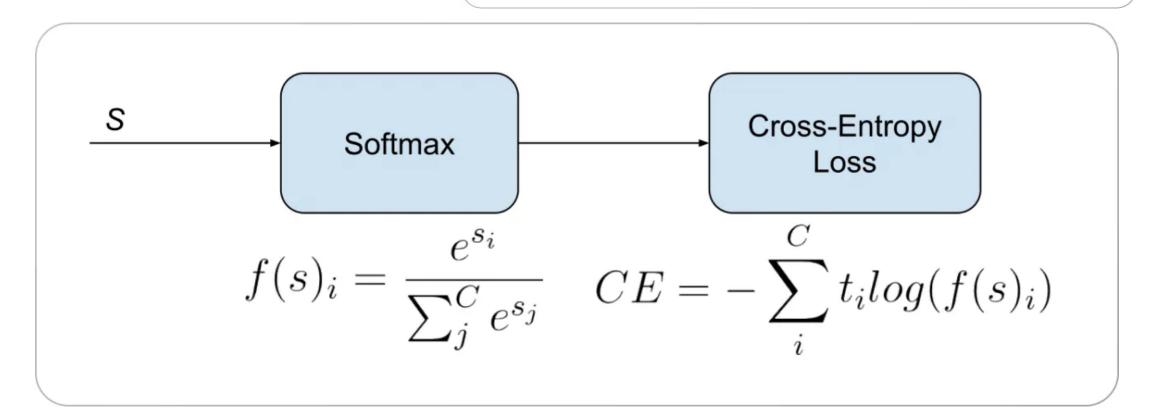


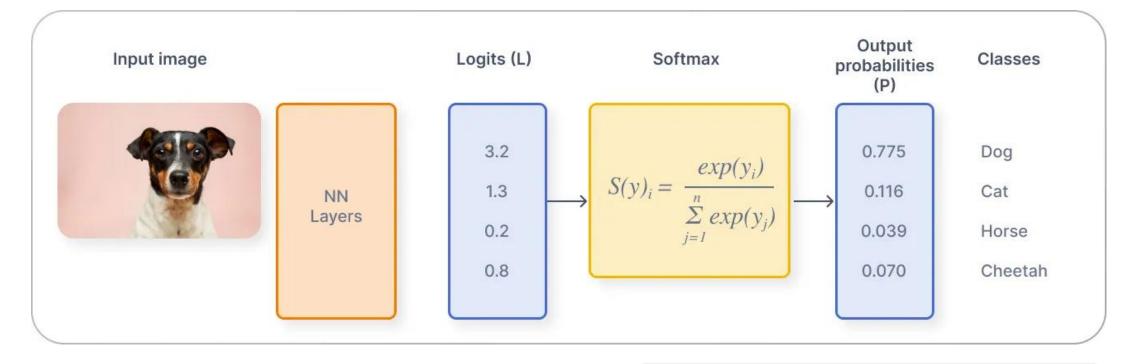
$$\pi_{\theta}(a_i|s) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}$$

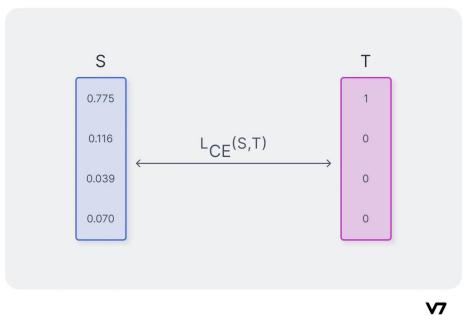
Cross Entropy

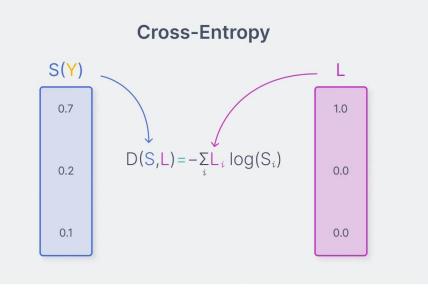
True probability distribution (one-shot) $H(p, q) = -\sum_{x} p(x) \log q(x)$ xeclasses Your model's predicted

