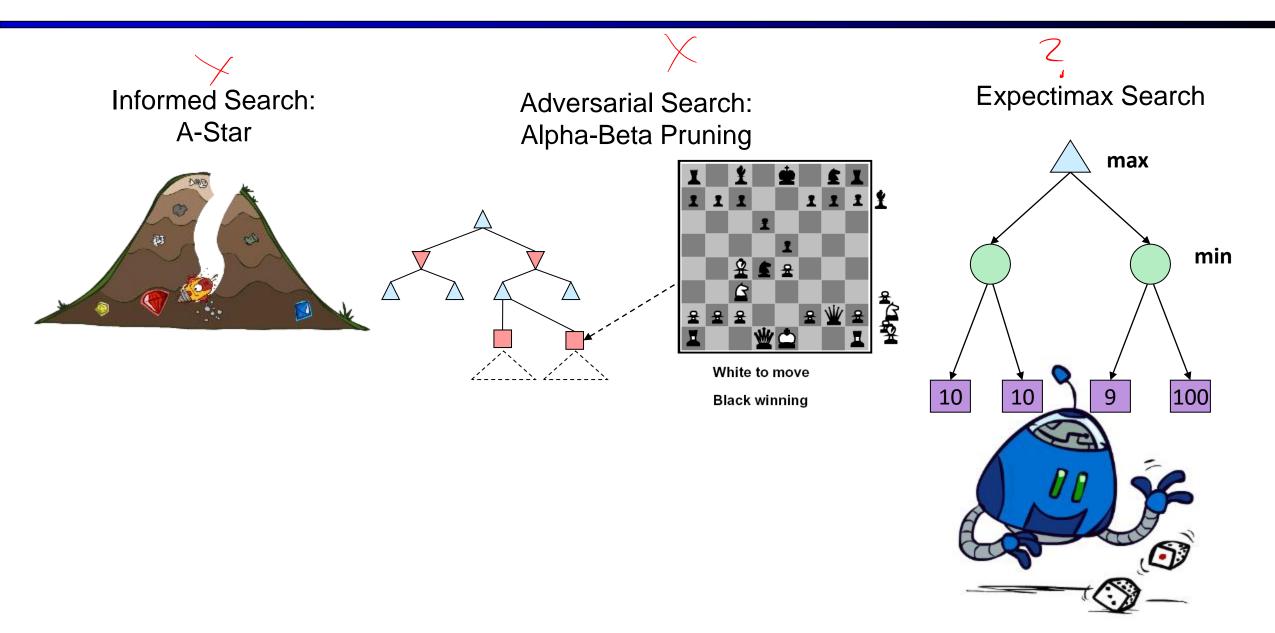
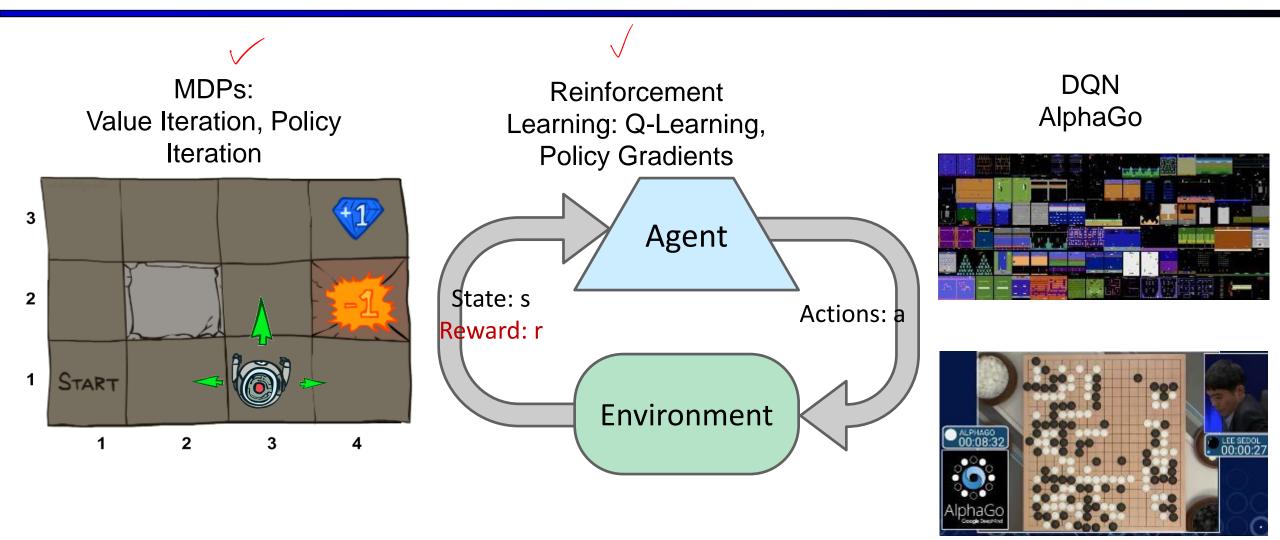
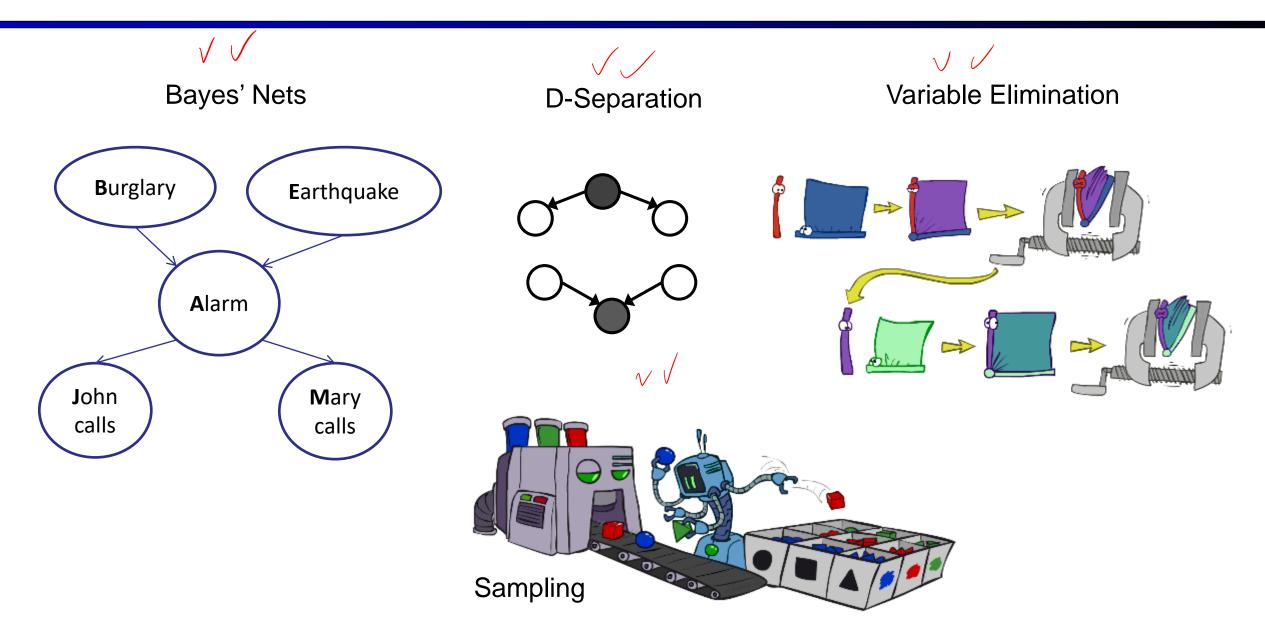
Exam 3 Review

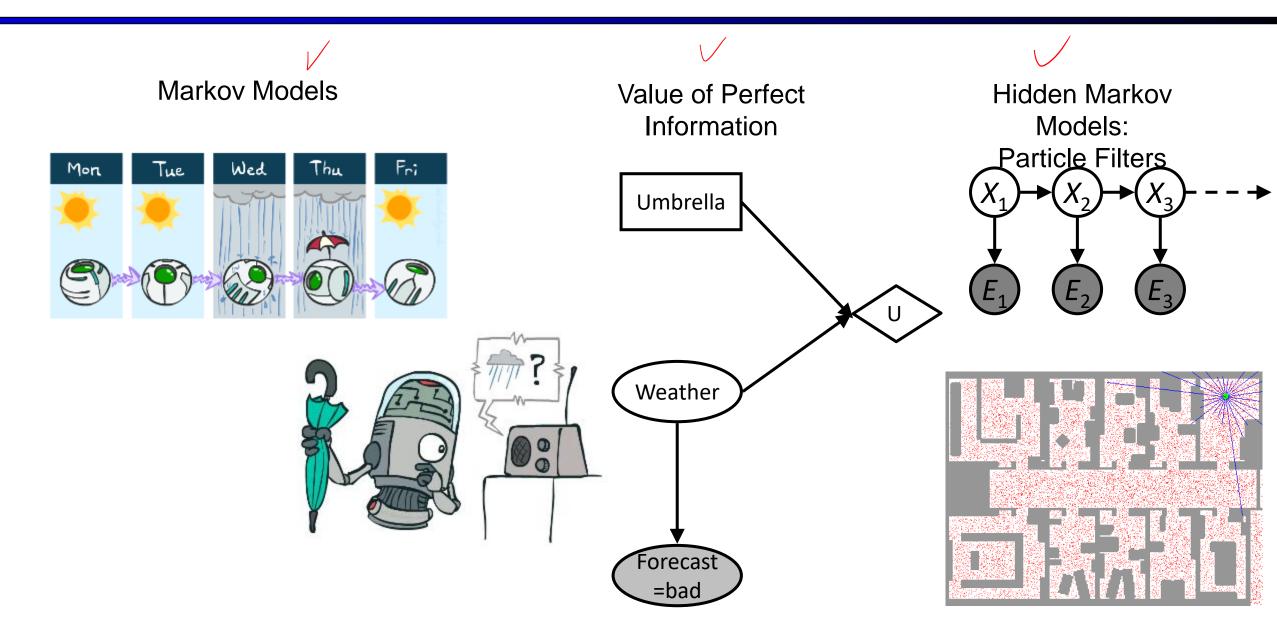
1

- Thursday 3:30-5:30pm in class!
- Bring a calculator. You can check out one from the library.
- One page of notes front and back.

