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Where are Bayes’ Nets used? 
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https://data-flair.training/blogs/bayesian-network-applications/



(Old-school) Bayes’ Net Application: Clippy
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Bayes’ Net Application: Spam Filtering

▪ Input: an email
▪ Output: spam/ham

▪ Setup:
▪ Get a large collection of example emails, each labeled 

“spam” or “ham”
▪ Note: someone has to hand label all this data!
▪ Want to learn to predict labels of new, future emails

▪ Features: The attributes used to make the ham / 
spam decision
▪ Words: FREE!
▪ Text Patterns: $dd, CAPS
▪ Non-text: SenderInContacts
▪ …

Dear Sir.

First, I must solicit your confidence in 
this transaction, this is by virture of its 
nature as being utterly confidencial and 
top secret. …

TO BE REMOVED FROM FUTURE 
MAILINGS, SIMPLY REPLY TO THIS 
MESSAGE AND PUT "REMOVE" IN THE 
SUBJECT.

99  MILLION EMAIL ADDRESSES
  FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm 
beginning to go insane. Had an old Dell 
Dimension XPS sitting in the corner and 
decided to put it to use, I know it was 
working pre being stuck in the corner, 
but when I plugged it in, hit the power 
nothing happened.



Bayes’ Net Application: Spam Filtering

▪ Model-based approach

▪ Build a model (e.g. Bayes’ net) where 
both the label and features are 
random variables

▪ Instantiate any observed features

▪ Query for the distribution of the label 
conditioned on the features

▪ Challenges

▪ What structure should the BN have?

▪ How should we learn its parameters?



Naïve Bayes

▪ A general Naive Bayes model:

▪ We only have to specify how each feature depends on the class
▪ Total number of parameters is linear in n
▪ Model is very simplistic, but often works anyway
▪ Assumes all features are independent effects of the label Y (very Naïve, but very efficient) 

Y

F1 FnF2

|Y| parameters

n x |F| x |Y| 
parameters

|Y| x |F|n values



Inference for Naïve Bayes

▪ Goal: compute posterior distribution over label variable Y
▪ Step 1: get joint probability of label and evidence for each label

▪ Step 2: sum to get probability of evidence

▪ Step 3: normalize by dividing Step 1 by Step 2

+



General Naïve Bayes

▪ What do we need in order to use Naïve Bayes?

▪ Inference method (we just saw this part)
▪ Start with a bunch of probabilities: P(Y) and the P(Fi|Y) tables
▪ Use standard inference to compute P(Y|F1…Fn)
▪ Nothing new here

▪ Estimates of local conditional probability tables
▪ P(Y), the prior over labels
▪ P(Fi|Y) for each feature (evidence variable)
▪ These probabilities are collectively called the parameters of the model 

and denoted by 
▪ Up until now, we assumed these appeared by magic, but…
▪ …they typically come from some training data we collect



Spam Filtering with Bag of Words Assumption

▪ Model:

▪ Bag of Words: Assumes each word position is identically 
distributed (ignores ordering)

▪ What are the parameters?

the :  0.0156

to  :  0.0153

and :  0.0115

of  :  0.0095

you :  0.0093

a   :  0.0086

with:  0.0080

from:  0.0075

...

the :  0.0210

to  :  0.0133

of  :  0.0119

2002:  0.0110

with:  0.0108

from:  0.0107

and :  0.0105

a   :  0.0100

...

ham : 0.66

spam: 0.33



Spam Example

Word P(w|spam) P(w|ham) Tot Spam Tot Ham

(prior) 0.33333 0.66666 -1.1 -0.4

Gary 0.00002 0.00021 -11.8 -8.9

would 0.00069 0.00084 -19.1 -16.0

you 0.00881 0.00304 -23.8 -21.8

like 0.00086 0.00083 -30.9 -28.9

to 0.01517 0.01339 -35.1 -33.2

lose 0.00008 0.00002 -44.5 -44.0

weight 0.00016 0.00002 -53.3 -55.0

while 0.00027 0.00027 -61.5 -63.2

you 0.00881 0.00304 -66.2 -69.0

sleep 0.00006 0.00001 -76.0 -80.5

P(spam | w) = 98.9



Medical Diagnosis
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Medical Diagnosis
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Bayes’ Net Representation

▪ A directed, acyclic graph, one node per random variable

▪ A conditional probability table (CPT) for each node

▪ A collection of distributions over X, one for each combination 
of parents’ values

▪ Bayes’ nets implicitly encode joint distributions

▪ As a product of local conditional distributions

▪ To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:



Bayes’ Nets

▪ Representation

▪ Conditional Independences

▪ Probabilistic Inference

▪ Enumeration (exact, exponential complexity)

▪ Variable elimination (exact, worst-case exponential 
complexity, often better)

▪ Inference is NP-complete

▪ Sampling (approximate)



Variable Elimination

▪ Interleave joining and marginalizing

▪ dk entries computed for a factor over k 
variables with domain sizes d

▪ Ordering of elimination of hidden variables 
can affect size of factors generated

▪ Worst case: running time exponential in the 
size of the Bayes’ net

…

…



Approximate Inference: Sampling

▪ Sampling is a lot like repeated simulation

▪ Predicting the weather, basketball games, …

▪ Basic idea

▪ Draw N samples from a sampling distribution S

▪ Compute an approximate posterior probability

▪ Show this converges to the true probability P

▪ Why sample?

▪ Learning: get samples from a distribution 
you don’t know

▪ Inference: getting a sample is faster than 
computing the right answer (e.g. with 
variable elimination)



Sampling

▪ Sampling from given distribution

▪ Step 1: Get sample u from uniform 
distribution over [0, 1)

▪ Step 2: Convert this sample u into an 
outcome for the given distribution by 
having each outcome associated with 
a sub-interval of [0,1) with sub-interval 
size equal to probability of the 
outcome

▪ Example

▪ If random() returns u = 0.83, 
then our sample is C = blue

▪ E.g, after sampling 8 times:

C P(C)

red 0.6

green 0.1

blue 0.3



Sampling in Bayes’ Nets

▪ Prior Sampling

▪ Rejection Sampling

▪ Likelihood Weighting

▪ Gibbs Sampling



Prior Sampling

• Sample a bunch of samples using the conditional 

probability tables. 

• Then use these samples to compute any desired 

probabilistic query.



Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

+c 0.5
-c 0.5

+c +s 0.1

-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8

-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90

-w 0.10

-r +w 0.01

-w 0.99

Samples:

+c, -s, +r, +w

-c, +s, -r, +w

…

Never need to actually compute the full 

joint distribution!



Prior Sampling

▪ For i=1, 2, …, n

▪ Sample xi from P(Xi | Parents(Xi))

▪ Return (x1, x2, …, xn)



Prior Sampling

▪ This process generates samples with probability:

 …i.e. the BN’s joint probability

▪ Let the number of samples of an event be

▪ Then

▪ I.e., the sampling procedure is consistent



Example

▪ We’ll get a bunch of samples from the BN:
 +c, -s, +r, +w

 +c, +s, +r, +w

 -c, +s, +r,  -w

 +c, -s, +r, +w

 -c,  -s,  -r, +w

▪ What is P(W)?
▪ We have counts <+w:4, -w:1>

▪ Normalize to get P(W) = <+w:0.8, -w:0.2>

▪ This will get closer to the true distribution with more samples

▪ Can estimate anything else, too

▪ Practice: What about P(C| +w)?   P(C| +r, +w)?  P(C| -r, -w)?

S R

W

C



Example

▪ We’ll get a bunch of samples from the BN:
 +c, -s, +r, +w

 +c, +s, +r, +w

 -c, +s, +r,  -w

 +c, -s, +r, +w

 -c,  -s,  -r, +w

▪ What is P(W)?
▪ We have counts <+w:4, -w:1>

▪ Normalize to get P(W) = <+w:0.8, -w:0.2>

▪ This will get closer to the true distribution with more samples

▪ Can estimate anything else, too

▪ Practice: What about P(C| +w)?   P(C| +r, +w)?  P(C| -r, -w)?

▪ Fast: can use fewer samples if less time (what’s the drawback?)

S R

W

C



Rejection Sampling



+c, -s, +r, +w
 +c, +s, +r, +w
 -c, +s, +r,  -w
 +c, -s, +r, +w
 -c,  -s,  -r, +w

Rejection Sampling

▪ Let’s say we want P(C)

▪ No point keeping all samples around

▪ Just tally counts of C as we go

▪ Let’s say we want P(C| +s)

▪ Same thing: tally C outcomes, but 
ignore (reject) samples which don’t 
have S=+s

▪ This is called rejection sampling

▪ It is also consistent for conditional 
probabilities (i.e., correct in the limit)

S R

W

C



Rejection Sampling

▪ IN: evidence instantiation

▪ For i=1, 2, …, n

▪ Sample xi from P(Xi | Parents(Xi))

▪ If xi not consistent with evidence

▪ Reject: Return, and no sample is generated in this cycle

▪ Return (x1, x2, …, xn)



Likelihood Weighting



▪ Idea: fix evidence variables and sample the 
rest
▪ Problem: sample distribution not consistent!