probability distribution









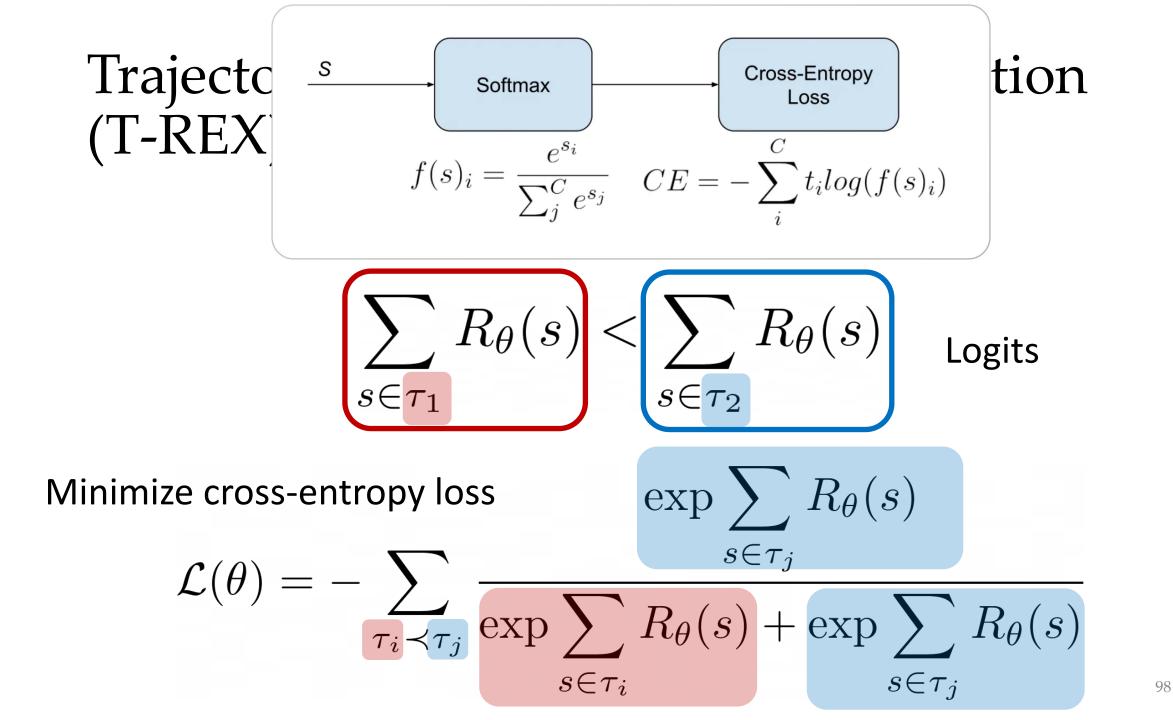
Trajectory-ranked Reward Extrapolation (T-REX) $\tau_1 \prec \tau_2 \prec \cdots \prec \tau_T$