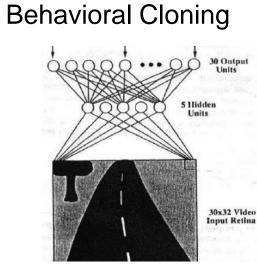




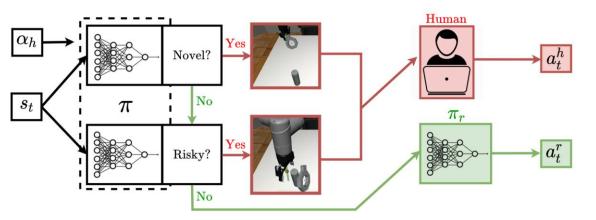


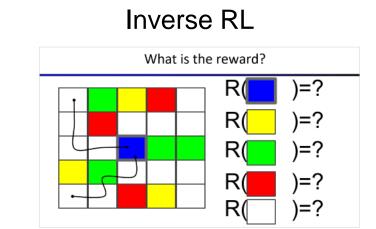


RL

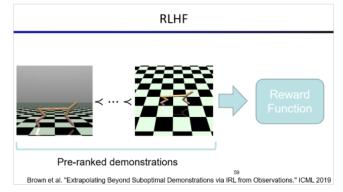


DAgger





RL from Human Feedback



Probability Recap

Conditional probability

$$P(x|y) = \frac{P(x,y)}{P(y)} \xrightarrow{P(x|y)} P(x|y) = \frac{P(x,y)}{P(y)}$$

• Product rule P(x,y) = P(x|y)P(y)

• Chain rule
$$P(X_1, X_2, \dots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$$

 $= \prod_{i=1}^n P(X_i|X_1, \dots, X_{i-1})$

- X, Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$ P(x|y) = P(x)
- X and Y are conditionally independent given Z if and only if: $X \perp\!\!\!\perp Y | Z$ $\forall x, y, z : P(x, y | z) = P(x | z) P(y | z)$

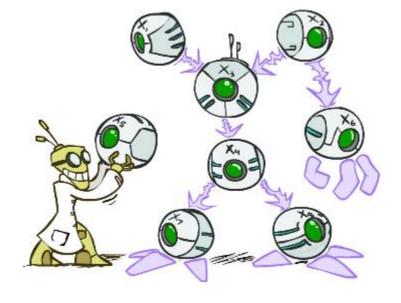
Bayes' Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

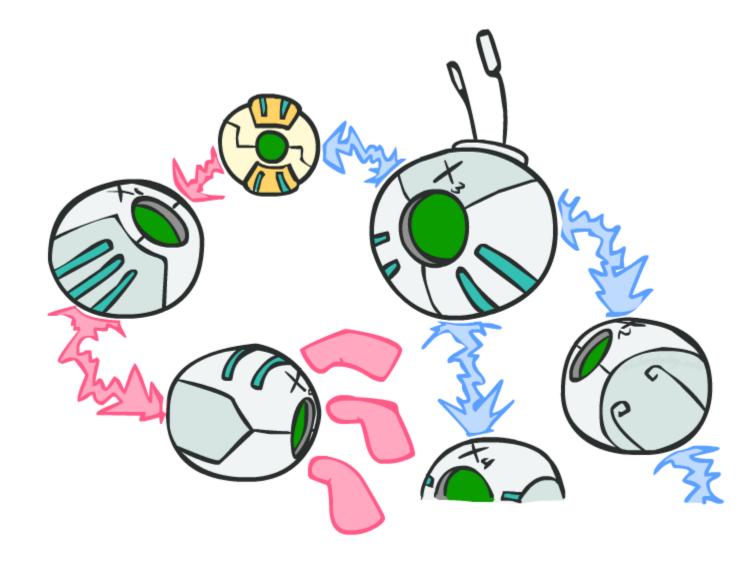
 $P(X|a_1\ldots a_n)$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

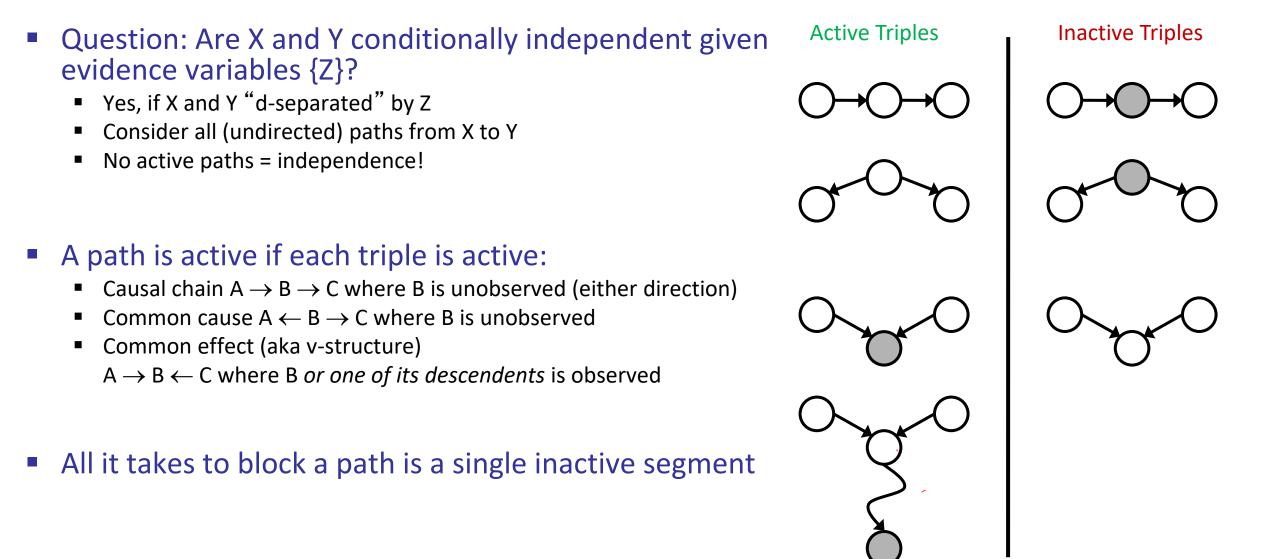
$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$



D-separation: Outline



Active / Inactive Paths



D-Separation

• Query:
$$X_i \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$
 ?

- Check all (undirected!) paths between X_i and X_j
 - If one or more active, then independence not guaranteed

$$X_i \bowtie X_j | \{X_{k_1}, ..., X_{k_n}\}$$

 Otherwise (i.e. if all paths are inactive), then independence is guaranteed

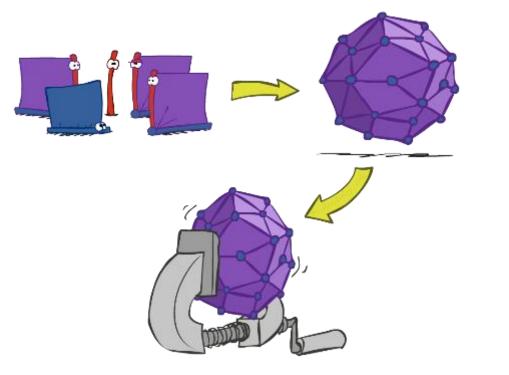
$$X_i \perp \perp X_j | \{X_{k_1}, \dots, X_{k_n}\}$$

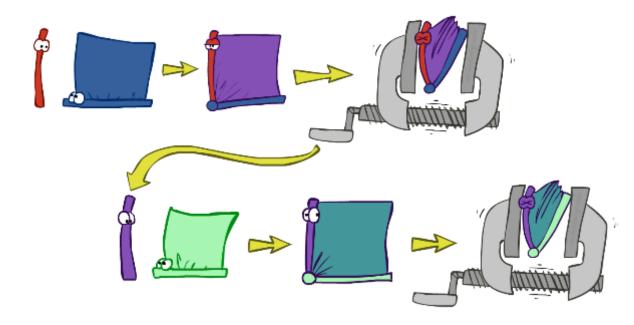
Inference by Enumeration vs. Variable Elimination

 $P(A|+b) \propto P(A,+b)$ $= \sum_{c} \sum_{D} P(A, +b, C, D)$ $= \sum_{c} \sum_{D} P(A)P(c)P(+b|A, C)P(D)+b, C)$ $= \sum_{c} \sum_{D} P(A)P(c)P(+b|A, C)P(D)+b, C)$ Size B 23 = 5ize $= P(C)P(+b|A,C) \sum P(D|+b,C)$ C + b + d $f_{1}(+b, c) = o(2^{2})$ $f_{1}(+b,\overline{A}) = (2^{2})$

