Announcements

Midterm Grades are out

- Total points (100%) 62 points. Total plus extra credit 101
- Min 21.5
- Max 95.4
- Median 68.15
- Mean 66.42

Mid-semester Feedback

• Like changed:

- No exams
- Too much homework, more time
- Midterm sheet typed Go for it!
- Latex homework no fun as long as you have it typed and submit pdf
- Change the location of the class....
- Professional video recording...
- More in class practice
- Too fast
- Update to represent latest advances in AI
- Real world applications

Midterm Grades are out

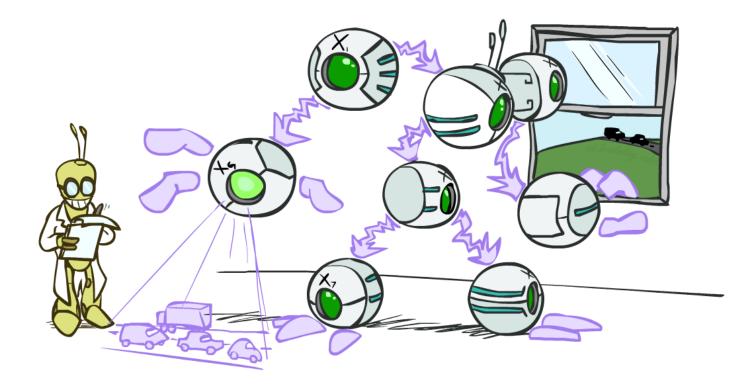
Mid-semester Feedback

Improve learning

- More examples
- Group activities/quizzes
- No exams
- Neural networks should be prereq
- Examples on new slide
- More discussion
- Guest lectures
- Real world examples
- Too fast

CS 6300: Artificial Intelligence

Bayes' Nets: Inference



Instructor: Daniel Brown --- University of Utah

[Based on slides created by Dan Klein and Pieter Abbeel http://ai.berkeley.edu.]

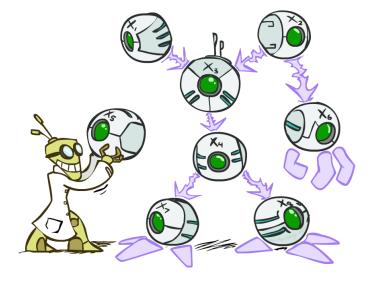
Bayes' Net Representation

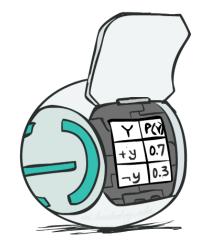
- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

 $P(X|a_1\ldots a_n)$

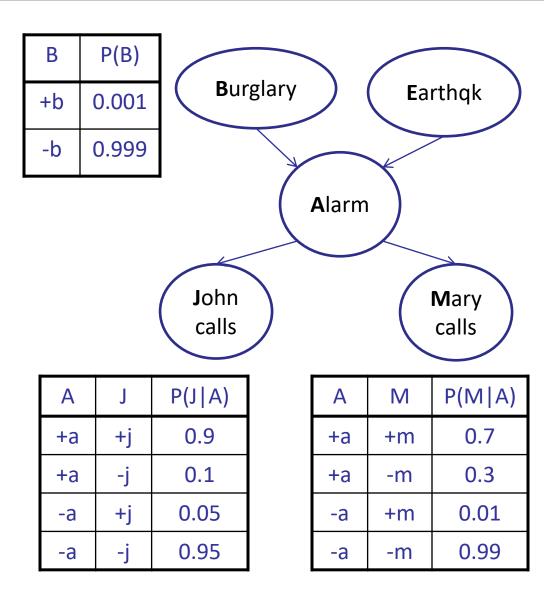
- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

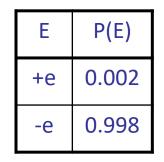
$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