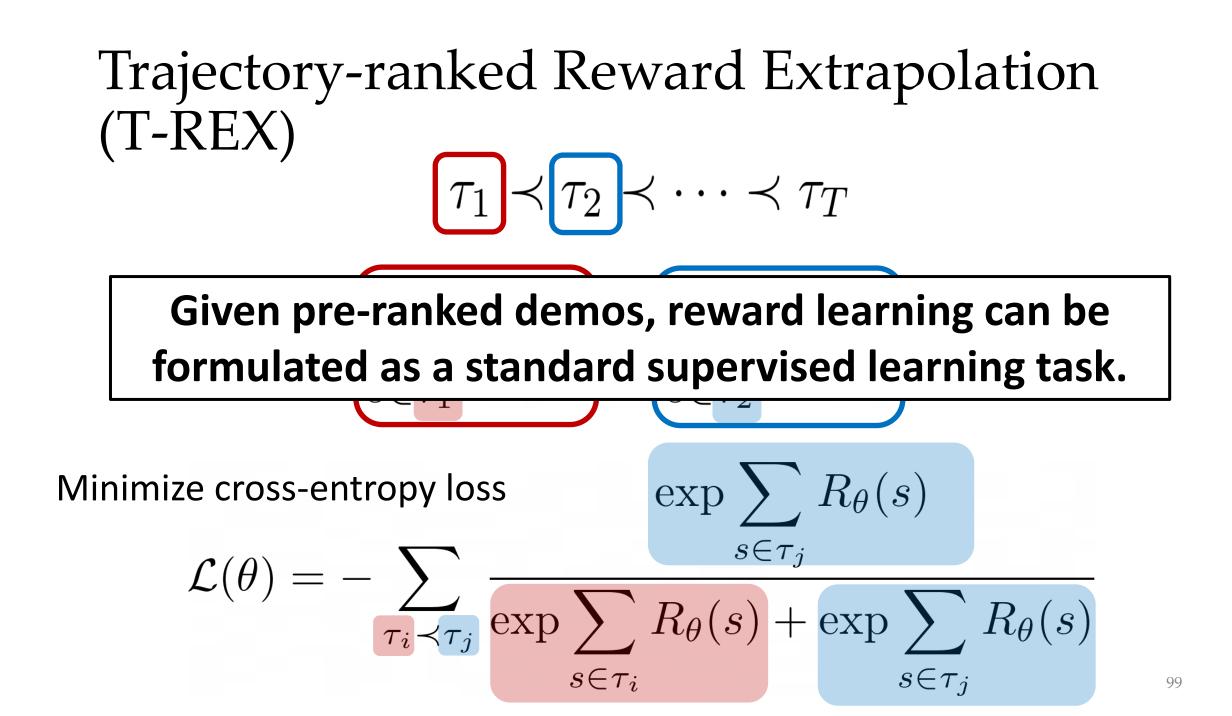
$$\sum_{s \in \tau_1} R_{\theta}(s) < \sum_{s \in \tau_2} R_{\theta}(s)$$

Bradley-Terry pairwise ranking loss

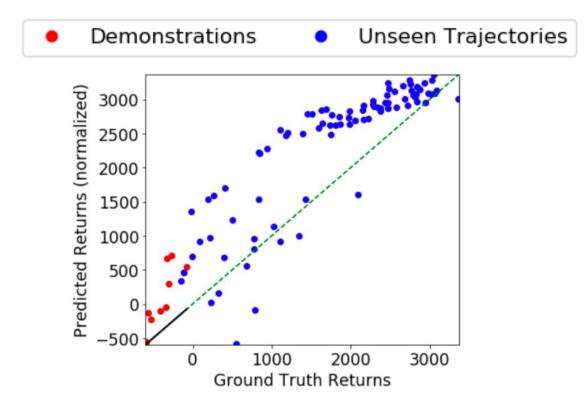
$$\exp\sum_{s\in\tau_j}R_\theta(s)$$

$$\mathcal{L}(\theta) = -\sum_{\tau_i \prec \tau_j} \frac{s \in \tau_j}{\exp \sum_{s \in \tau_i} R_{\theta}(s)} + \exp \sum_{s \in \tau_j} R_{\theta}(s)$$



