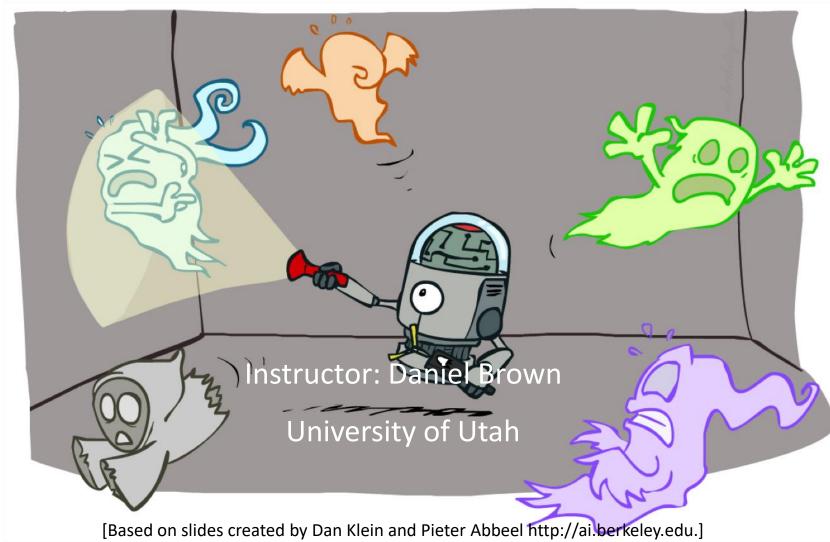
CS 6300: Artificial Intelligence Particle Filters and Applications of HMMs



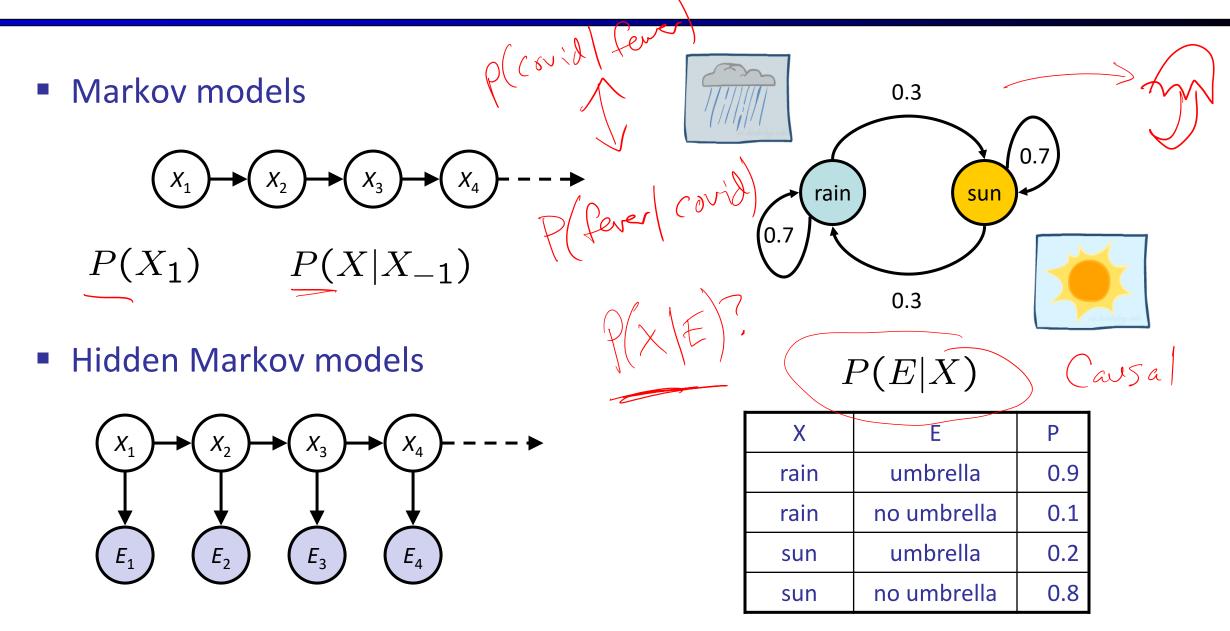
Today

HMMs

- Particle filters
- Demo bonanza!
- Most-likely-explanation queries
- Applications:
 - "I Know Why You Went to the Clinic: Risks and Realization of HTTPS Traffic Analysis"
 - Speech recognition

[Demo: Ghostbusters Markov Model (L15D1)]

Recap: Reasoning Over Time



? Recap: Filtering $P(A|b) \propto P(b|A)P(A)$

Elapse time: compute P($X_t | e_{1:t-1}$)

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

Observe: compute P($X_t | e_{1:t}$)