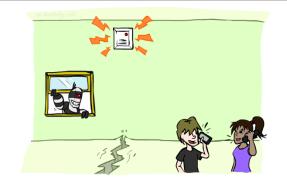




Example: Alarm Network



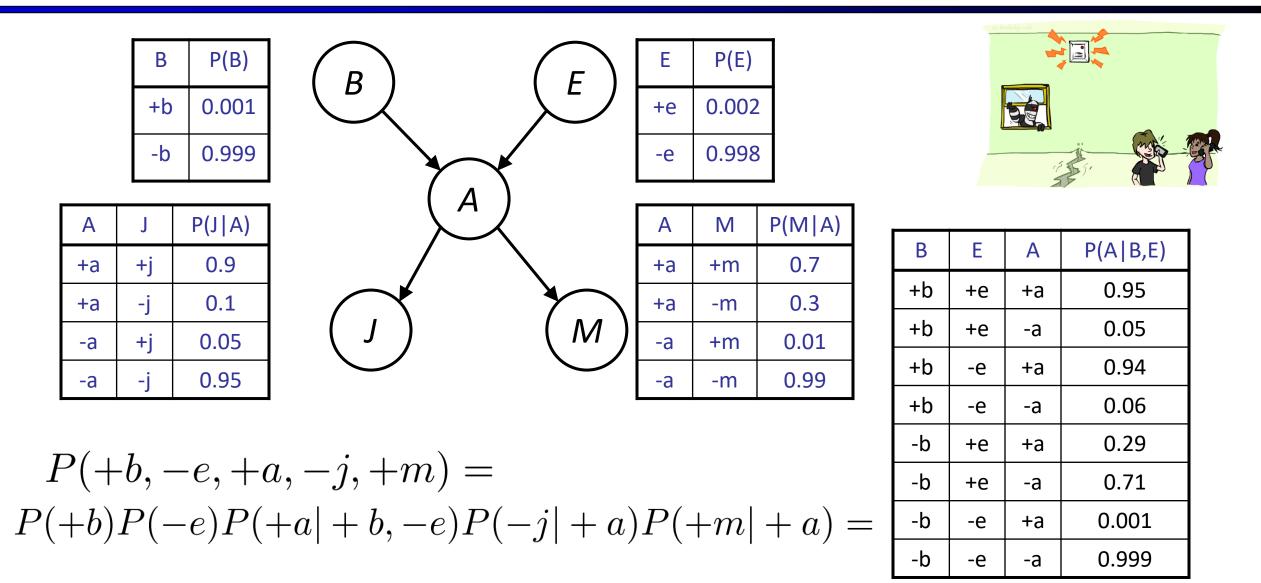




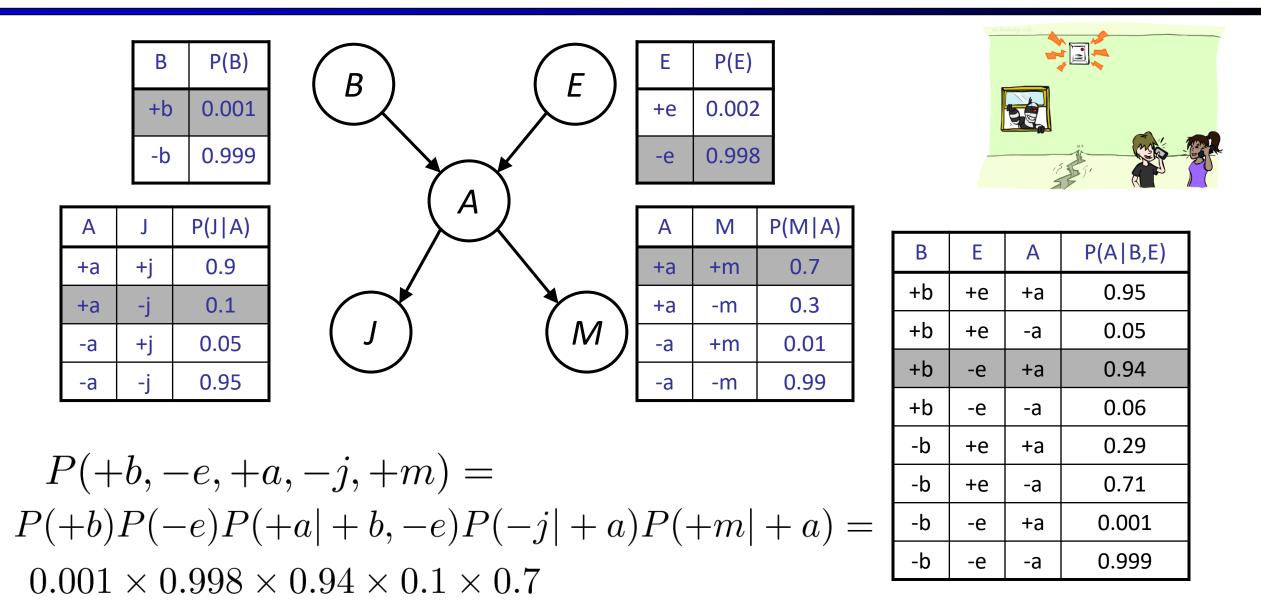
В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

[Demo: BN Applet]

Example: Alarm Network



Example: Alarm Network



Bayes' Nets

- Representation
- Conditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Inference is NP-complete
 - Sampling (approximate)

Inference

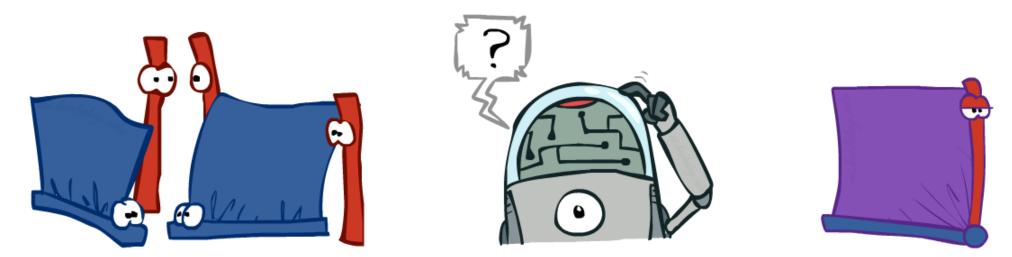
 Inference: calculating some useful quantity from a joint probability distribution

• Examples:

Posterior probability

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

- Most likely explanation:
 - $\operatorname{argmax}_q P(Q = q | E_1 = e_1 \dots)$



Inference by Enumeration

- General case:
 - Evidence variables:
 - Query* variable:
 - Hidden variables:
- $\begin{bmatrix} E_1 \dots E_k = e_1 \dots e_k \\ Q \\ H_1 \dots H_r \end{bmatrix} X_1, X_2, \dots X_n$ All variables
- We want:

* Works fine with multiple query variables, too

 $P(Q|e_1\ldots e_k)$

 Step 1: Select the entries consistent with the evidence

-3

- 1

5

 \odot

Pa

0.05

0.25

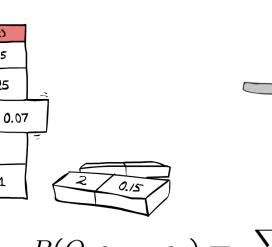
0.2

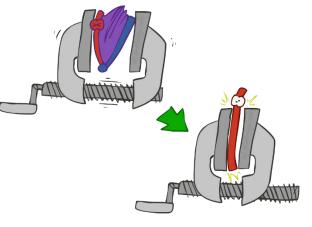
0.01

Step 3: Normalize

 $\times \frac{}{Z}$

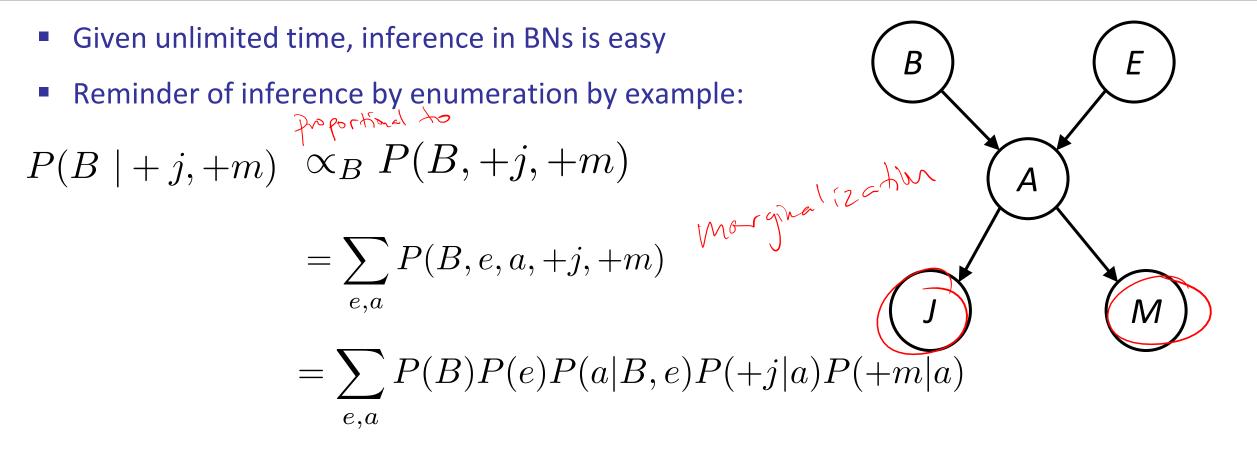
 $Z = \sum_{q} P(Q, e_1 \cdots e_k)$ $P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$





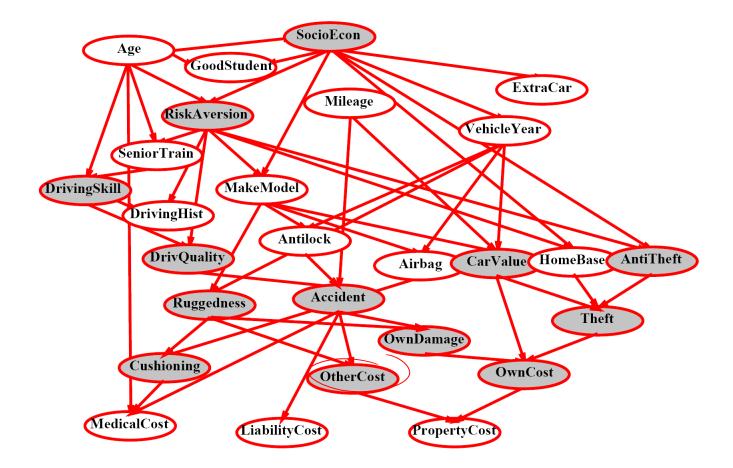
 $P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(\underbrace{Q, h_1 \dots h_r, e_1 \dots e_k}_{X_1, X_2, \dots X_n})$

Inference by Enumeration in Bayes' Net



=P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)P(+m|-a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)P(+m|-a)P(+m|-a)P(-a|B,-e)P(+j|-a)P(+m|-a)P(+m|-a)P(-a|B,-e)P(+j|-a)P(+m|-a)P(-a|B,-e)P(+j|-a)P(+m|-a)P(-a|B,-e)P(+j|-a)P(+m|-a)P(-a|B,-e)P(+j|-a)P(-a|B,-e)P(+j|-a)P(-a|B,-e)P(+j|-a)P(-a|B,-e)P(-a|B,-e)P(+j|-a)P(-a|B,-e)P(-a|B,-e)P(-a|B,-e)P(+j|-a)P(-a|B,-e)P(-a|B

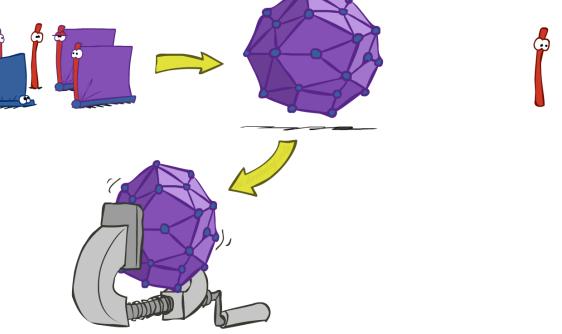
Inference by Enumeration?

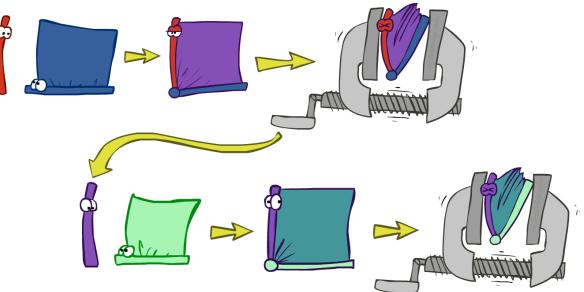


P(Antilock|observed variables) = ?

Inference by Enumeration vs. Variable Elimination

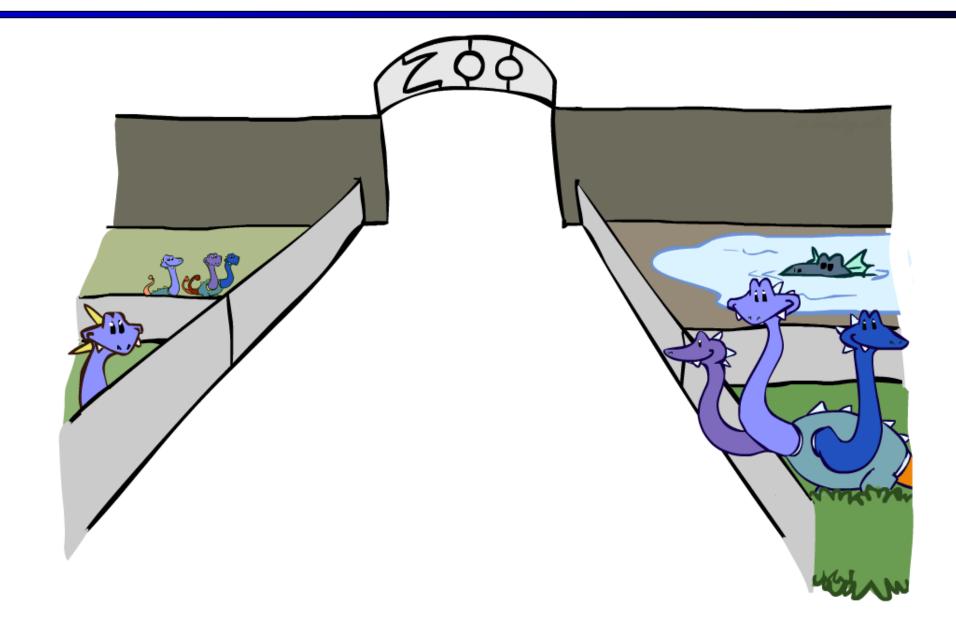
- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables
- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration





First we'll need some new notation: factors

Factor Zoo



Factor Zoo I

Joint distribution: P(X,Y)

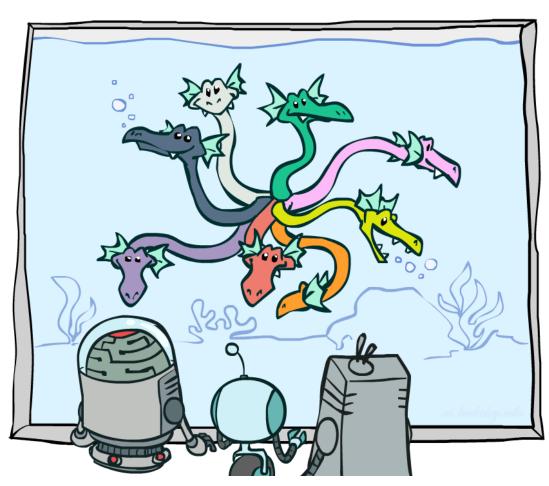
- Entries P(x,y) for all x, y
- Sums to 1

Selected joint: P(x,Y)

- A slice of the joint distribution
- Entries P(x,y) for fixed x, all y
- Sums to P(x)
- Number of capitals = dimensionality of the table

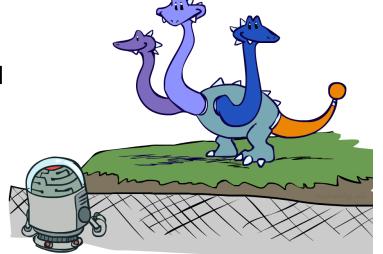
P(T,W)					
Т	W	Ρ			
hot	sun	0.4			
hot	rain	0.1			
cold	sun	0.2			
cold	rain	0.3			

Т	W	Р
cold	sun	0.2
cold	rain	0.3



Factor Zoo II

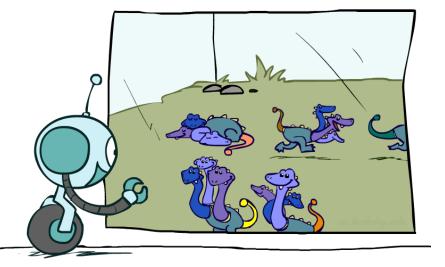
- Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, all
 - Sums to 1



 $\begin{array}{c} \checkmark = \\ P(W|cold) \end{array}$

Т	W	Р	
cold	sun	0.4	=
cold	rain	0.6	

- Family of conditionals:
 P(X | Y)
 - Multiple conditionals
 - Entries P(x | y) for all x, y
 - Sums to |Y|



P(W T)					
Т	Р				
hot sun		0.8			
hot rain		0.2			
cold	old sun		٦		
cold	0.6				

P(W|hot)

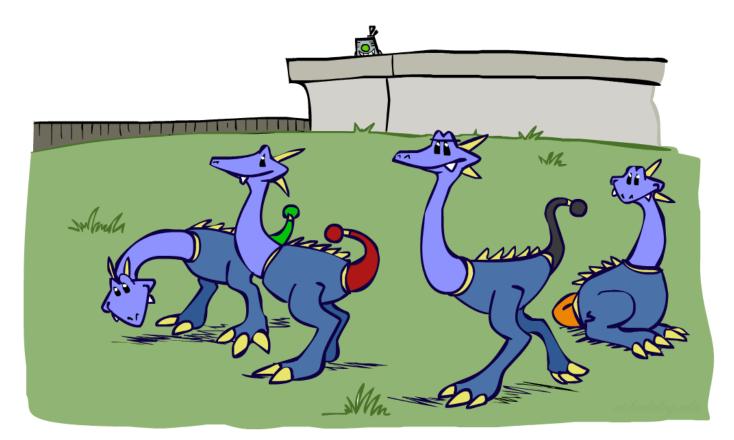
P(W|cold)

Factor Zoo III

- Specified family: P(y | X)
 - Entries P(y | x) for fixed y, but for all x
 - Sums to ... who knows!

	P((rain	T)
--	----	-------	----

Т	W	Р	
hot	rain	0.2	P(rain hot)
cold	rain	0.6	P(rain cold)

