CS 6300: Artificial Intelligence

Bayes’ Nets: Sampling

Instructor: Daniel Brown --- University of Utah

[Based on slides created by Dan Klein and Pieter Abbeel http://ai.berkeley.edu.]
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(Old-school) Bayes’ Net Application: Clippy
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Bayes’ Net Application: Spam Filtering

Input: an email
Output: spam/ham

Setup:

= Get alarge collection of example emails, each labeled
“spam” or “ham”

= Note: someone has to hand label all this data!
= Want to learn to predict labels of new, future emails

Features: The attributes used to make the ham /
spam decision

Words: FREE!

Text Patterns: Sdd, CAPS

Non-text: SenderinContacts

X

X

\

Dear Sir.

First, | must solicit your confidence in
this transaction, this is by virture of its
nature as being utterly confidencial and
top secret. ...

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, | know it was
working pre being stuck in the corner,
but when | plugged it in, hit the power
nothing happened.




Bayes’ Net Application: Spam Filtering

= Model-based approach

* Build a model (e.g. Bayes’ net) where
both the label and features are
random variables

" |nstantiate any observed features

= Query for the distribution of the label
conditioned on the features

= Challenges
= What structure should the BN have? ==
= How should we learn its parameters?




Nailve Bayes

Qrye o

= A general Naive Bayes model:

|Y| parameters

P(Y,F1...Fp) = P[] P(FY)
)

|Y] x [F|"values nx |F| x|Y]

parameters

= We only have to specify how each feature depends on the class

= Total number of parameters is linear in n

= Model is very simplistic, but often works anyway

= Assumes all features are independent effects of the label Y (very Naive, but very efficient)



Inference for Naive Bayes
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» Goal: compute posterior distribution over label variable Y MMM> @( il | an) -
= Step 1: get joint probability of label and evidence for each label /\
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= Step 2: sum to get probability of evidence @

= Step 3: normalize by dividing Step 1 by Step 2 P(Y|f1---fn)



General Naive Bayes

= What do we need in order to use Naive Bayes?

= |Inference method (we just saw this part)
= Start with a bunch of probabilities: P(Y) and the P(F,|Y) tables
= Use standard inference to compute P(Y|F;...F,)
= Nothing new here

= Estimates of local conditional probability tables
= P(Y), the prior over labels
—>= P(F.|Y) for each feature (evidence variable)

= These probabilities are collectively called the parameters of the model
and denoted by @

= Up until now, we assumed these appeared by magic, but...
= ..they typically come from some training data we collect



Spam Filtering with Bag of Words Assumption

= Model: P, W1...Wy)=P)][PW;]Y)

= Bag of Words: Assumes each word position is identically
distributed (ignores ordering)

= What are the parameters?

P(Y) P(W|spam) P(W|ham)
ham : 0.66 the : 0.01560 the : 0.0210
spam: 0.33 to 0.0153 to 0.0133

and : 0.0115 of : 0.0119
of 0.0095 2002: 0.0110
you : 0.0093 with: 0.0108
a : 0.0086 from: 0.0107
with: 0.0080 and : 0.0105
from: 0.0075 a 0.0100
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Medical Diagnhosis
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Medical Diagnhosis
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Bayes Net Representation

= Adirected, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A coIIectiop of distributions over X, one for each combination
of parents values

= Bayes nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

n
P(z1,22,...2n) = || P(z;|parents(X;))
=1




Bayes’ Nets

& Representation
« Conditional Independences

= Probabilistic Inference

J' Enumeration (exact, exponential complexity)

J‘ Variable elimination (exact, worst-case exponential
complexity, often better)

J' Inference is NP-complete

J7' Sampling (approximate)



Variable Elimination

Interleave joining and marginalizing

dk entries computed for a factor over k
variables with domain sizes d

Ordering of elimination of hidden variables
can affect size of factors generated

Worst case: running time exponential in the
size of the Bayes’ net




Approximate Inference: Sampling

= Sampling is a lot like repeated simulation = Why sample?

= Predicting the weather, basketball games, ... = Learning: get samples from a distribution
you don’t know

= |nference: getting a sample is faster than

= Basicidea
computing the right answer (e.g. with

" Draw N samples from a sampling distribution S variable elimination)
= Compute an approximate posterior probabilit
P PP P P y ) ?nq)\,
¢ on="

= Show this converges to the true probability P ?(}wv




Sampling ~

. . . . . O
= Sampling from given distribution = Example A UL Lo, @
= Step 1: Get sample u from uniform O BZT -
yﬁwﬂ/ distribution over [0, 1) C P(C) O 1
>>> import random .
>>> random.random() red 0.6 — 0<u<0.6, = C=red
0.6303136415860905 green 0.1 1506 <u<0.7, > C = green
= Step 2: Convert this sample u into an blue 03 +20.7<u<1,— C =blue
outcome for the given distribution by
having each outcome associated with
a sub-interval of [0,1) with sub-interval = If random() retur-ns u=0.83,
size equal to probability of the then our sample is C = blue
outcome = E.g, after sampling 8 times:

5/%* i i



Sampling in Bayes’ Nets

" Prior Sampling
= Rejection Sampling
= Likelihood Weighting

" Gibbs Sampling



Prior Sampling

« Sample a bunch of samples using the conditional
probability tables.