 X_1

 E_1

$$P(x_t|e_{1:t}) \propto P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$

*E*₂

$$(A \ B_{1}C) \swarrow P(B \ A, C) P(A|C)$$

$$<0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \ <0.01 \$$

Belief: <P(rain), P(sun)>

<0.63, 0.37>

<0.5, 0.5> *Prior on X*₁

 $P(X_1 \mid E_1 = umbrella)$ <0.82, 0.18>

 $P(X_1)$

 $P(X_2 \mid E_1 = umbrella)$

 $P(X_2 \mid E_1 = umb, E_2 = umb)$

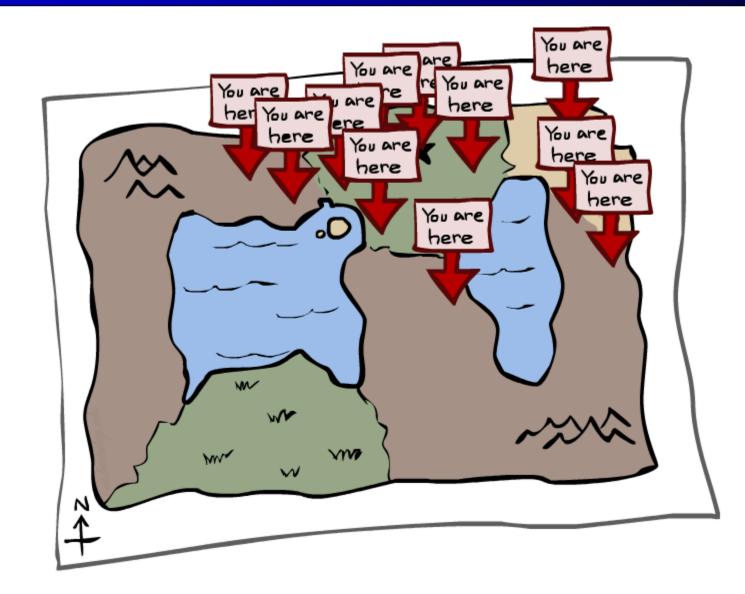
Observe

Elapse time

<0.88, 0.12> *Observe*

[Demo: Ghostbusters Exact Filtering (L15D2)]

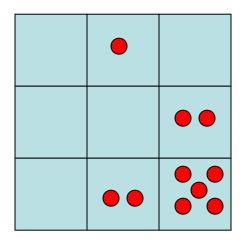
Particle Filtering



Particle Filtering

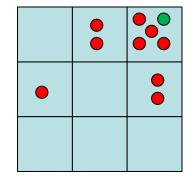
- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5



Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X|</p>
 - Storing map from X to counts would defeat the point
- P(x) approximated by number of particles with value x $p(\chi = (3,3)) \approx 4/10$
 - So, many x may have P(x) = 0!
 - More particles, more accuracy
- For now, all particles have a weight of 1



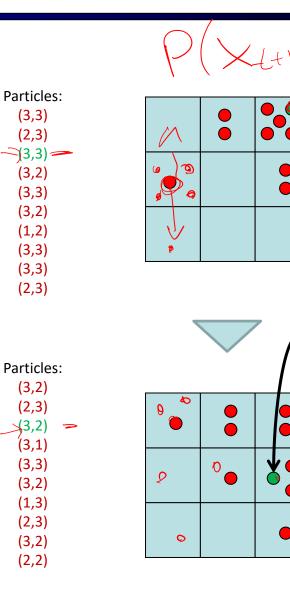
(2,3)

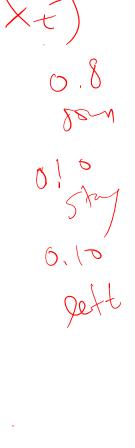
Particle Filtering: Elapse Time

 Each particle is moved by sampling its next position from the transition model

$$x' = \operatorname{sample}(P(X'|x))$$

- This is like prior sampling samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)





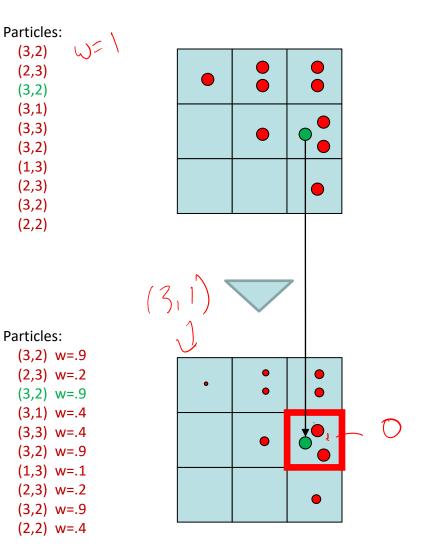
Particle Filtering: Observe

Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

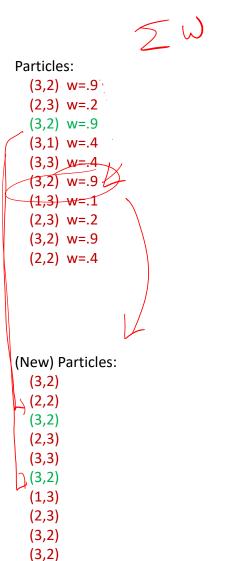
w(x) = P(e|x) $B(X) \propto P(e|X)B'(X)$