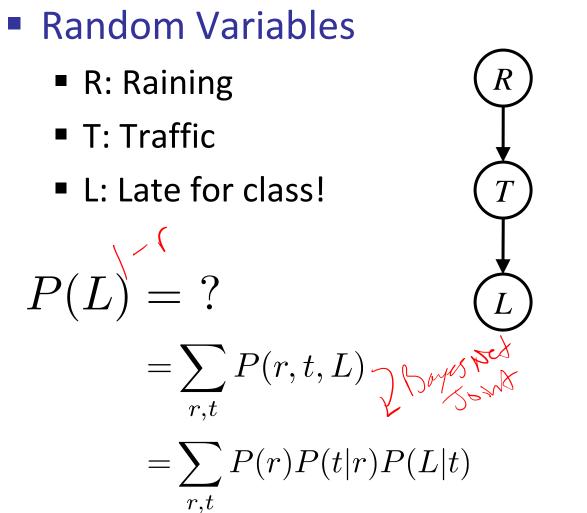


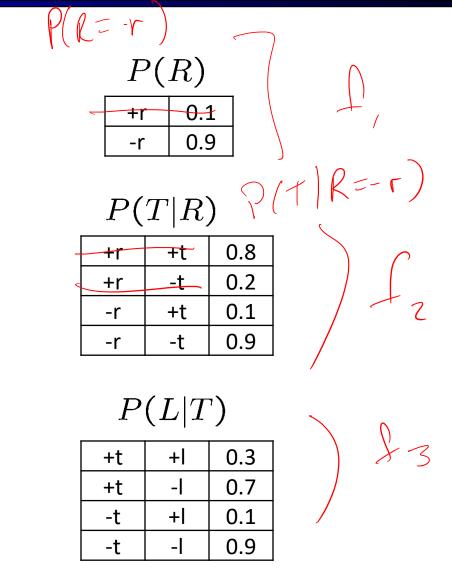
Factor Zoo Summary

- In general, when we write $P(Y_1 \dots Y_N | X_1 \dots X_M)$
 - It is a "factor," a multi-dimensional array
 - Its values are $P(y_1 \dots y_N | x_1 \dots x_M)$
 - Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array



Example: Traffic Domain



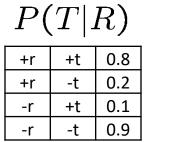


Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

P(R)			
0.1			
0.9			

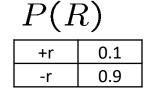
D(D)

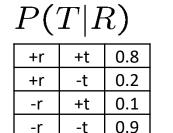


P(L T)				
+t	+	0.3		
+t	-	0.7		
-t	+	0.1		
-t	-	0.9		

D(T|T)

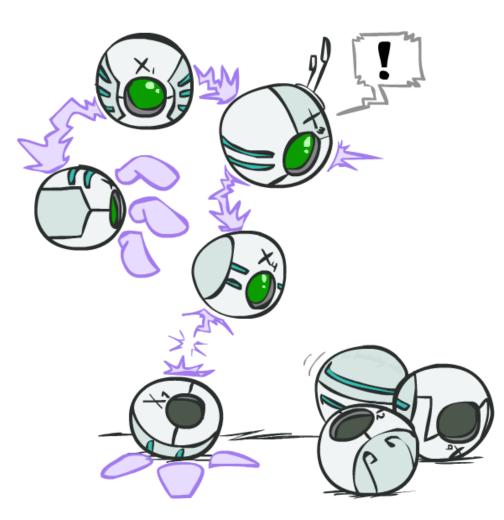
- Any known values are selected
 - E.g. if we know $L = +\ell$, the initial factors are





$P(\cdot$	$+\ell $	1)
+t	+	0.3
-t	+	0.1

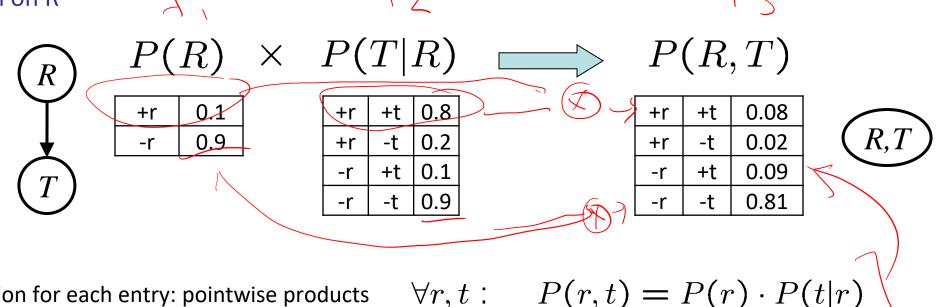
 $\mathbf{D}(\mathbf{I} \mid \mathbf{A} \mid \mathbf{T})$



Procedure: Join all factors, then eliminate all hidden variables

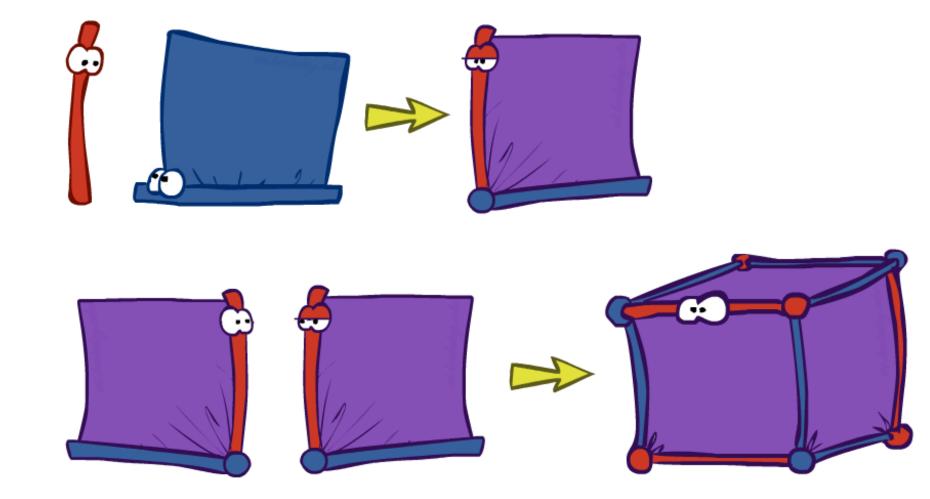
Operation 1: Join Factors

- First basic operation: joining factors
- **Combining factors:**
 - Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved
- Example: Join on R



Computation for each entry: pointwise products

Example: Multiple Joins



Example: Multiple Joins P(T|R)P(L|T)(R) P(R)0.1 +r P(R,T)R 0.9 Join R -r Join T $\overline{}$ 0.08 *R*, *T*, *L* +t(+r P(T|R)0.02 -t +r 0.09 +t T+t 0.8 -r +r *R*, *T* P(R,T,L)-t 0.81 0.2 -r +r -t +t |0.1 -r 0.024 +t +| +r -t 0.9 -r 0.056 L +r +t -| +| 0.002 -t +r P(L|T)P(L|T)5,70 0.018 -t -| +r +| 0.3 0.3 + 0.027 +t +t +| +t -r 0.7 0.063 +t -| +t -0.7 +t -| -r -t +| 0.1 +| 0.081 -t 0.1 +| -t -r -t -t 0.9 0.9 0.729 -| --t -| -r