Inference by Enumeration vs. Variable Elimination

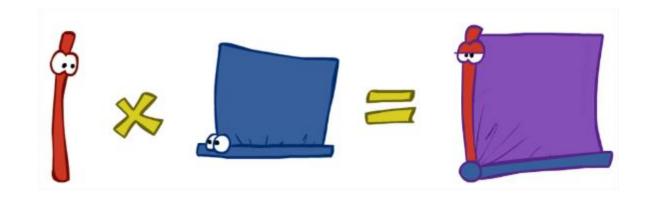
- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables
- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration



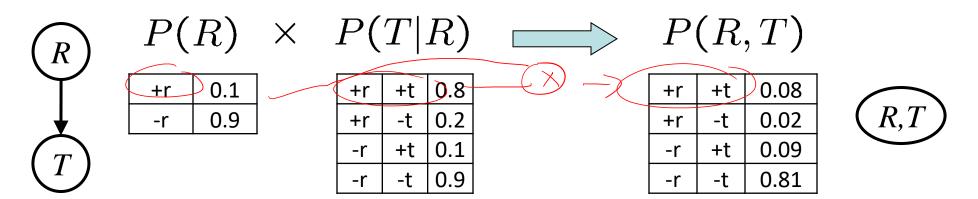


Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved



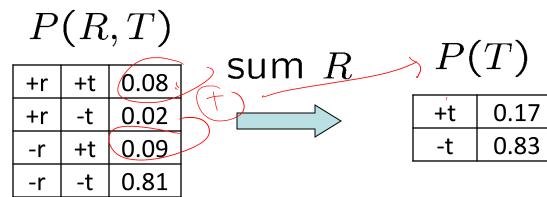
Example: Join on R

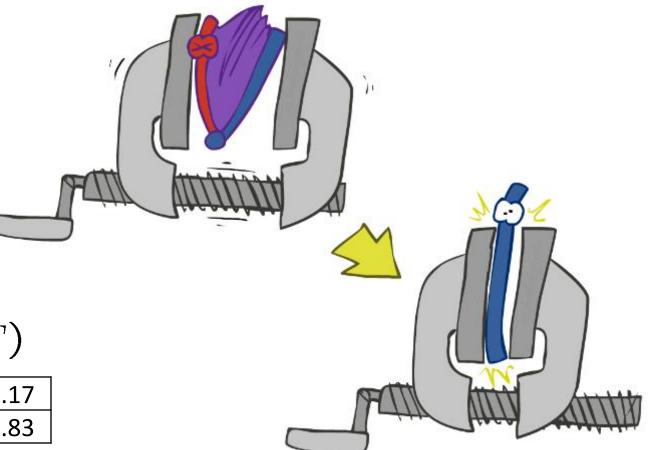


- Computation for each entry: pointwise products $\forall r, t$: F
- $\forall r, t : P(r, t) = P(r) \cdot P(t|r)$

Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
 - Shrinks a factor to a smaller one
 - A projection operation
- Example:

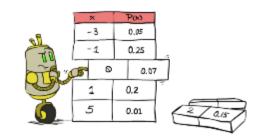


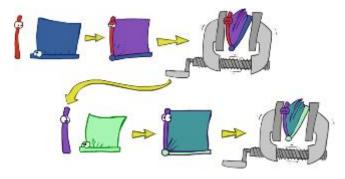


General Variable Elimination

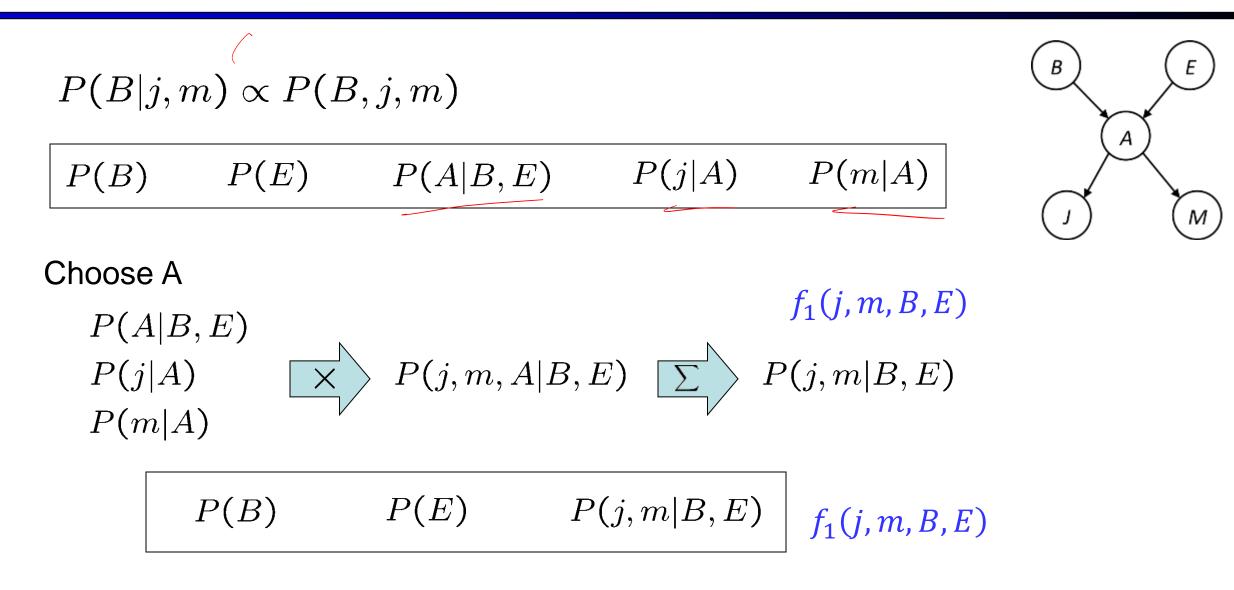
• Query:
$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