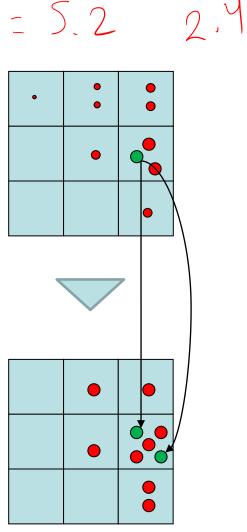
 As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of P(e))



Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one





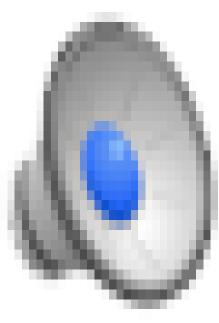
Recap: Particle Filtering

Particles: track samples of states rather than an explicit distribution

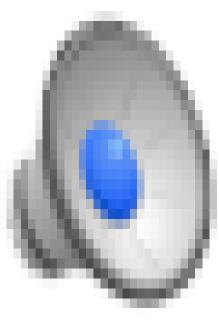
	Elapse $P(X_{L^*})$	Weight	P(Ct/XF	Resample	replacement	
			• •		•	
•						
Particles:	Particles:		Particles:		(New) Particles:	
(3,3) (2,3) (3,3)	(3,2) (2,3) (3,2)		(3,2) w=.9 (2,3) w=.2 (3,2) w=.9		(3,2) (2,2) (3,2)	
(3,2) (3,3) (3,2)	(3,1) (3,3) (3,2)		(3,1) w=.4 (3,3) w=.4 (3,2) w=.9		(2,3) (3,3) (3,2)	
(1,2) (3,3)	(1,3) (2,3)		(1,3) w=.1 (2,3) w=.2		(1,3) (2,3)	
(3,3) (2,3)	(3,2) (2,2)		(3,2) w=.9 (2,2) w=.4		(3,2) (3,2)	

[Demos: ghostbusters particle filtering (L15D3,4,5)]

Video of Demo – Moderate Number of Particles



Video of Demo – One Particle

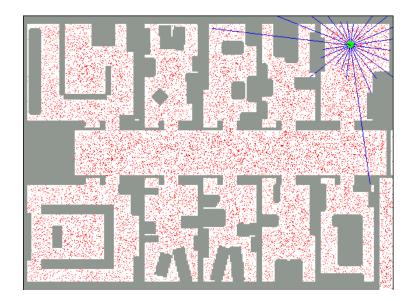


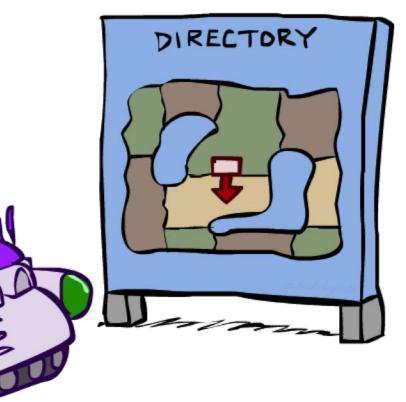
Video of Demo – Huge Number of Particles

Robot Localization

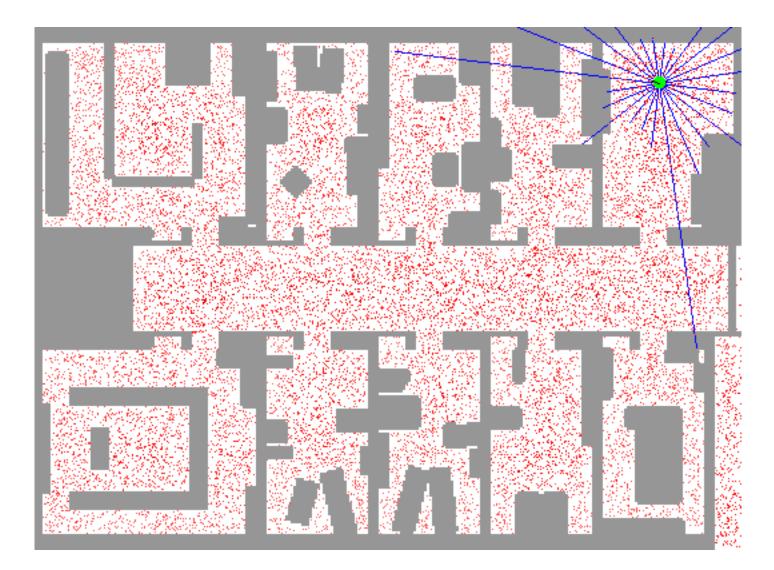
In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique





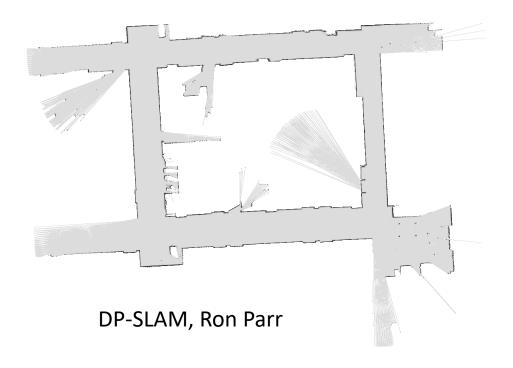
Particle Filter Localization (Laser)