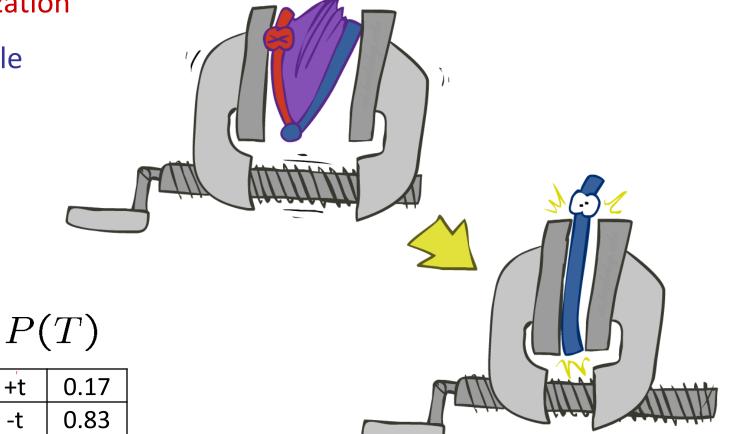
Operation 2: Eliminate

+t

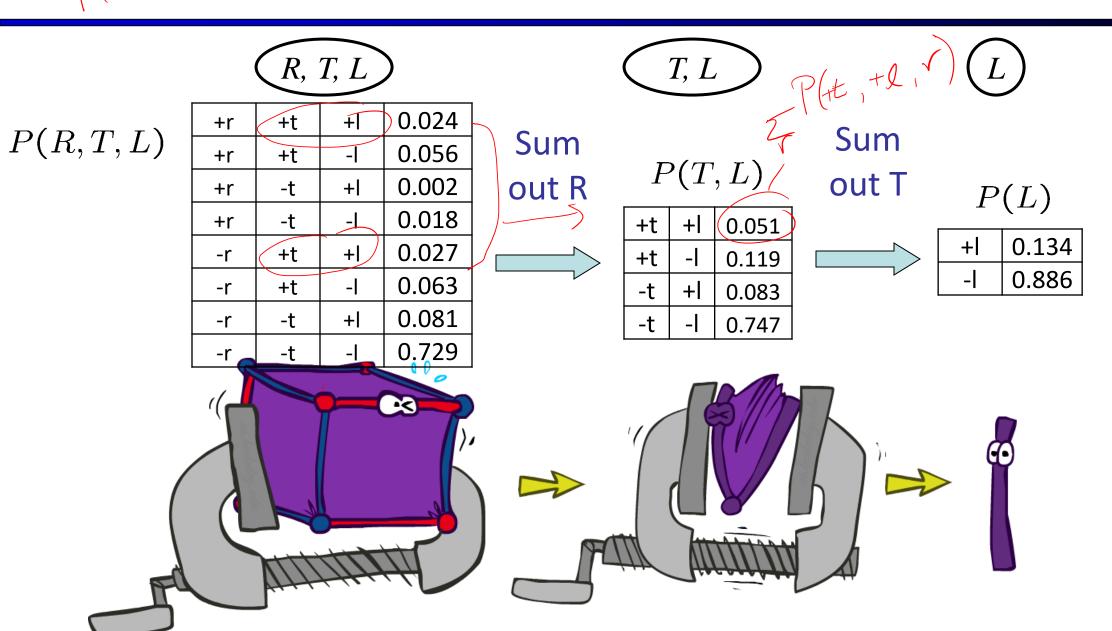
-t

- Second basic operation: marginalization
- Take a factor and sum out a variable
 - Shrinks a factor to a smaller one
 - A projection operation
- Example:

P	(R	,T)	
+r	+t	0.08	sum R
+r	-t	0.02	
-r	+t	0.09	
-r	-t	0.81	

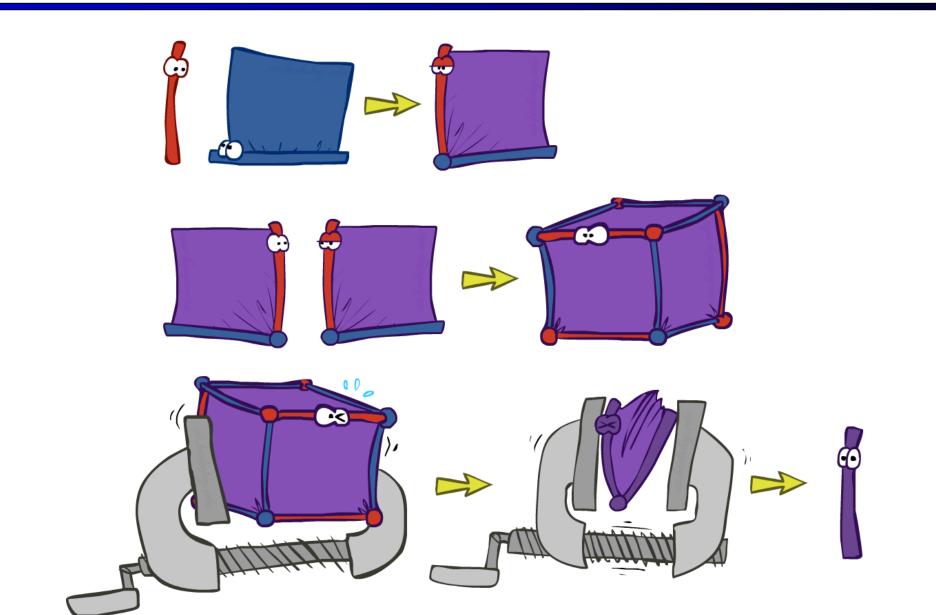


Multiple Elimination

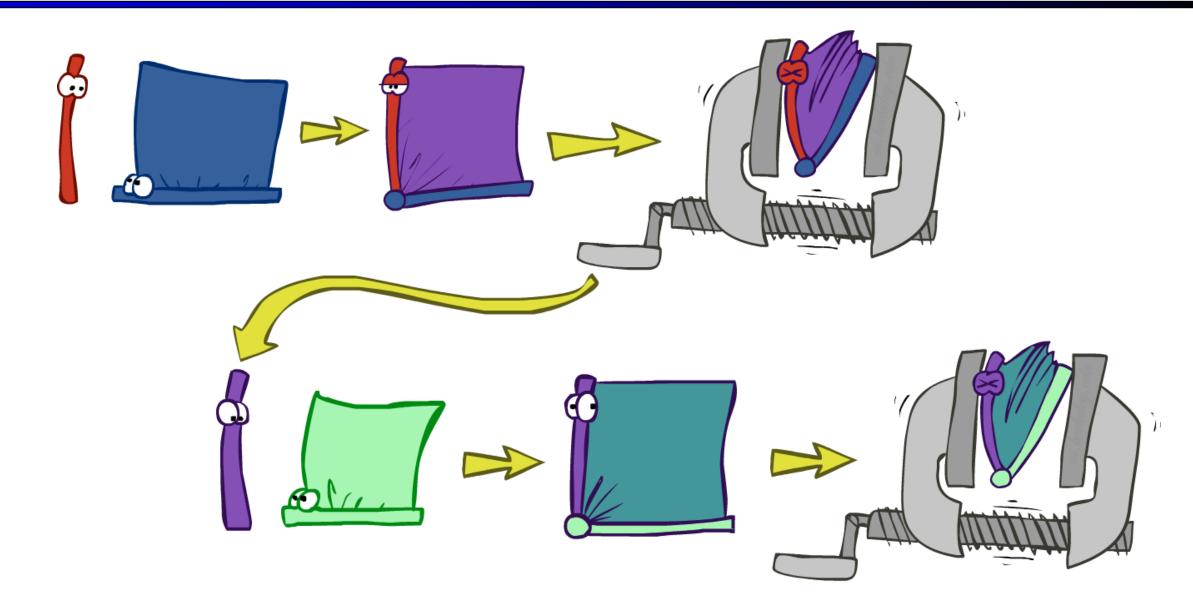


1 = 2

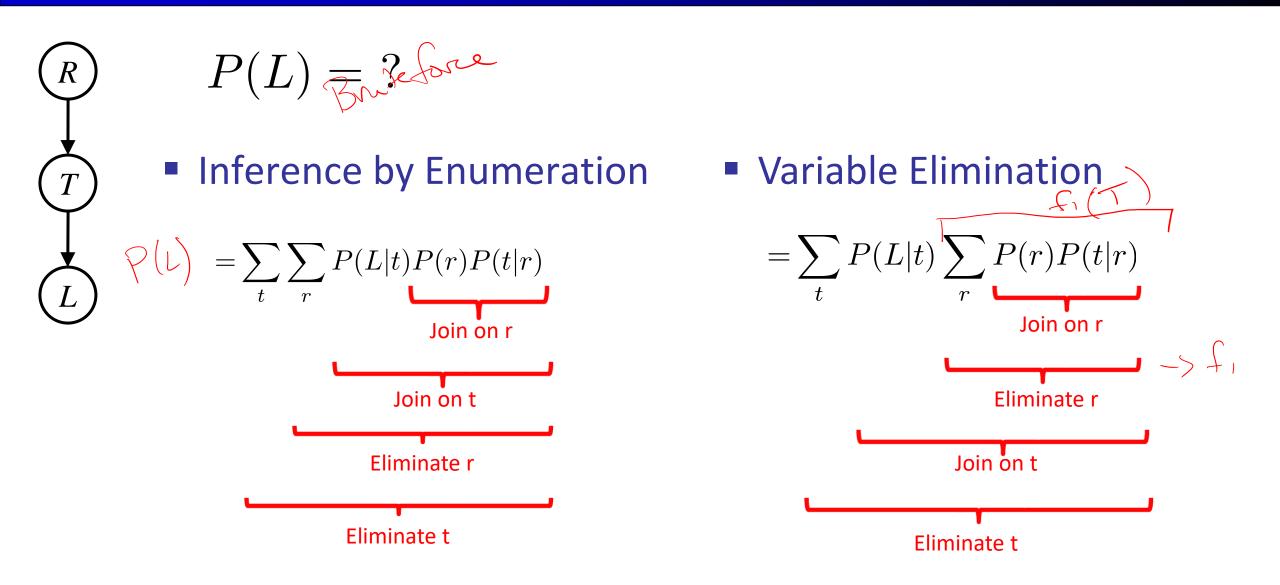
Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)



Marginalizing Early (= Variable Elimination)