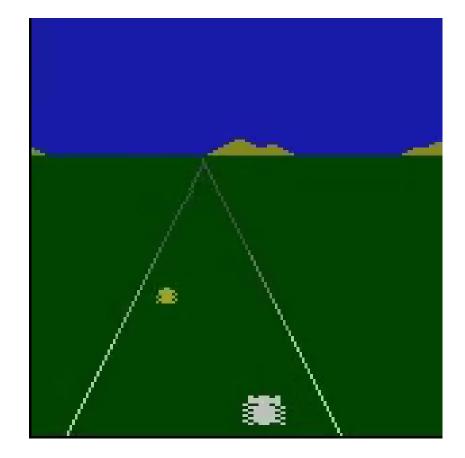


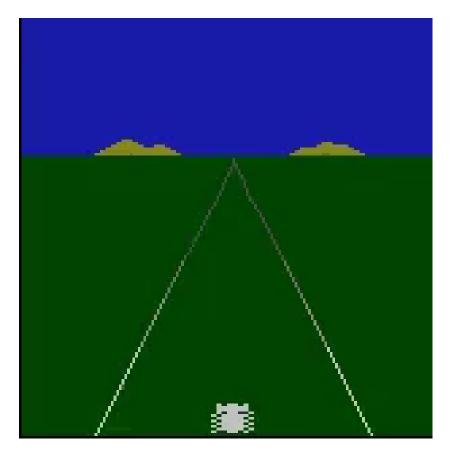
Reward Extrapolation



T-REX can extrapolate beyond the performance of the best demo

"Autonomous Driving" in Atari



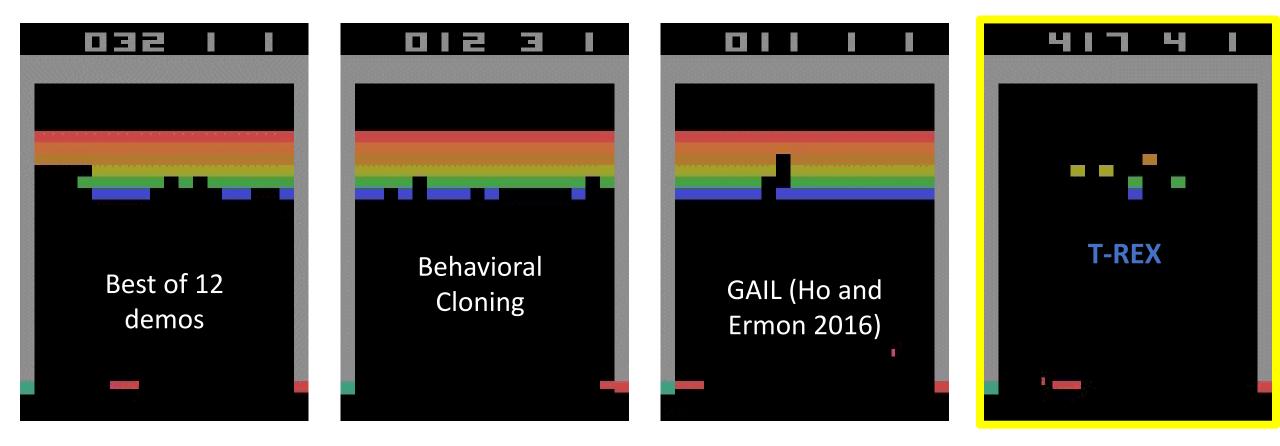


Best demo (Score = 84)

T-REX (Score = 520)

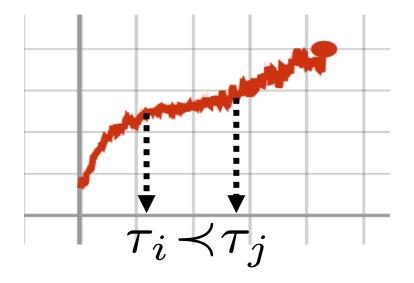
Uses only 12 ranked demonstrations

Atari Breakout

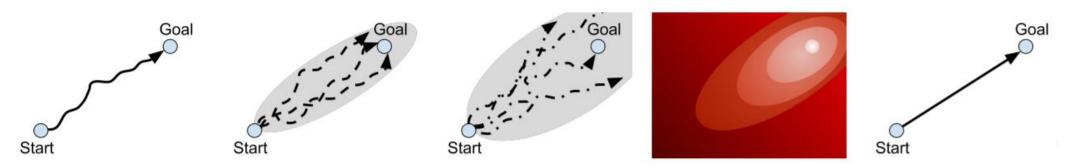


What if you don't have explicit preference labels?

Learning from a learner [ICML'19]

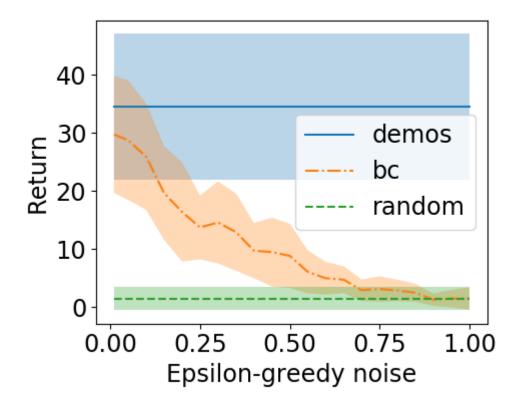


Automatic preference label generation [CoRL'20]