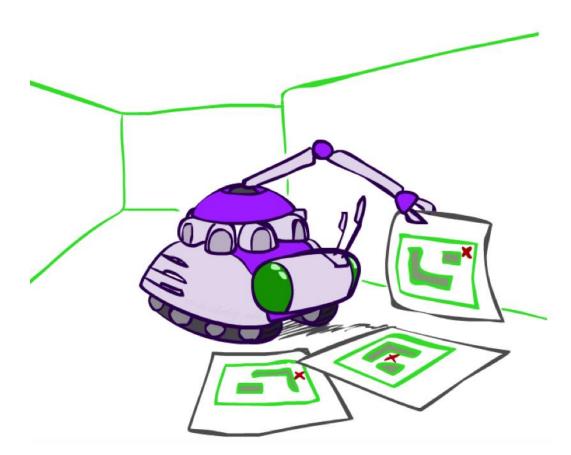


[Video: global-floor.gif]

Robot Mapping

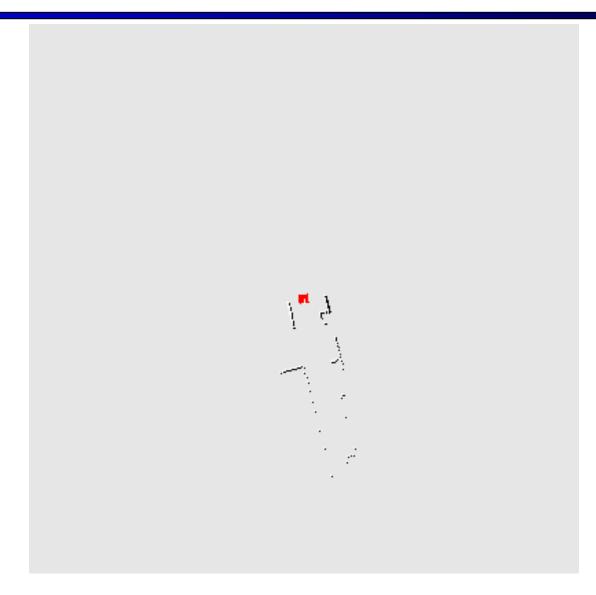
- SLAM: Simultaneous Localization And Mapping
 - We do not know the map or our location
 - State consists of position AND map!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods





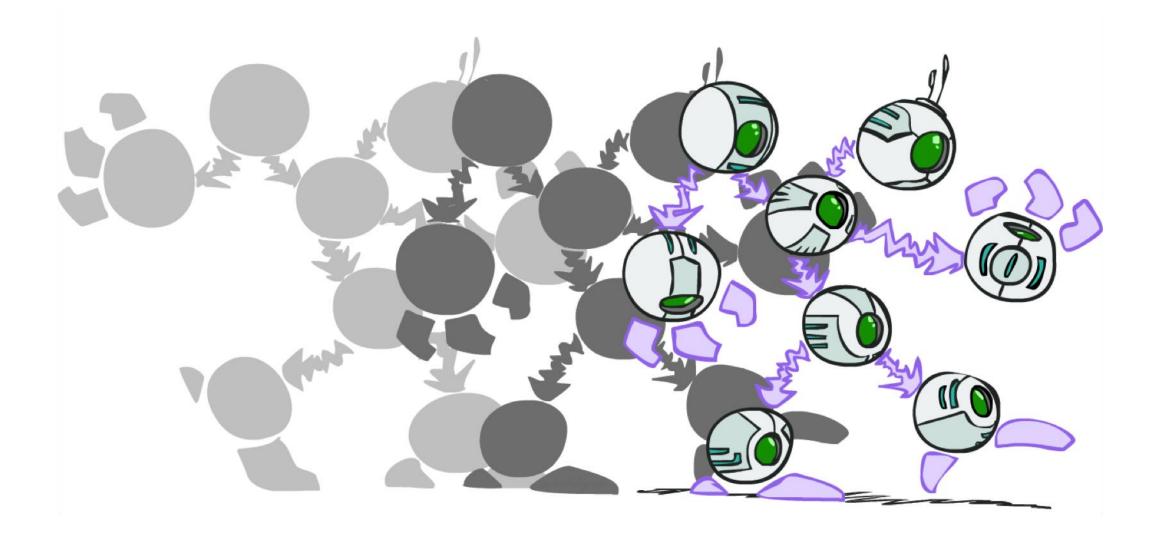
[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video 1



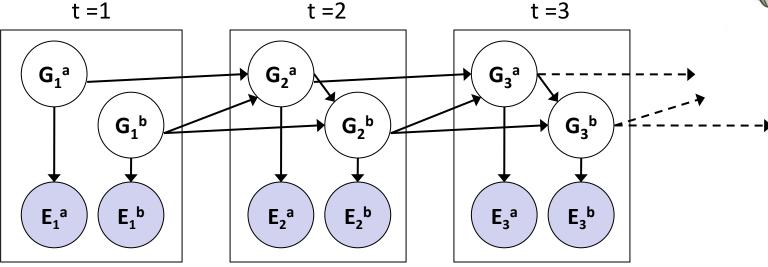
[Demo: PARTICLES-SLAM-mapping1-new.avi]