 Then use these samples to compute any desired
probabilistic query.




Prior Sampling

- .. r0 -0

Oa e 0.5 Okﬁ/ 0,3/0/7&/00/1
—| ¢ 0.5
P(S|C) P(R|C)
+c | +s [0.1 tc | 4r 10.8
-s 10.9 -r [ 0.2
c | +s |05 ¢ | #r 102
-s [ 0.5 -r 0.8
P(W|S, R) - )
amples:
ws | +r | +w [ 0.99 //?((/S/ Ryt
-w | 0.01 +C, -S, +r, +W
-r +w 0.90 -C, +S; -f, +w
-w | 0.10
e +r | +w | 0.90
-w | 0.10
-+ | _+w | 0.01 Never need to actually compute the full
w_| 0.99 joint distribution!




Prior Sampling

= Fori=], 2, ..., n
= Sample x, from P(X; | Parents(X.))

= Return (xq, Xy, ..., X))




Prior Sampling

This process generates samples with probability:

T
Sps(zy...zn) = |[ P(x;|Parents(X;)) = P(z1...zn)
1=1

..i.e. the BN’ s joint probability

Let the number of samples of an event be Npg(zy...zn)
Then lim P(zcl,...,:cn) — lim Npg(ajl,..-,iUn)/N
N—oo N—o0
— SPS('CC]J'")CUTL)
= P(x1...21n)

l.e., the sampling procedure is consistent



Example

= We' |l get a bunch of samples from the BN:
+C, -S, +r, +W
—
+C, +S, +r, +W
/ -C, +S, +I, -W
\/\Eﬂ =S, +, +W

= Whatis P(W).

= We have counts <+w:4, -w:1>
= Normalize to get P(W) = <+w:0.8, -w:0.2>

.
= This will get closer to the true distribution with more samples /ig
= Can estimate anything else, too

\-Wi’cicezw/ruatatmut/P(Cl +w)? P(C| +r, ¥w)? P(C| -r, -w)?
— 7\ A/ =3
Oe )=y el )= 75



Example

= We' |l get a bunch of samples from the BN:
+C, -S, +r, +W
+C, +5, +r, +W

-C, +S, +r, -W

+C, -S, +I, +W
-C, -S, -I, +W
= Whatis P(W)?
= We have counts <+w:4, -w:1>
= Normalize to get P(W) = <+w:0.8, -w:0.2>
= This will get closer to the true distribution with more samples
= Can estimate anything else, too
= Practice: What about P(C| +w)? P(C| +r, +w)? P(C| -r, -w)?
= Fast: can use fewer samples if less time (what’s the drawback?)



Rejection Sampling




Rejection Sampling— <=/ 7~ %ﬁ

= Let ssay we want P(C)
= No point keeping all samples around
= Just tally counts of C as we go

= Let ssay we want P(C{ +s

= Same thing: tally C outc S, but

ignore (reject) samples which don’ t
have S=+s

+C,W {LD/P

+C, +S, +1, +W
® |tis also consistent for conditional -C, +S, +, -W

robabilities (i.e., correct in the limit O[S, bh W
p ( ) < gy

" This is called rejection sampling



Rejection Sampling

= |N: evidence instantiation
= Fori=]1, 2, ..., n

= Sample x; from P(X. | Parents(X.))

= [f x, not consistent with evidence

= Reject: Return, and no sample is generated in this cycle

= Return (x4, X,, .., X,,)




Likelihood Weighting




Likelihood Weighting

" Problem with rejection sampling:
= |f evidence is unlikely, rejects lots of samples

= Evidence not exploited as you sample
= Consider P(Shape|blue)

pyframid—green |
pyramid—red

sphere, blue

= |dea: fix evidence variables and sample the
rest
= Problem: sample distribution not consistent!