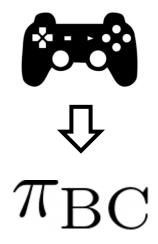
Automatic Rankings via Noise Injection

- Assumption: Demonstrator is significantly better than a purely random policy.
- Provides automatic rankings as noise increases.
- Generates a large diverse set of ranked demonstrations



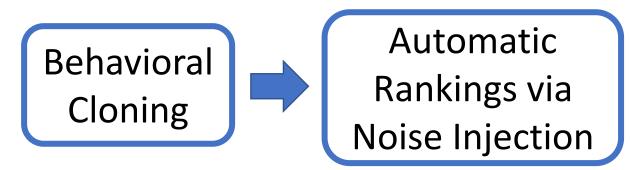
Brown et al. "Better-than-Demonstrator Imitation Learning via Automatically-Ranked Demonstrations." CoRL 2019

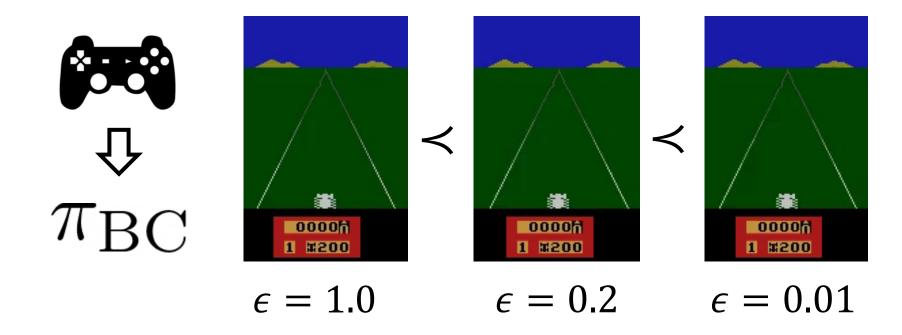
Disturbance-based Reward Extrapolation (D-REX)



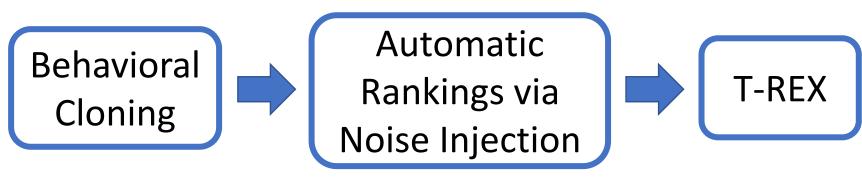
Brown et al. "Better-than-Demonstrator Imitation Learning via Automatically-Ranked Demonstrations." CoRL 2019

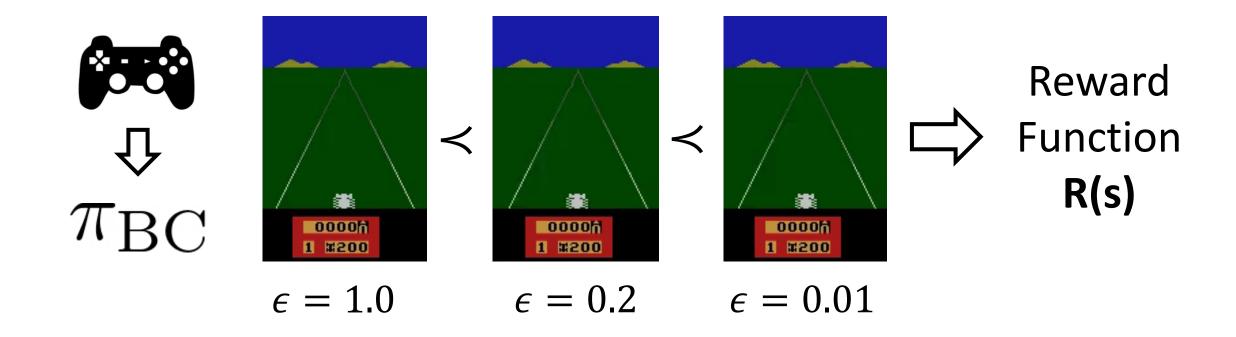
Disturbance-based Reward Extrapolation (D-REX)