Dynamic Bayes Nets

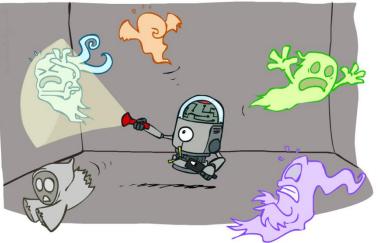


Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from t-1

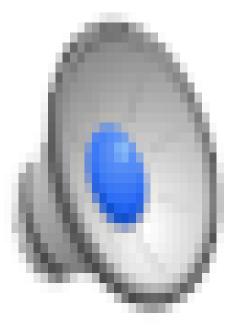


Dynamic Bayes nets are a generalization of HMMs



[Demo: pacman sonar ghost DBN model (L15D6)]

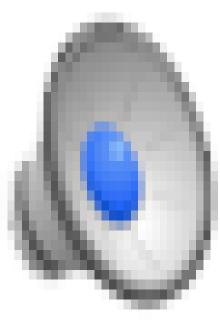
Video of Demo Pacman Sonar Ghost DBN Model



DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 - Example particle: $\mathbf{G}_1^a = (3,3) \mathbf{G}_1^b = (5,3)$ [Note this is **one** particle!]
- Elapse time: Sample a successor for each particle
 - Example successor: $\mathbf{G_2^a} = (2,3) \mathbf{G_2^b} = (6,3)$
- Observe: Weight each <u>entire</u> sample by the likelihood of the evidence conditioned on the sample
 - Likelihood: $P(E_1^a | G_1^a) * P(E_1^b | G_1^b) = \bigcup$
- **Resample:** Select prior samples (tuples of values) in proportion to their likelihood

Project 4 – Pacman Sonar (with beliefs)

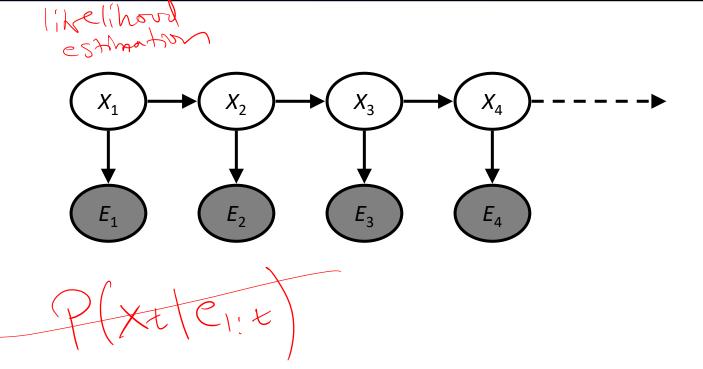


Most Likely Explanation

HMMs: MLE Queries

HMMs defined by

- States X
- Observations E
- Initial distribution: $P(X_1)$
- Transitions: $P(X|X_{-1})$
- Emissions: P(E|X)



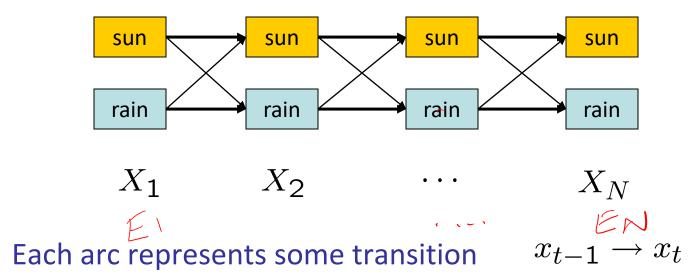
New query: most likely explanation:

 $\underset{x_{1:t}}{\arg\max} P(x_{1:t}|e_{1:t})$

New method: the Viterbi algorithm

State Trellis

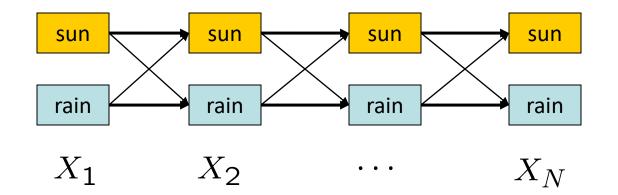
State trellis: graph of states and transitions over time



- Each arc has weight $P(x_t|x_{t-1})P(e_t|x_t)$
- Each path is a sequence of states

- The product of weights on a path is that sequence's probability along with the evidence
- Forward algorithm computes sums of paths, Viterbi computes best paths

Forward / Viterbi Algorithms



Forward Algorithm (Sum)

 $f_{t}[x_{t}] = P(x_{t}, e_{1:t})$ $= P(e_{t}|x_{t}) \sum_{x_{t-1}} P(x_{t}|x_{t-1}) f_{t-1}[x_{t-1}]$