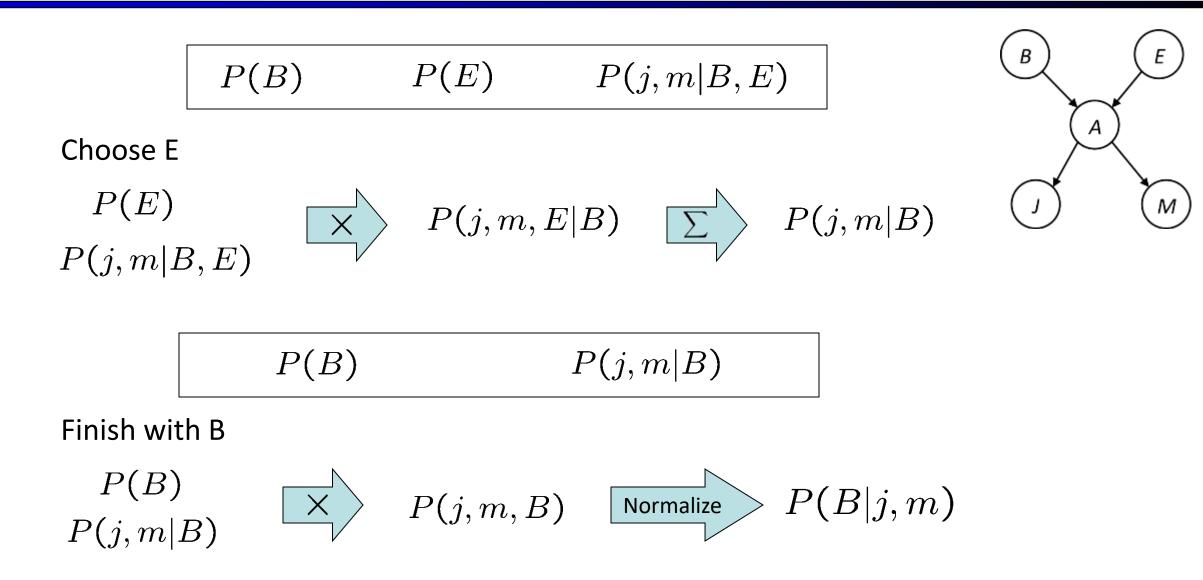




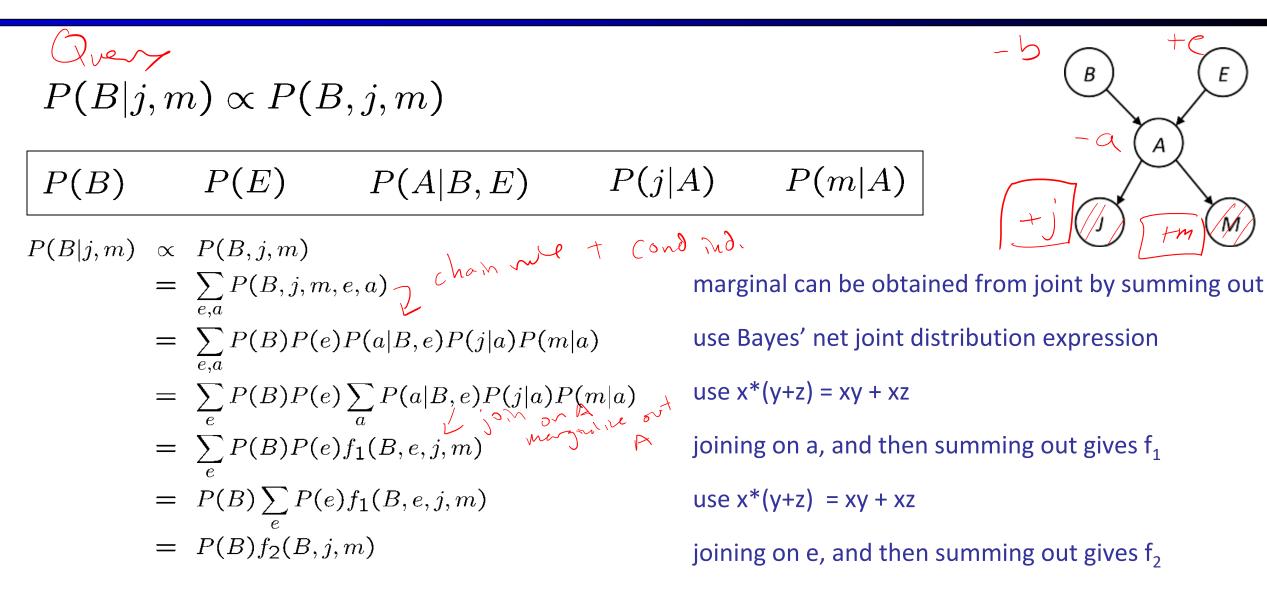
Example



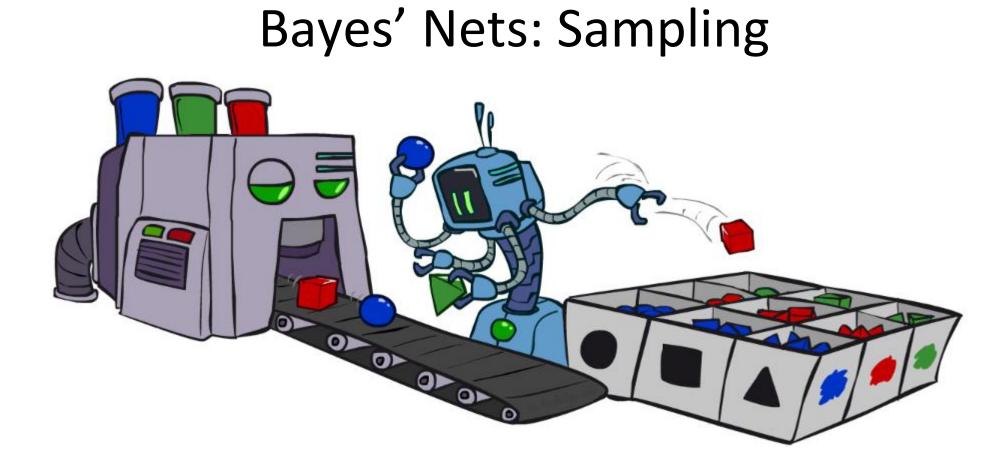
Example



Same Example in Equations



All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!



Sampling

- Sampling from given distribution
 - Step 1: Get sample *u* from uniform distribution over [0, 1)

>>> import random
>>> random.random()
0.6303136415860905

Step 2: Convert this sample *u* into an outcome for the given distribution by having each outcome associated with a sub-interval of [0,1) with sub-interval size equal to probability of the outcome

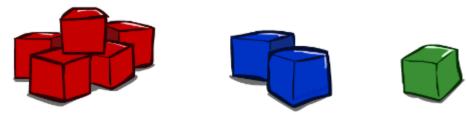
Example

С	P(C)
red	0.6
green	0.1
blue	0.3

 $\begin{array}{l} 0 \leq u < 0.6, \rightarrow C = red \\ 0.6 \leq u < 0.7, \rightarrow C = green \\ 0.7 \leq u < 1, \rightarrow C = blue \end{array}$

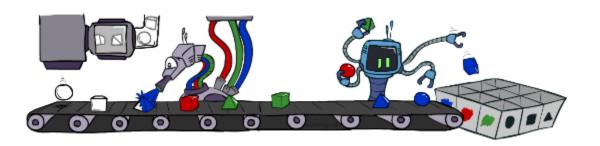
0.723

- If random() returns u = 0.83, then our sample is C = blue
- E.g, after sampling 8 times:

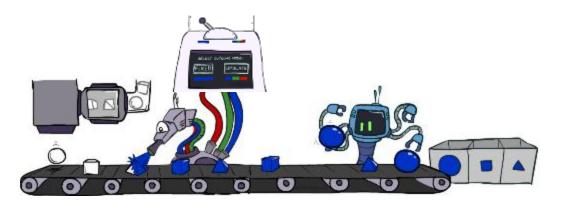


Bayes' Net Sampling Summary

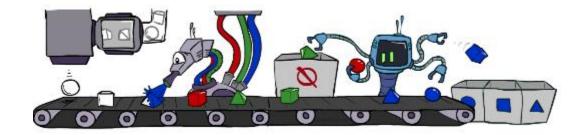
Prior Sampling P

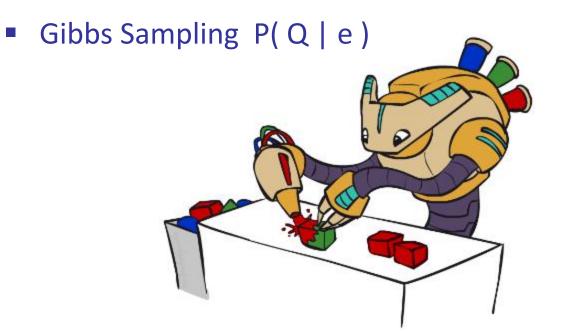


Likelihood Weighting P(Q | e)



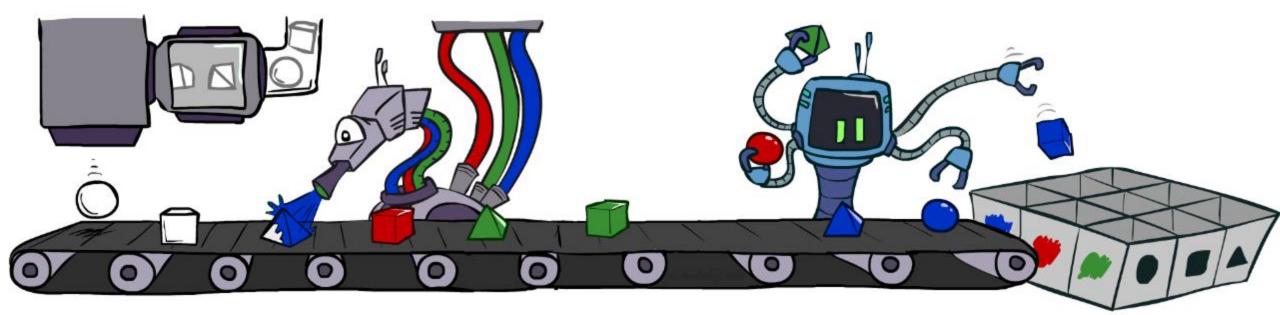
Rejection Sampling P(Q | e)





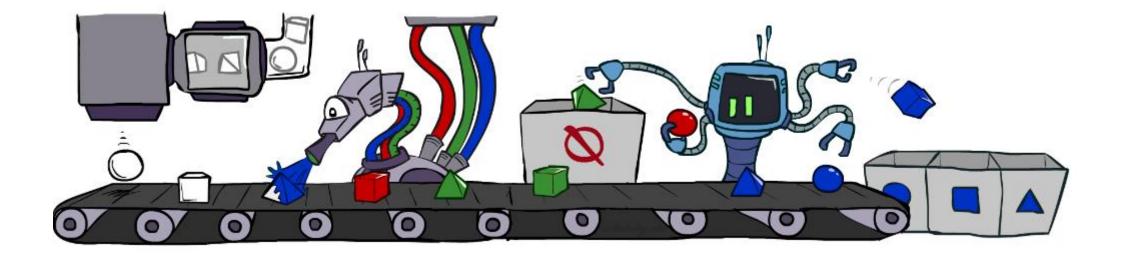
Prior Sampling

- For i=1, 2, ..., n
 - Sample x_i from P(X_i | Parents(X_i))
- Return (x₁, x₂, ..., x_n)

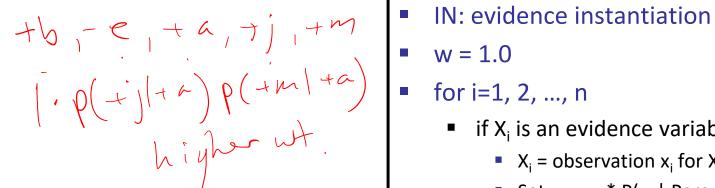


Rejection Sampling

- IN: evidence instantiation
- For i=1, 2, ..., n
 - Sample x_i from P(X_i | Parents(X_i))
 - If x_i not consistent with evidence
 - Reject: Return, and no sample is generated in this cycle
- Return (x₁, x₂, ..., x_n)



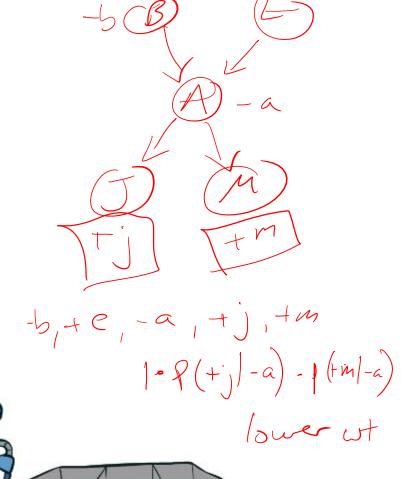
P(B(-j,+m) Likelihood Weighting



w = 1.0

for i=1, 2, ..., n

- if X_i is an evidence variable
 - X_i = observation x_i for X_i
 - Set w = w * P(x_i | Parents(X_i))
- else
 - Sample x_i from P(X_i | Parents(X_i))
- return (x₁, x₂, ..., x_n), w