= Solution: weight by probability of evidence
given parents

pyramid, blue (J-
pyramid, blue “<

sphere, blue -
cube, blue oy
sphere, blue o<

on




P(S|C)

Likelihood Weighting

+C

P(W|S, R)
P
@ )i 5 )

“w [001

-r +w | 0.90

-w | 0.10

-S +r +w | 0.90
-wW 0.10

-r +w | 0.01

-w | 0.99

P(C ©.27,0¢67°
<ol 5 99, 0.0l
P(R|C)
+c | +r | 0.8
-r 0.2
c | +r | 0.2 -+
-r 10.8 Z

w,=1.0x0.1x0.99

Samples:

+C, +S, +I, +W

o, = 1L.0x 0D 5% 0.4



Likelihood Weighting

IN: evidence instantiation
w=1.0
fori=1, 2, ..., n
= if X, is an evidence variable
= X; = observation x; for X;
= Setw=w *P(x; | Parents(X;))
= else
= Sample x; from P(X, | Parents(X,))
return (x1( Xy, weey X)), W

Now each sample doesn’t count
as 1.0 but has a weight. Need to
take a weighted average.

P(Q|Evidence) = A
Sum(weights of samples
consistent with Query) / Total
Weight of All samples.

By

ﬂ—SS\)M D ’;\

o\ S‘ML‘LS




Likelihood Weighting
PO - xn )= T Plxi ] pos=nds

=  Sampling distribution if z sampled and e fixed evidén%
[

Sws(z,e) = || P(z]|Parents(Z;))
i=1

= Now, samples have weights

w(z,e) = ﬁ P(e;|Parents(E;))
i=1

= Together, weighted sampling distribution is consistent
l m
Sws(z,€) - w(z,e) = | | P(zi|Parents(z;)) | [ P(e;|Parents(e;))
1=1 1=1

= P(z,e)



Likelihood Weighting

= Likelihood weighting is good = Likelihood weighting doesn’t solve all our
= We have taken evidence into account as we problems (why?)
generate the sample = Evidence influences the choice of downstream
= E.g. here, W s value will get picked based on the variables, but not upstream ones (Cisn’t more
evidence values of S, R likely to get a value matching the evidence)
= More of our samples will reflect the state of the = We would like to consider evidence when we

world suggested by the evidence sample every variable

- Gibbs sampling




Gibbs Sampling




Gibbs Sampling

Procedure: keep track of a full instantiation x,, x,, ..., x,. Start with an
arbitrary instantiation consistent with the evidence. Sample one variable
at a time, conditioned on all the rest, but keep evidence fixed. Keep
repeating this for a long time (infinite in theory).

Property: in the limit of repeating this infinitely many times the resulting
sample is coming from the correct distribution. No need to weight!

Rationale: both upstream and downstream variables condition on
evidence.

In contrast: likelihood weighting only conditions on upstream evidence,
and hence weights obtained in likelihood weighting can sometimes be
very small. Sum of weights over all samples is indicative of how many
“effective” samples were obtained, so want high weight.



Gibbs Sampling Example: P(S | +r)

= Step 2: Initialize other variables
= Randomly

= Step 1: Fix evidence

= R=+4r

= Steps 3: Repeat
= Randomly choose a non-evidence variable X
= Resample X from P( X | all other variables)

9&@ o&@ 9%@ 9&@

Sample from P(S|+ ¢,—w,+r)  Sample from P(C|+ s, —w,+r) Sample from P(W|+ s, +c¢, +7)




Gibbs Sampling

" How is this better than sampling from the full joint?

" |n a Bayes’ Net, sampling a variable given all the other variables (e.g.
P(R|S,C,W)) is usually much easier than sampling from the full joint
distribution

= Only requires a join on the variable to be sampled (in this case, a join on R)

= The resulting factor only depends on the variable’s parents, its children, and its children’s
parents (this is often referred to as its Markov blanket)



Efficient Resampling of One Variable

= Sample from P(S | +c, +r, -w)

P(S,+c, +r, —w)

P(+c,+r, —w)

~ P(S,+c,+r, —w)

> . P(s,+c,+r, —w)
- ZPH(C ) >(SHC)E;(+(T| | ))( (wwfm) [ 4.
P(+c)P(s| 4+ c)P(+r|+ c)P(—w|s,+1 '
e +c)P(W Pluls ir) (T

P(+rf¥c) > + ¢)P(—wls, +7) ng&)\

_ P(S\Jrc)P( w|S, +r)

>, P(s| + ) P(—wl|s, +7) ]

P(S|+c,+r,—w) =

= Many things cancel out — only CPTs with S remain!

= More generally: only CPTs that have resampled variable need to be considered, and
joined together



Bayes’ Net Sampling Summary

= Prior Sampling P = Rejection Sampling P(Q | e)




Further Notes on Gibbs Sampling

" Gibbs sampling produces sample from the query distribution P(Q | e)
in limit of re-sampling infinitely often

= Gibbs sampling is a special case of more general methods called
Markov chain Monte Carlo (MCMC) methods

*= Metropolis-Hastings is one of the more famous MCMC methods (in fact, Gibbs
sampling is a special case of Metropolis-Hastings)

" You may read about Monte Carlo methods — they’re just sampling
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