Viterbi Algorithm (Max)

$$m_t[x_t] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_t, e_{1:t})$$

$$= P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$$

HMMs in Action

I Know Why You Went to the Clinic: Risks and Realization of HTTPS Traffic Analysis Brad Miller, Ling Huang, A. D. Joseph, J. D. Tygar (UC Berkeley)

Challenge

Setting

User we want to spy on uses HTTPS to browse the internet

Measurements

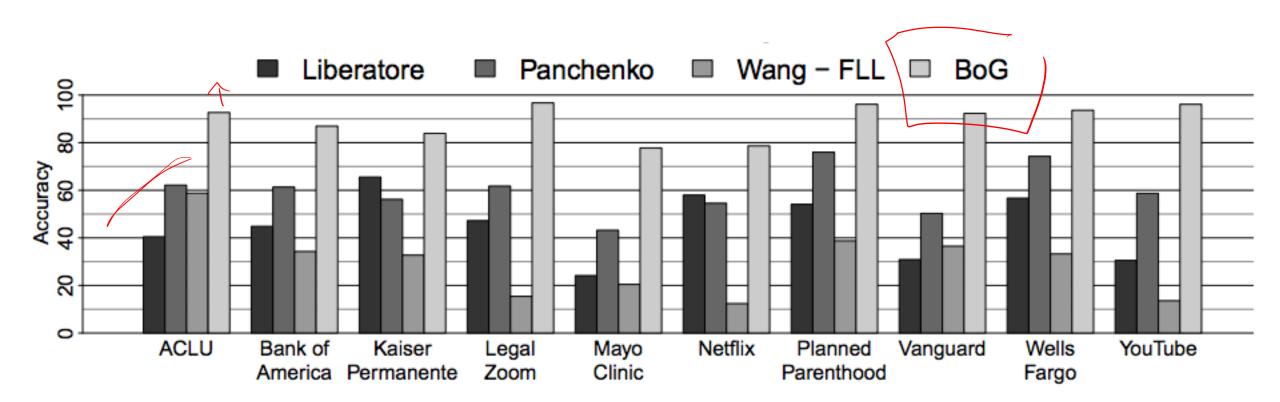
- IP address
- Sizes of packets coming in
- Goal
 - Infer browsing sequence of that user
- E.g.: medical, financial, legal, ...

HMM

Transition model

- Probability distribution over links on the current page + some probability to navigate to any other page on the site
- Noisy observation model due to traffic variations
 - Caching
 - Dynamically generated content
 - User-specific content, including cookies
 - \rightarrow Probability distribution P(packet size | page)

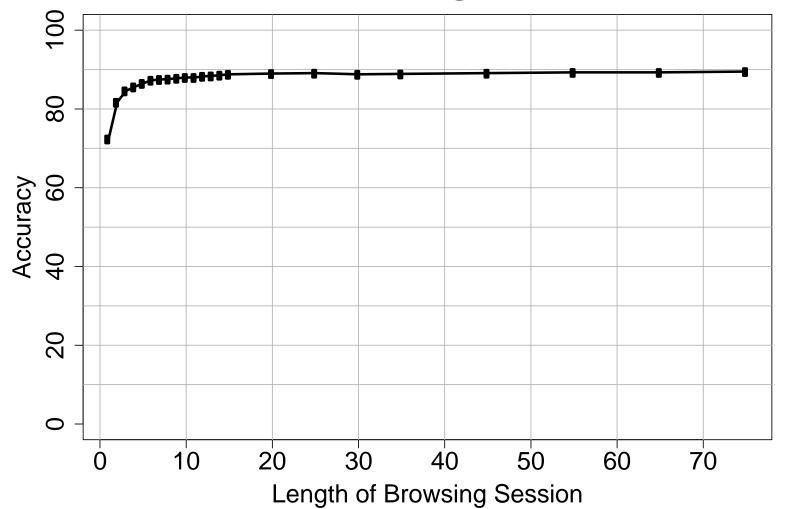
Results



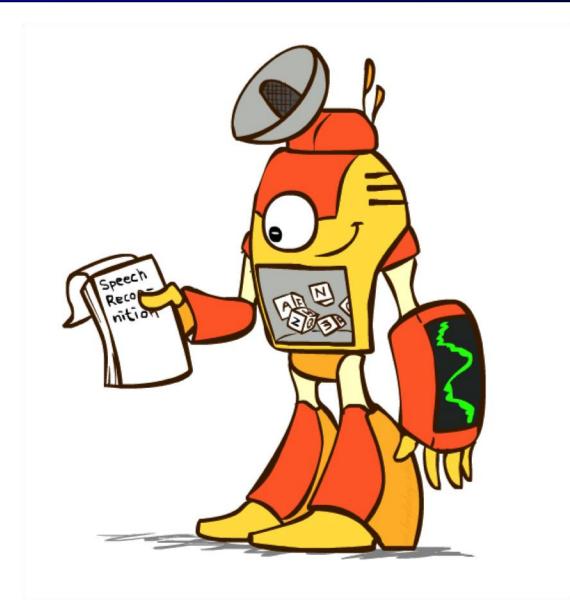
BoG = described approach, others are prior work