▪ Solution: weight by probability of evidence 
given parents

Likelihood Weighting

▪ Problem with rejection sampling:
▪ If evidence is unlikely, rejects lots of samples

▪ Evidence not exploited as you sample

▪ Consider P(Shape|blue)

Shape ColorShape Color

pyramid,  green
 pyramid,  red
 sphere,     blue
 cube,         red
 sphere,      green

pyramid,  blue
 pyramid,  blue
 sphere,     blue
 cube,         blue
 sphere,      blue



Likelihood Weighting

+c 0.5
-c 0.5

+c +s 0.1
-s 0.9

-c +s 0.5

-s 0.5

+c +r 0.8
-r 0.2

-c +r 0.2

-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c, +s, +r, +w

…

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass



Likelihood Weighting

▪ IN: evidence instantiation

▪ w = 1.0

▪ for i=1, 2, …, n

▪ if Xi is an evidence variable

▪ Xi = observation xi for Xi

▪ Set w = w * P(xi | Parents(Xi))

▪ else

▪ Sample xi from P(Xi | Parents(Xi))

▪ return (x1, x2, …, xn), w

Now each sample doesn’t count 

as 1.0 but has a weight. Need to 

take a weighted average.

P(Q|Evidence) = 

Sum(weights of samples 

consistent with Query) / Total 

Weight of All samples.



Likelihood Weighting

▪ Sampling distribution if z sampled and e fixed evidence

▪ Now, samples have weights

▪ Together, weighted sampling distribution is consistent

Cloudy

R

C

S

W



Likelihood Weighting

▪ Likelihood weighting is good

▪ We have taken evidence into account as we 
generate the sample

▪ E.g. here, W’s value will get picked based on the 
evidence values of S, R

▪ More of our samples will reflect the state of the 
world suggested by the evidence

 

▪ Likelihood weighting doesn’t solve all our 
problems (why?)

▪ Evidence influences the choice of downstream 
variables, but not upstream ones (C isn’t more 
likely to get a value matching the evidence)

▪ We would like to consider evidence when we 
sample every variable

 → Gibbs sampling



Gibbs Sampling



Gibbs Sampling

▪ Procedure: keep track of a full instantiation x1, x2, …, xn.   Start with an 
arbitrary instantiation consistent with the evidence.  Sample one variable 
at a time, conditioned on all the rest, but keep evidence fixed.  Keep 
repeating this for a long time (infinite in theory).

▪ Property: in the limit of repeating this infinitely many times the resulting 
sample is coming from the correct distribution. No need to weight!

▪ Rationale: both upstream and downstream variables condition on 
evidence.

 

▪ In contrast: likelihood weighting only conditions on upstream evidence, 
and hence weights obtained in likelihood weighting can sometimes be 
very small.  Sum of weights over all samples is indicative of how many 
“effective” samples were obtained, so want high weight.



▪ Step 2: Initialize other variables 
▪ Randomly

Gibbs Sampling Example: P( S | +r)

▪ Step 1: Fix evidence
▪ R = +r

▪ Steps 3: Repeat
▪ Randomly choose a non-evidence variable X

▪ Resample X from P( X | all other variables)

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C



Gibbs Sampling

▪ How is this better than sampling from the full joint?

▪ In a Bayes’ Net, sampling a variable given all the other variables (e.g. 
P(R|S,C,W)) is usually much easier than sampling from the full joint 
distribution
▪ Only requires a join on the variable to be sampled (in this case, a join on R)

▪ The resulting factor only depends on the variable’s parents, its children, and its children’s 
parents (this is often referred to as its Markov blanket)



Efficient Resampling of One Variable

▪  Sample from P(S | +c, +r, -w) 

▪ Many things cancel out – only CPTs with S remain!

▪ More generally: only CPTs that have resampled variable need to be considered, and 
joined together

S +r

W

C



Bayes’ Net Sampling Summary

▪ Prior Sampling  P

▪ Likelihood Weighting  P( Q | e)

▪ Rejection Sampling  P( Q | e )

▪ Gibbs Sampling  P( Q | e )



Further Notes on Gibbs Sampling

▪ Gibbs sampling produces sample from the query distribution P( Q | e ) 
in limit of re-sampling infinitely often

▪ Gibbs sampling is a special case of more general methods called 
Markov chain Monte Carlo (MCMC) methods 

▪ Metropolis-Hastings is one of the more famous MCMC methods (in fact, Gibbs 
sampling is a special case of Metropolis-Hastings) 

▪ You may read about Monte Carlo methods – they’re just sampling
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