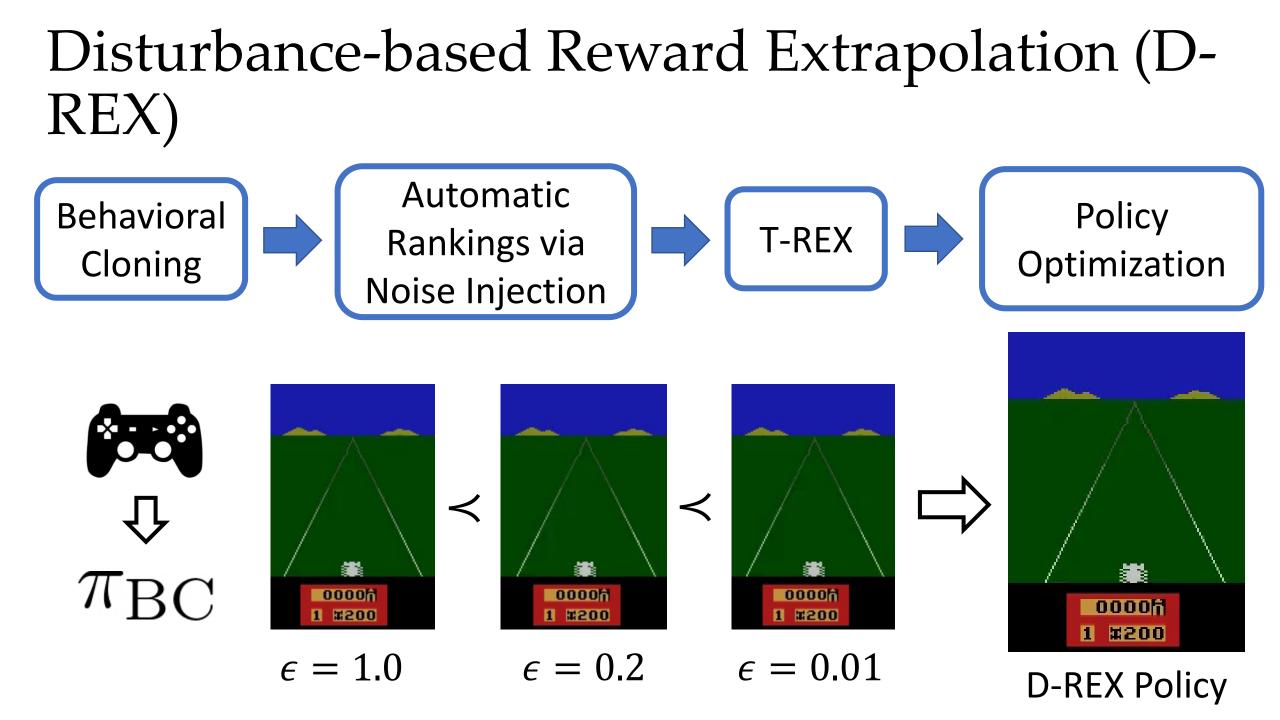




Disturbance-based Reward Extrapolation (D-REX)