Results

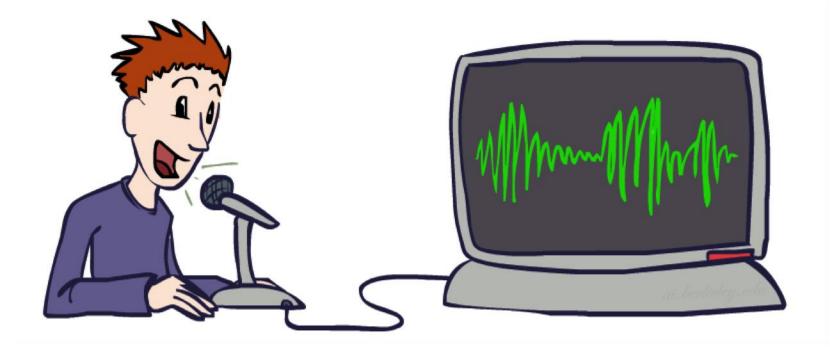
Session Length Effect



(Old School) Speech Recognition



Digitizing Speech



Speech in an Hour

Speech input is an acoustic waveform

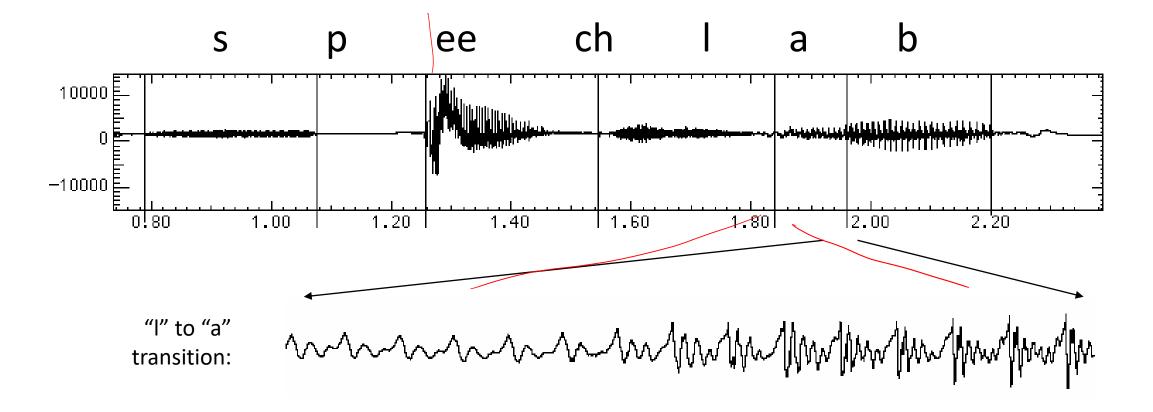
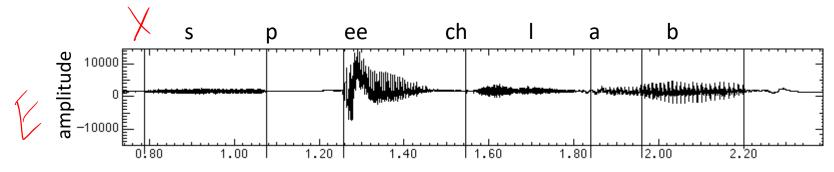


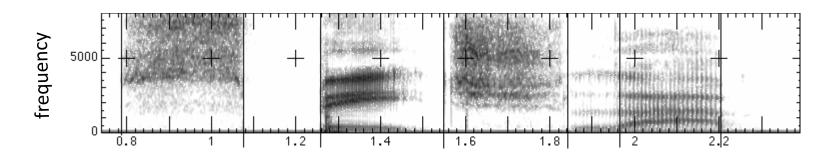
Figure: Simon Arnfield, http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/

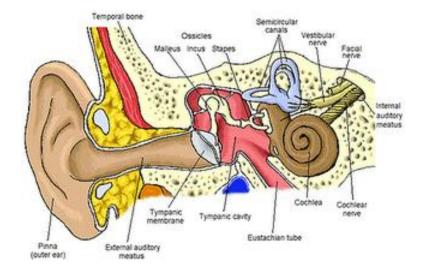
Spectral Analysis

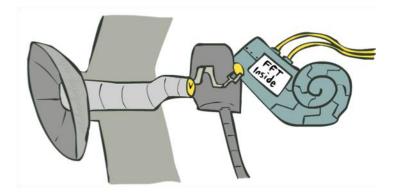
- Frequency gives pitch; amplitude gives volume
 - Sampling at ~8 kHz (phone), ~16 kHz (mic) (kHz=1000 cycles/sec)



- Fourier transform of wave displayed as a spectrogram
 - Darkness indicates energy at each frequency