Likelihood Weighting

IN: evidence instantiation

return (x₁, x₂, ..., x_n), w

0

- w = 1.0
- for i=1, 2, ..., n
 - if X_i is an evidence variable
 - X_i = observation x_i for X_i
 - Set w = w * P(x_i | Parents(X_i))
 - else

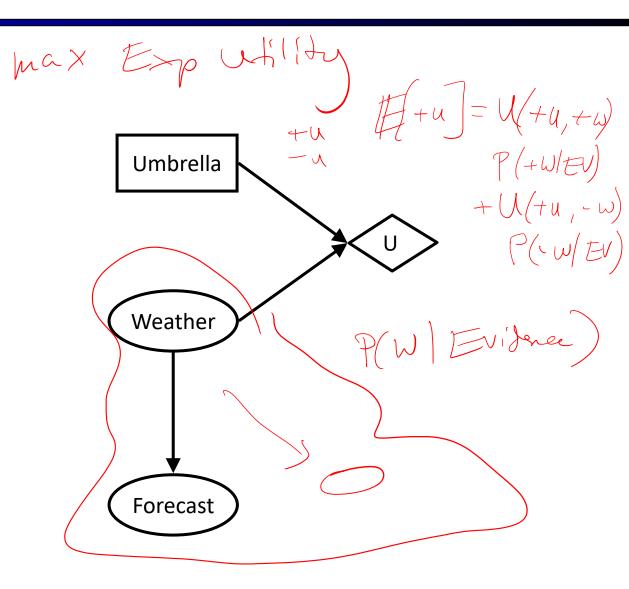
Sample x_i from P(X_i | Parents(X_i))

Now each sample doesn't count as 1.0 but has a weight. Need to take a weighted average.

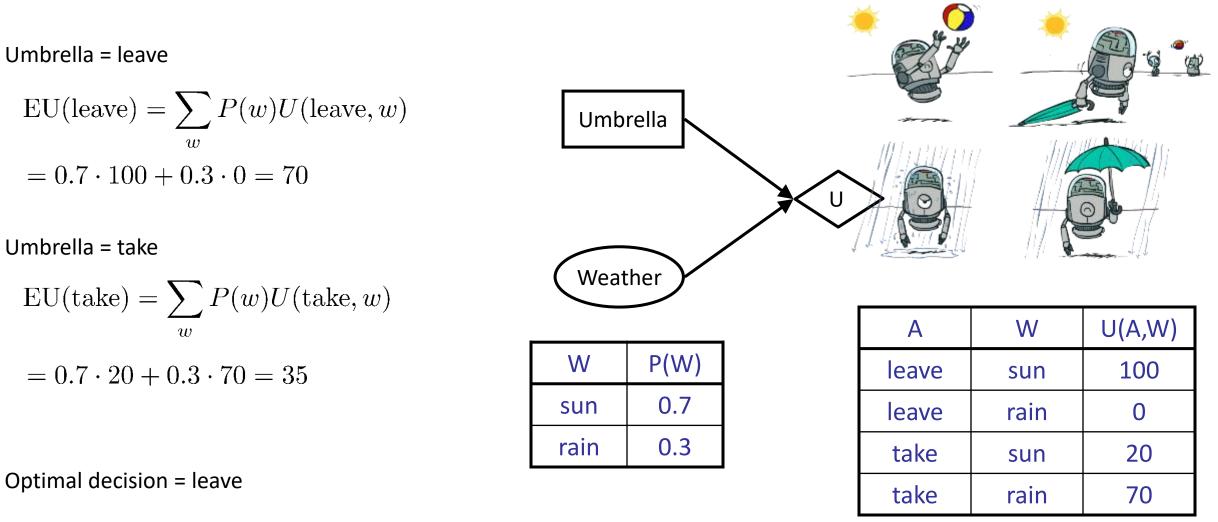
P(Q|Evidence) = Sum(weights of samples consistent with Query) / Total Weight of All samples.

Decision Networks

- Action selection
 - Instantiate all evidence
 - Set action node(s) each possible way
 - Calculate posterior for all parents of utility node, given the evidence
 - Calculate expected utility for each action
 - Choose maximizing action

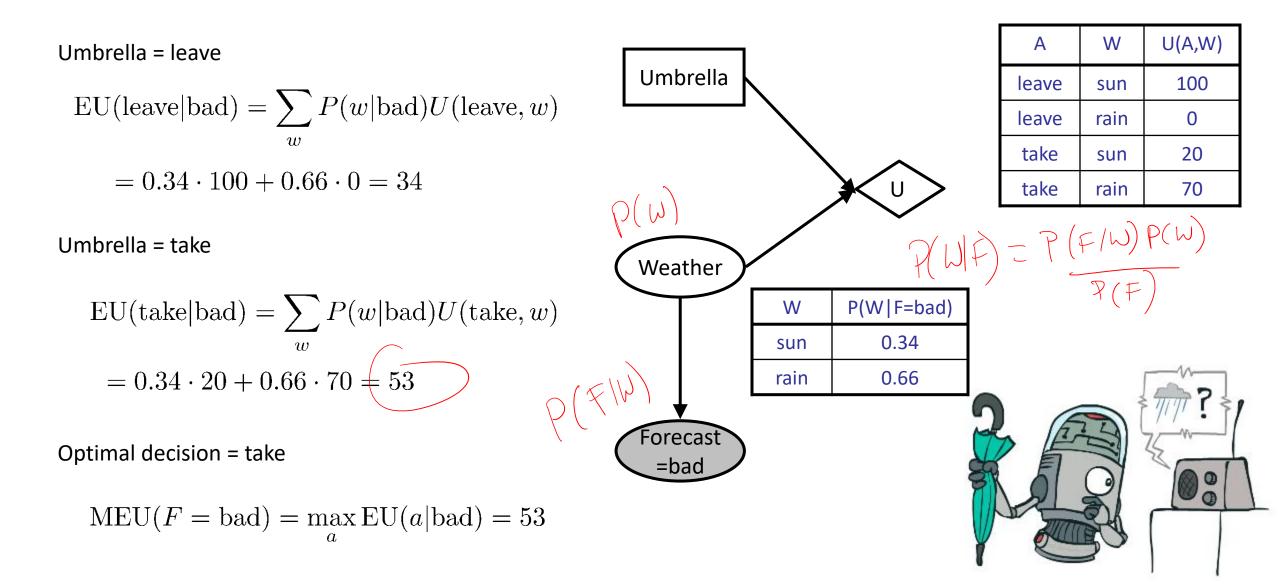


Decision Networks



$$MEU(\phi) = \max_{a} EU(a) = 70$$

Example: Decision Networks



VPI Example: Weather

MEU with no evidence

$$\mathrm{MEU}(\phi) = \max_{a} \mathrm{EU}(a) = 70$$

MEU if forecast is bad

$$MEU(F = bad) = \max_{a} EU(a|bad) = 53$$

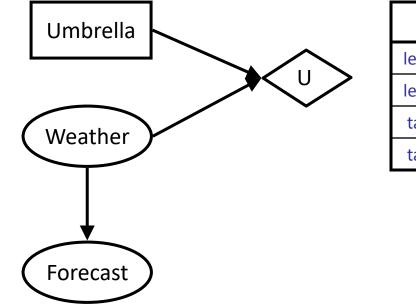
MEU if forecast is good

$$MEU(F = good) = \max_{a} EU(a|good) = 95$$

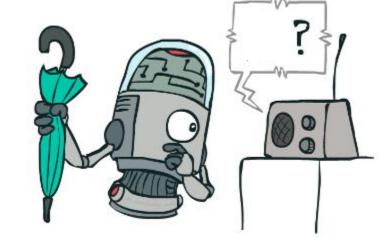
Forecast distribution

$$\begin{array}{c|cc}
F & P(F) \\
\hline
good & 0.59 \\
\hline
bad & 0.41
\end{array} \quad 0.59 \cdot (95) + 0.41 \cdot (53) - 70 \\
\hline
77.8 - 70 = 7.8
\end{array}$$

$$\begin{array}{c}
\mathsf{VPI}(E'|e) = \left(\sum_{e'} P(e'|e)\mathsf{MEU}(e,e')\right) - \mathsf{MEU}(e,e') \\
e' = \operatorname{MEU}(e,e') = \operatorname{MEU}(e,e') \\
\hline
\mathsf{MEU}(e,e') \\
\hline$$



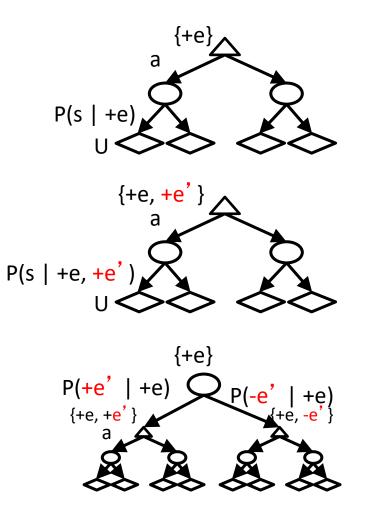
А	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70



Value of Information

- Assume we have evidence E=e. Value if we act now: $MEU(e) = \max_{a} \sum_{s} P(s|e) U(s,a)$
- Assume we see that E' = e'. Value if we act then: $MEU(e, e') = \max_{a} \sum_{s} P(s|e, e') U(s, a)$
- BUT E' is a random variable whose value is unknown, so we don't know what e' will be
- Expected value if E' is revealed and then we act: $MEU(e, E') = \sum_{e'} P(e'|e)MEU(e, e')$
- Value of information: how much MEU goes up by revealing E' first then acting, over acting now:

VPI(E'|e) = MEU(e, E') - MEU(e)



Markov Models Recap

- Explicit assumption for all $t: X_t \perp X_1, \ldots, X_{t-2} \mid X_{t-1}$
- Consequence, joint distribution can be written as:

$$P(X_1, X_2, \dots, X_T) = P(X_1)P(X_2|X_1)P(X_3|X_2)\dots P(X_T|X_{T-1})$$

$$= P(X_1) \prod_{t=2}^{T} P(X_t | X_{t-1})$$

Huge savings in number of parameters needed!