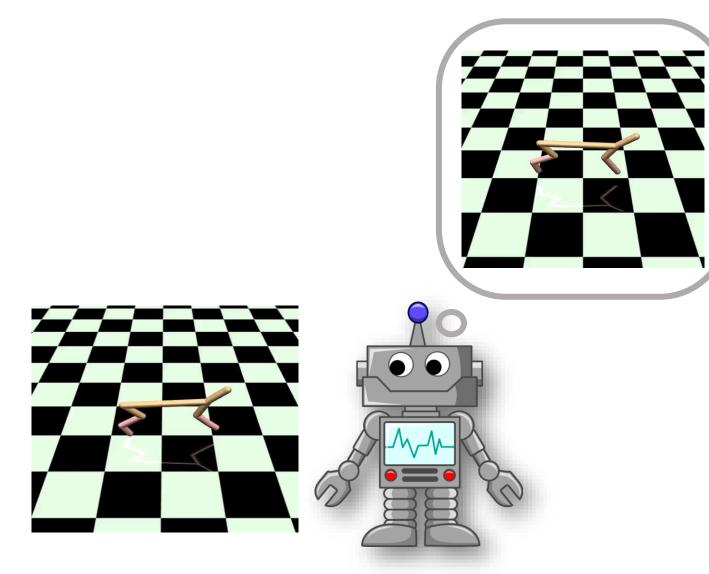




Experiments

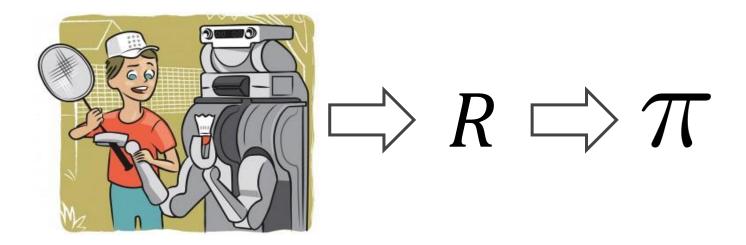
D-REX consistently outperforms the best demonstration as well as outperforming BC and GAIL.

Brown et al. "Better-than-Demonstrator Imitation Learning via Automatically-Ranked Demonstrations." CoRL 2019

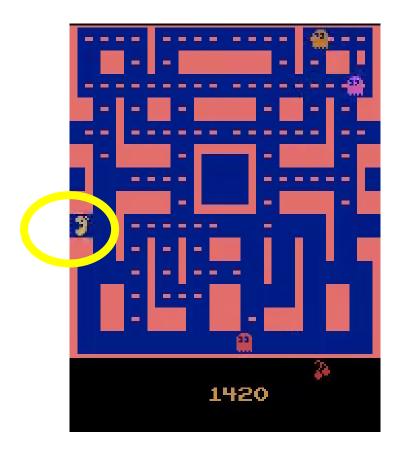


AI systems can **efficiently** infer human intent from **suboptimal demonstrations**.

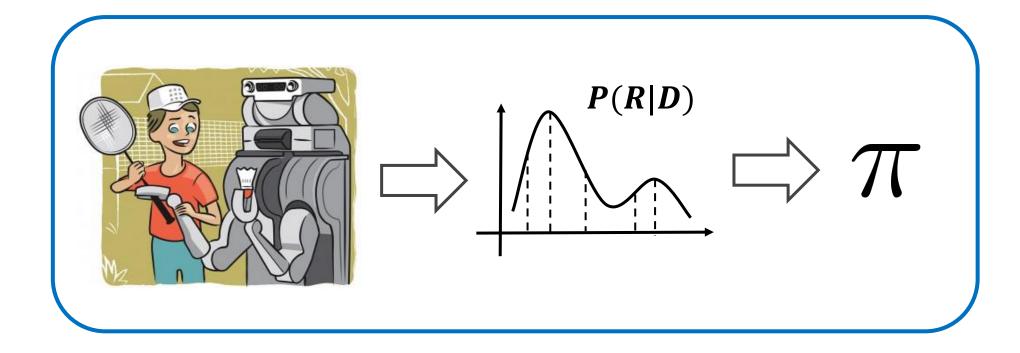
T-REX only learns a maximum likelihood estimate of the reward function.



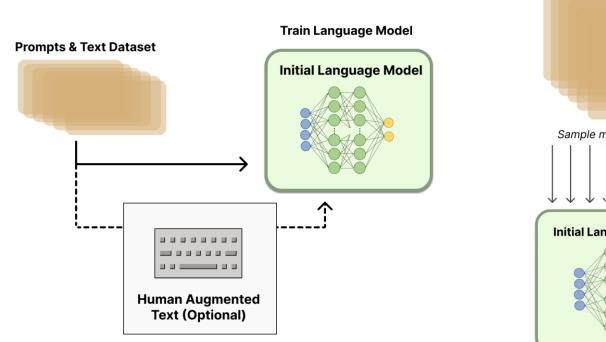
Reward Hacking



- Overfit to spurious correlations
- No consideration of alternative hypotheses



Next time: LLMs and ChatGPT



Prompts Dataset