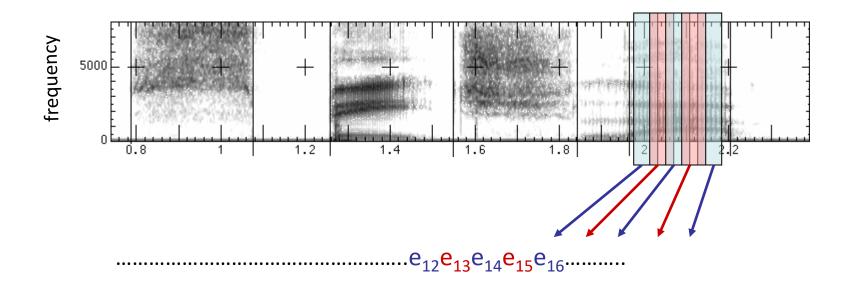




Human ear figure: depion.blogspot.com

Acoustic Feature Sequence

Time slices are translated into acoustic feature vectors (~39 real numbers per slice)



These are the observations E, now we need the hidden states X

Speech State Space

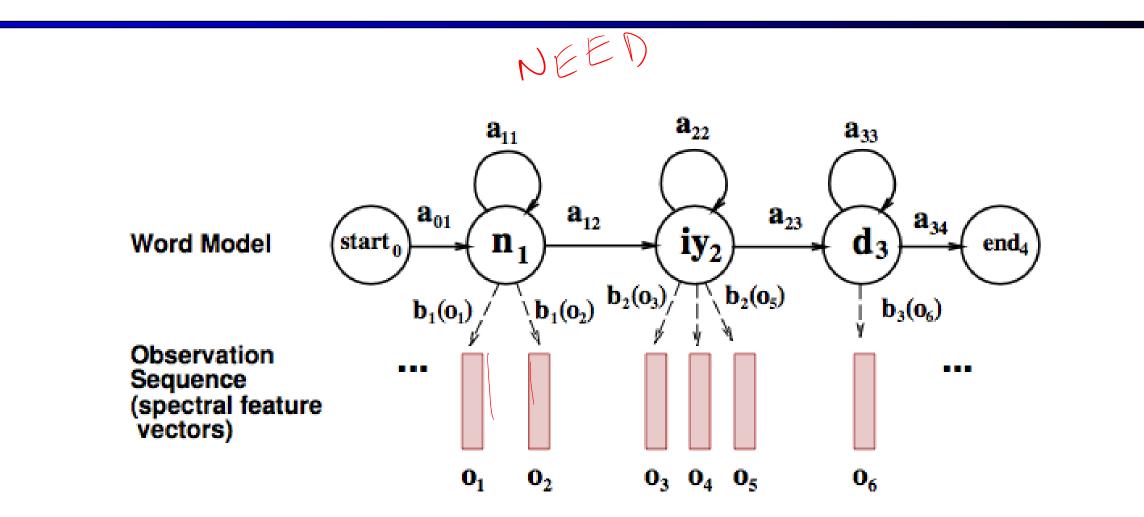
HMM Specification

- P(E|X) encodes which acoustic vectors are appropriate for each phoneme (each kind of sound)
- P(X|X') encodes how sounds can be strung together

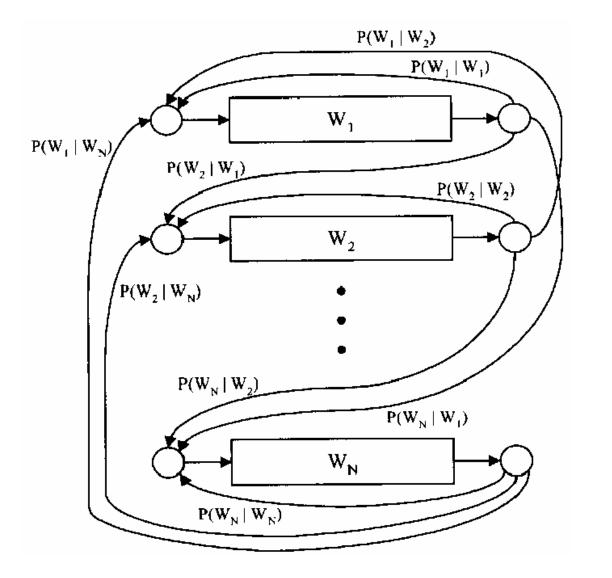
State Space

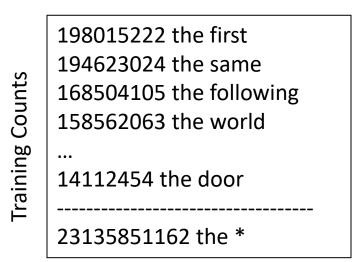
- We will have one state for each sound in each word
- Mostly, states advance sound by sound
- Build a little state graph for each word and chain them together to form the state space X

States in a Word



Transitions with a Bigram Model





$$\hat{P}(\text{door}|\text{the}) = \frac{14112454}{23135851162}$$

= 0.0006

Figure: Huang et al, p. 618

Decoding

- Finding the words given the acoustics is an HMM inference problem
- Which state sequence x_{1:T} is most likely given the evidence e_{1:T}?

$$x_{1:T}^* = \arg\max_{x_{1:T}} P(x_{1:T}|e_{1:T}) = \arg\max_{x_{1:T}} P(x_{1:T}, e_{1:T})$$

• From the sequence x, we can simply read off the words

Next Time: Imitation Learning