- Implied conditional independencies:
 - Past variables independent of future variables given the present

i.e., if $t_1 < t_2 < t_3$ or $t_1 > t_2 > t_3$ then: $X_{t_1} \perp X_{t_3} \mid X_{t_2}$

• Additional explicit assumption: $P(X_t | X_{t-1})$ is the same for all t

Mini-Forward Algorithm

Question: What's P(X) on some day t?

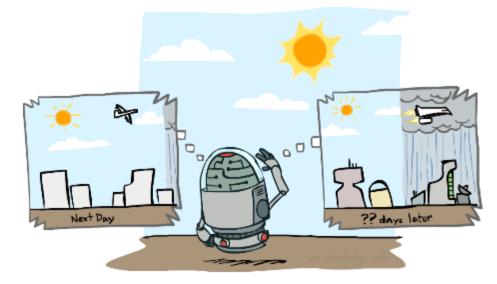
$$(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) - - - \rightarrow$$

$$P(x_1) = known$$

$$P(x_t) = \sum_{x_{t-1}} P(x_{t-1}, x_t)$$

=
$$\sum_{x_{t-1}} P(x_t \mid x_{t-1}) P(x_{t-1})$$

Forward simulation



Stationary Distributions

• For most chains:

- Influence of the initial distribution gets less and less over time.
- The distribution we end up in is independent of the initial distribution

Stationary distribution:

- The distribution we end up with is called the stationary distribution P_∞ of the chain
- It satisfies

Sive
$$P_{\infty}(X) = P_{\infty+1}(X) = \sum_{x} P(X|x)P_{\infty}(x)$$

 $Z = P_{\infty}(x) = |$
 $X = \sum_{x} P(X|x)P_{\infty}(x)$

HMMs Recap

- Explicit assumption for all $t: X_t \perp X_1, \ldots, X_{t-2} \mid X_{t-1}$
- Consequence, joint distribution can be written as:

 $P(X_1, X_2, \dots, X_T) = P(X_1)P(X_2|X_1)P(X_3|X_2)\dots P(X_T|X_{T-1})$ $P(X_1, X_2, \dots, X_T) = P(X_1)P(X_2|X_1)P(X_3|X_2)\dots P(X_T|X_{T-1})$ $= P(X_1)\prod_{t=1}^T P(X_t|X_{t-1}) \qquad P(X_t|X_{t-1})$ $Q(e|X_t)$

Y/XJ

- Implied conditional independencies:
 - Past variables independent of future variables given the present i.e., if $t_1 < t_2 < t_3$ or $t_1 > t_2 > t_3$ then: $X_{t_1} \perp X_{t_3} \mid X_{t_3}$
- Additional explicit assumption: $P(X_t | X_{t-1})$ is the same for all t

The Forward Algorithm

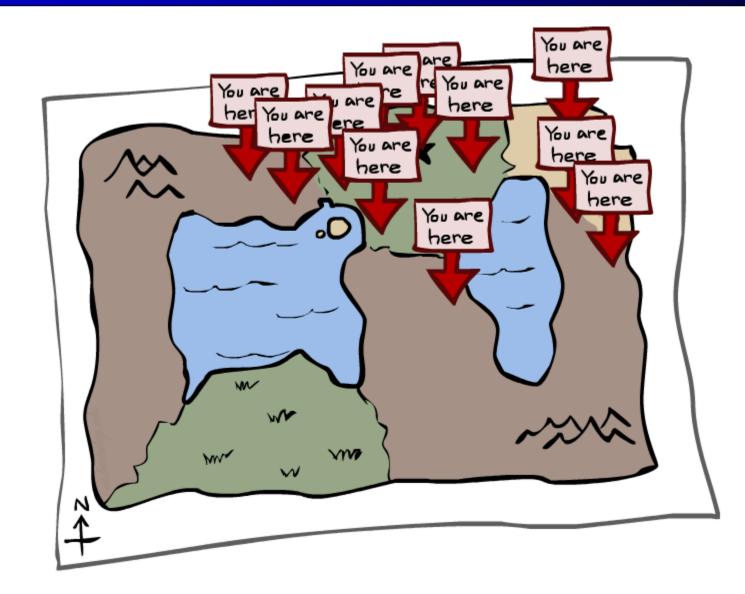
• We are given evidence at each time and want to know

$$B_t(X) = P(X_t | e_{1:t})$$

• We can derive the following recursive update

$$\begin{aligned} P(x_t|e_{1:t}) &= P(x_t|e_{1:t-1}, e_t) & \text{Divide up evidence} \\ &\propto P(e_t|x_t, e_{1:t-1})P(x_t|e_{1:t-1}) & \text{Bayes' rule} \\ &= P(e_t|x_t)P(x_t|e_{1:t-1}) & \text{Sensor Markov assumption} \\ &= P(e_t|x_t)\sum_{x_{t-1}}P(x_t, x_{t-1}|e_{1:t-1}) & \text{Reverse marginalization} \\ &= P(e_t|x_t)\sum_{x_{t-1}}P(x_t|e_{1:t-1}, x_{t-1})P(x_{t-1}|e_{1:t-1}) & \text{Product rule} \\ &= P(e_t|x_t)\sum_{x_{t-1}}P(x_t|x_{t-1})P(x_{t-1}|e_{1:t-1}) & \text{Markov assumption} \end{aligned}$$

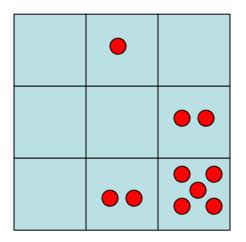
Particle Filtering



Particle Filtering

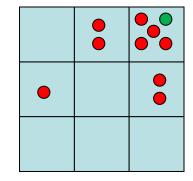
- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

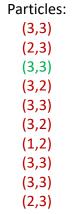
0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5



Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X|</p>
 - Storing map from X to counts would defeat the point
- P(x) approximated by number of particles with value x
 - So, many x may have P(x) = 0!
 - More particles, more accuracy
- For now, all particles have a weight of 1



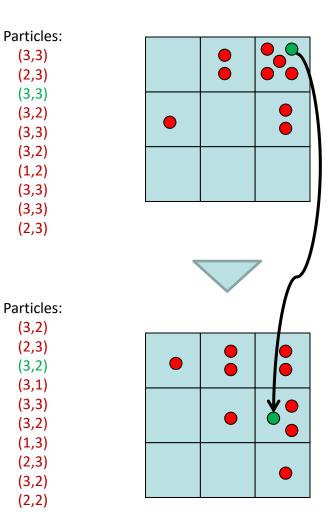


Particle Filtering: Elapse Time

Each particle is moved by sampling its next position from the transition model

 $x' = \operatorname{sample}(P(X'|x))$

- This is like prior sampling samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)



(3,3)(2,3)(3,3)(3,2)

(3,3)(3,2)(1,2)(3,3)

(3,3) (2,3)

(3,2)(2,3)(3,2)

(3,1)

(3,3)(3,2)

(1,3)

(2,3) (3,2)(2,2)

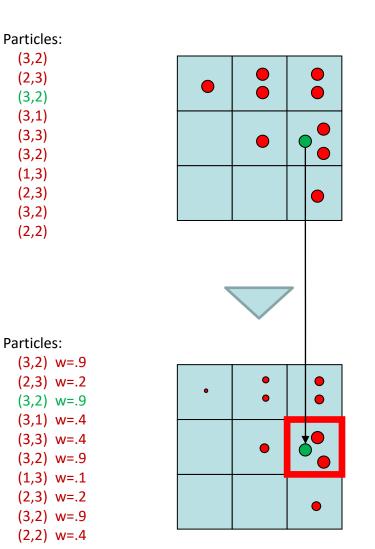
Particle Filtering: Observe

Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

w(x) = P(e|x) $B(X) \propto P(e|X)B'(X)$

 As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of P(e))



Particle Filtering: Resample

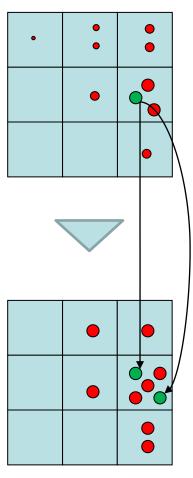
Particles:

(3,3) (3,2) (1,3)(2,3)(3,2) (3,2)

(3,2) w=.9

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4
(New) Particles:
(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2.2)



Recap: Particle Filtering

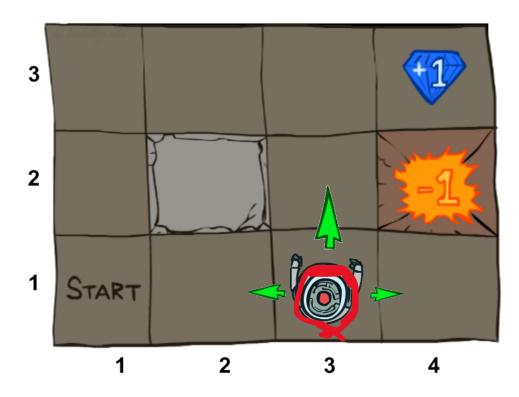
Particles: track samples of states rather than an explicit distribution

	Elapse P(X+ X+	Weight P(et X Resar	nple
Particles:	Particles:	Particles:	(New) Particles:
(3,3)	(3,2)	(3,2) w=.9	(3,2)
(2,3)	(2,3)	(2,3) w=.2	(2,2)
(3,3)	(3,2)	(3,2) w=.9	(3,2)
(3,2)	(3,1)	(3,1) w=.4	(2,3)
(3,3)	(3,3)	(3,3) w=.4	(3,3)
(3,2)	(3,2)	(3,2) w=.9	(3,2)
(1,2)	(1,3)	(1,3) w=.1	(1,3)
(3,3)	(2,3)	(2,3) w=.2	(2,3)
(3,3)	(3,2)	(3,2) w=.9	(3,2)
(2,3)	(2,2)	(2,2) w=.4	(3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]

Partially Observable Markov Decision Processes

- A POMDP is defined by:
 - A set of states s ∈ S
 - A set of actions $a \in A$
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s), R(s,a), or R(s')
 - A start state distribution
 - Maybe a terminal state
 - Observations Z
 - Emission Model O(s,z) = P(z|s)
- POMDPs are non-deterministic search problems where you don't know where you are!

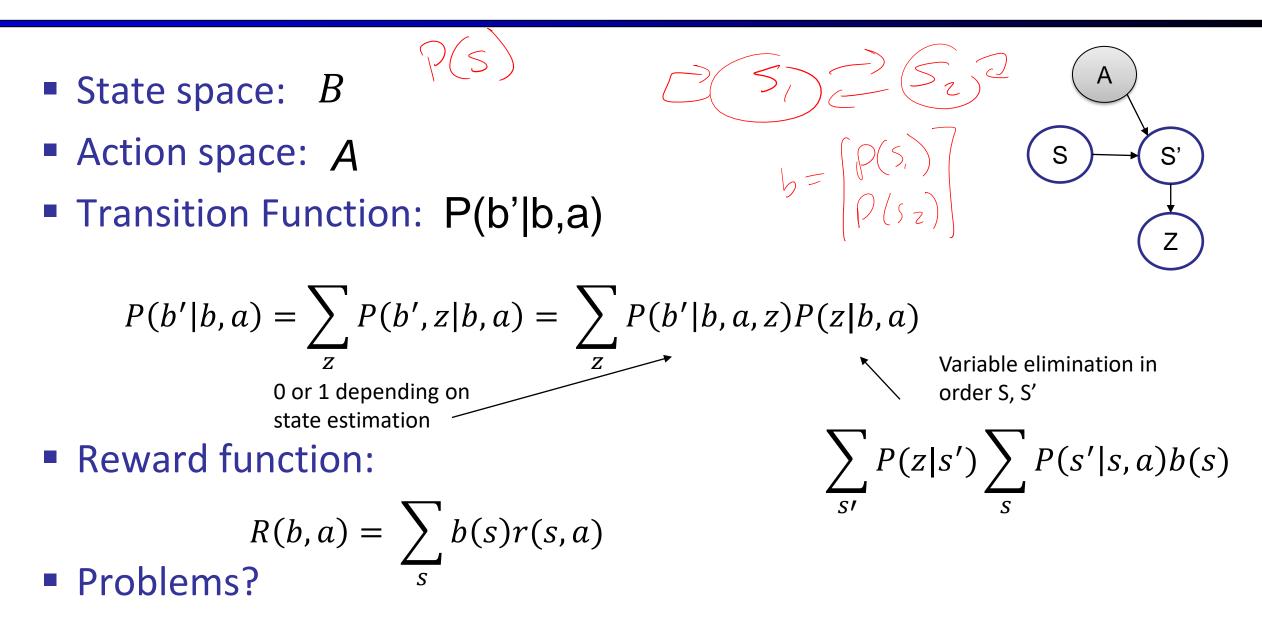


MDP vs POMDP

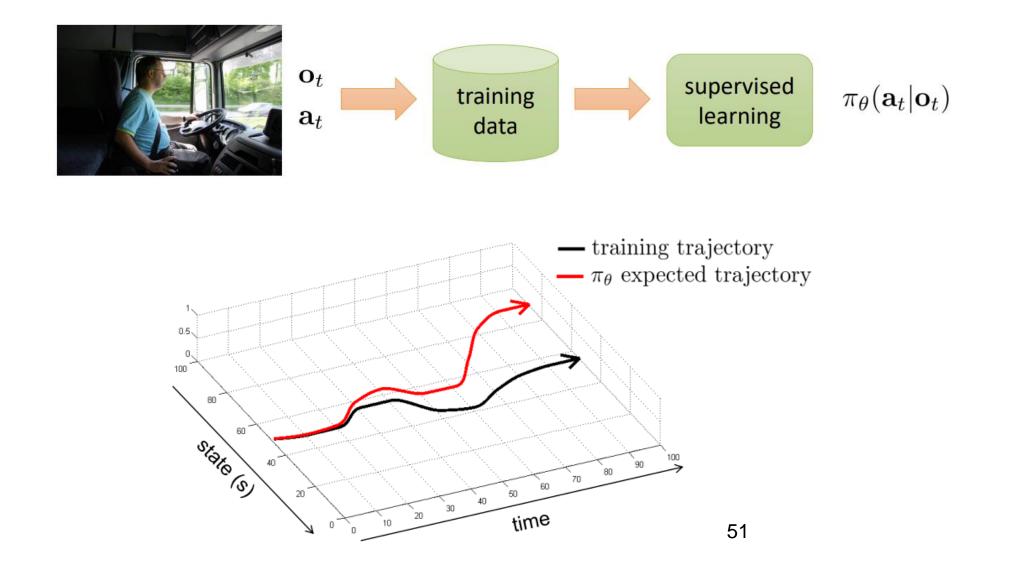
MDP

- + Tractable to solve
- + Relatively easy to specify
- Assumes perfect knowledge of state
- POMDP
 - +Models the real world
 - +Allows for information gathering actions
 - Hugely intractable to solve optimally

Belief State MDP

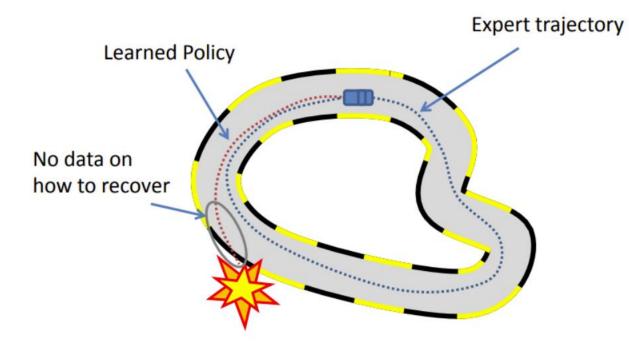


Behavioral Cloning



Distribution Shift

$$p_{\pi^*}(o_t) \neq p_{\pi_\theta}(o_t)$$



	Supervised Learning	Supervised Learning + Control
Train	$(x,y) \sim D$	$s \sim P(\cdot s, \pi^*(s))$
Test	$(x,y) \sim D$	$s \sim P(\cdot s, \pi(s))$

DAgger

can we make $p_{\text{data}}(\mathbf{o}_t) = p_{\pi_{\theta}}(\mathbf{o}_t)$?

idea: instead of being clever about $p_{\pi_{\theta}}(\mathbf{o}_t)$, be clever about $p_{\text{data}}(\mathbf{o}_t)$!

DAgger: Dataset Aggregation

goal: collect training data from $p_{\pi_{\theta}}(\mathbf{o}_t)$ instead of $p_{\text{data}}(\mathbf{o}_t)$ how? just run $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ but need labels \mathbf{a}_t !

1. train $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$ 2. run $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

Ross et al. '11

Behavioral Cloning

$$\Rightarrow \pi$$

- Answers the "How?" question
- Mimic the demonstrator
- Learn mapping from states to actions
- Computationally efficient
- Compounding errors

Inverse Reinforcement Learning

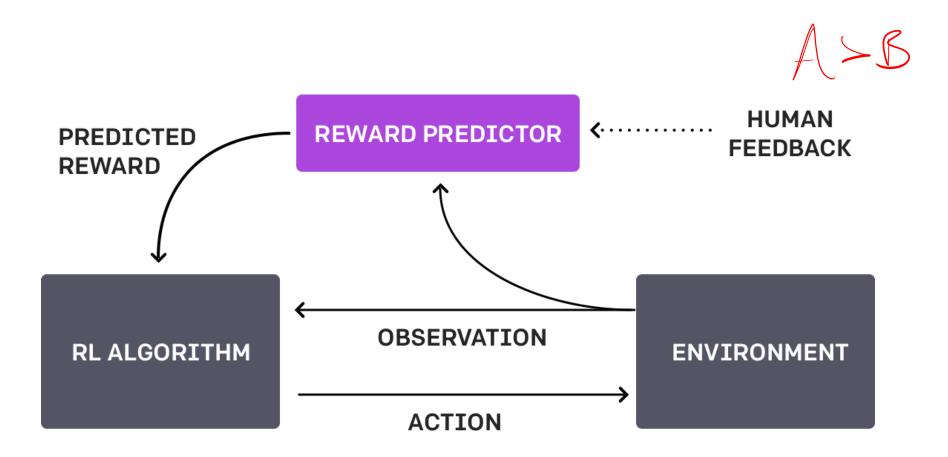


- Answers the "Why?" question
- Explain the demonstrator's behavior
- Learn a reward function capturing the demonstrator's intent
- Can require lots of data and compute
- Better generalization. Can recover from arbitrary states

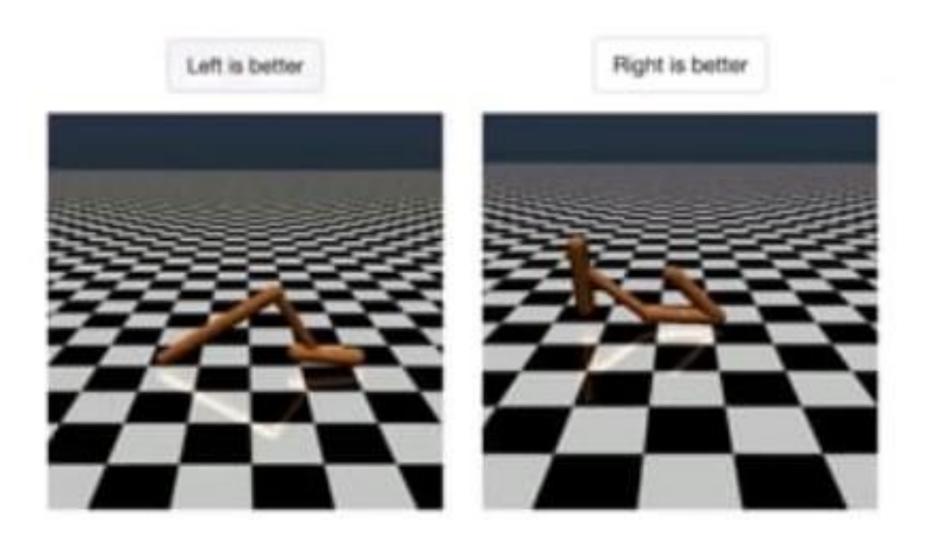
Basic IRL Algorithm

- & Start with demonstrations, D
- & Guess initial reward function R_0
- $\& \hat{R} = R_0$
- & Loop:
 - st Solve for optimal policy $\pi_{\hat{R}}^*$
 - \varkappa Compare *D* and $\pi_{\hat{R}}^*$
 - \Join Update \hat{R} to try and make D and $\pi_{\hat{R}}^*$ more similar

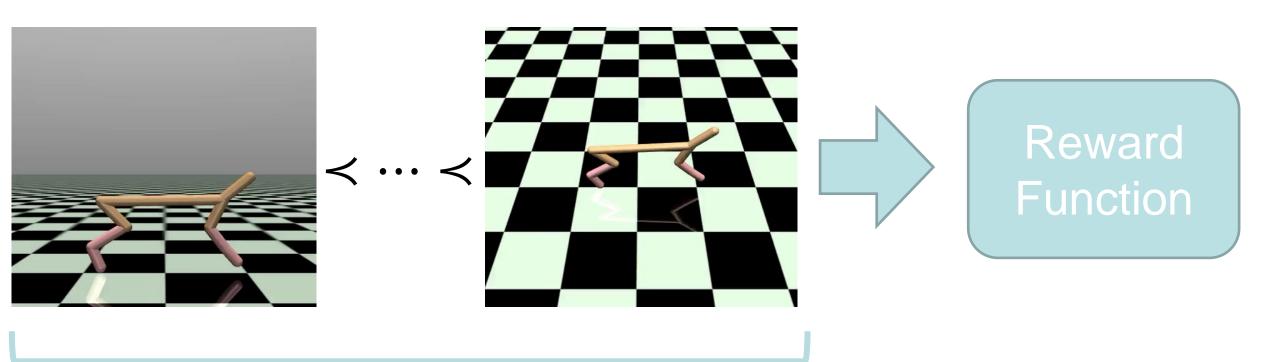
RL from Human Feedback (RLHF)



RL from Human Preferences



RLHF

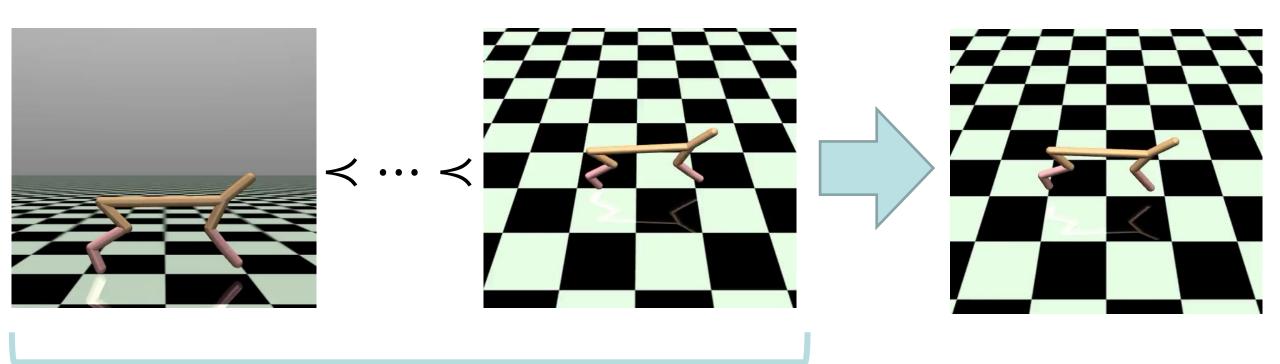


Pre-ranked demonstrations

59

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019

RLHF



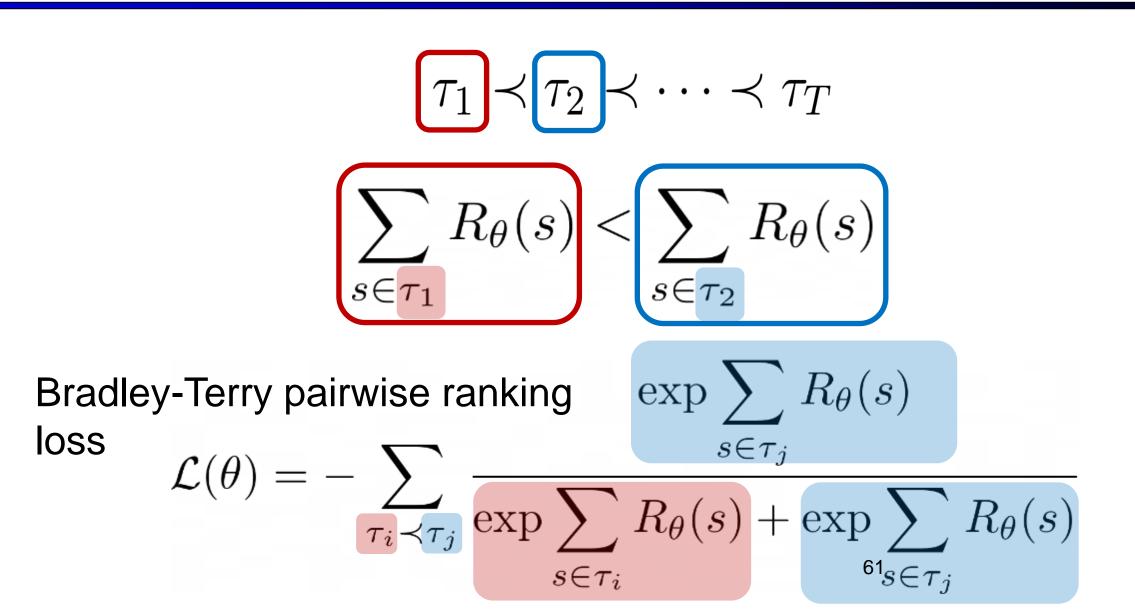
Pre-ranked demonstrations

T-REX Policy

60

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019

Learning from preferences



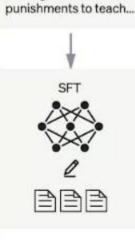
Step 1

Collect demonstration data and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3.5 with supervised learning.



We give treats and

0

Explain reinforcement

learning to a 6 year old.

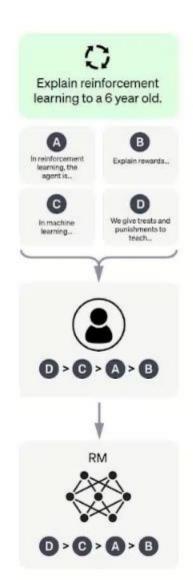
Step 2

Collect comparison data and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.



Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

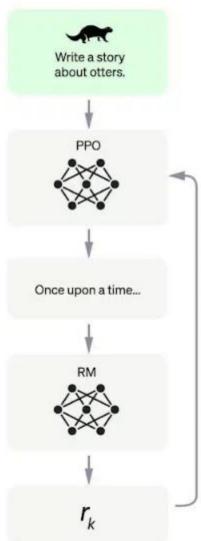
A new prompt is sampled from the dataset.

The PPO model is initialized from the supervised policy.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.



We made it!