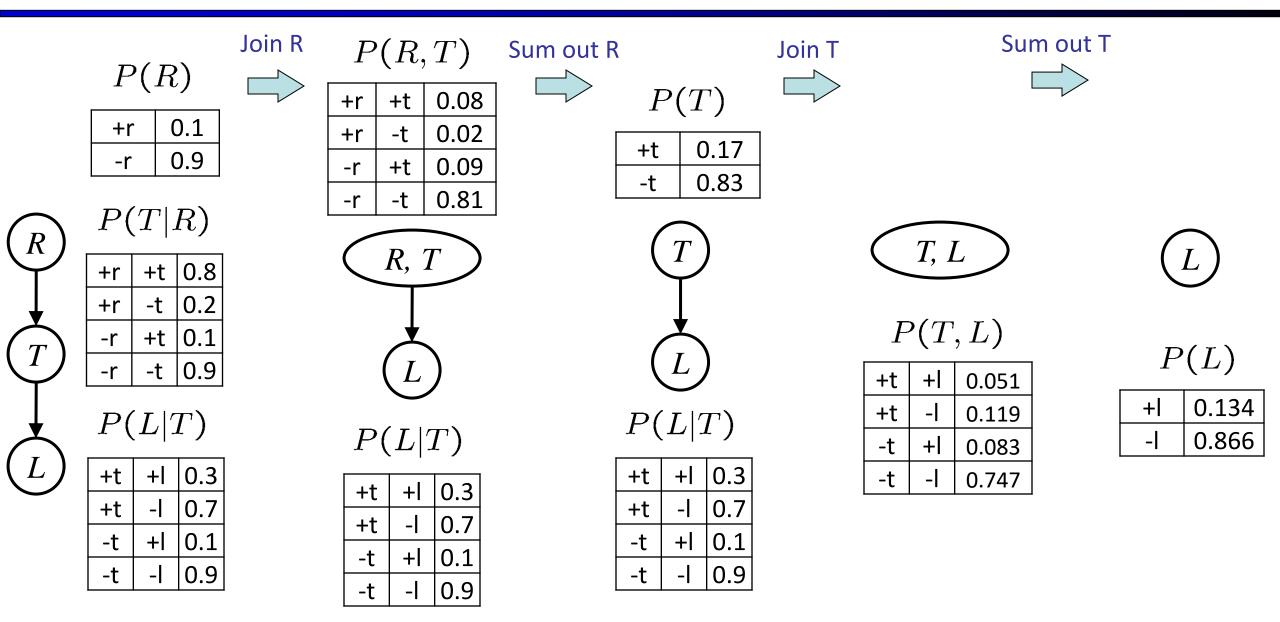


Traffic Domain



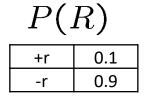
Marginalizing Early! (aka VE)

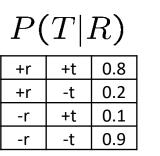
 $) = \langle \rangle$



Evidence

- If evidence, start with factors that select that evidence
 - No evidence uses these initial factors:

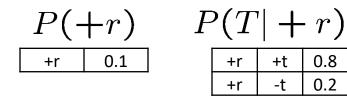




$\Gamma(L I)$					
	+t	+	0.3		
	+t	-	0.7		
	-t	+	0.1		
	-t	-	0.9		

D(T|T)

• Computing P(L| + r) the initial factors become:



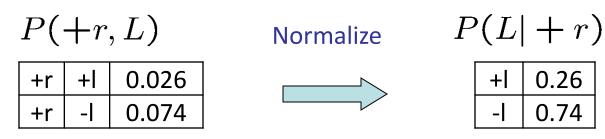
$$\begin{array}{c|c} P(L|T) \\ \hline +t & +l & 0.3 \\ +t & -l & 0.7 \\ \hline -t & +l & 0.1 \\ \hline -t & -l & 0.9 \end{array}$$

1 7 F 2 5

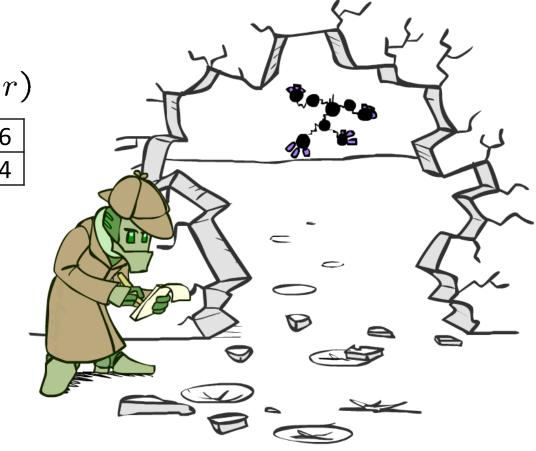
We eliminate all vars other than query + evidence

Evidence II

- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we would end up with:



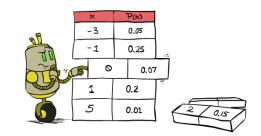
- To get our answer, just normalize this!
- That 's it!

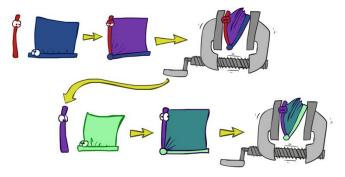


General Variable Elimination

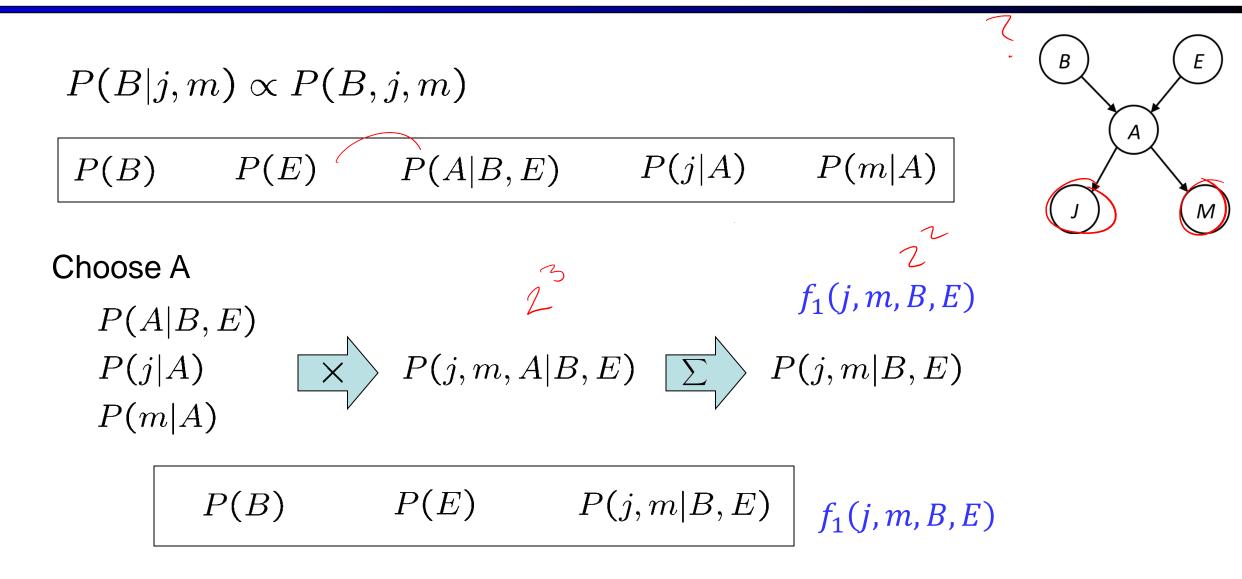
• Query:
$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

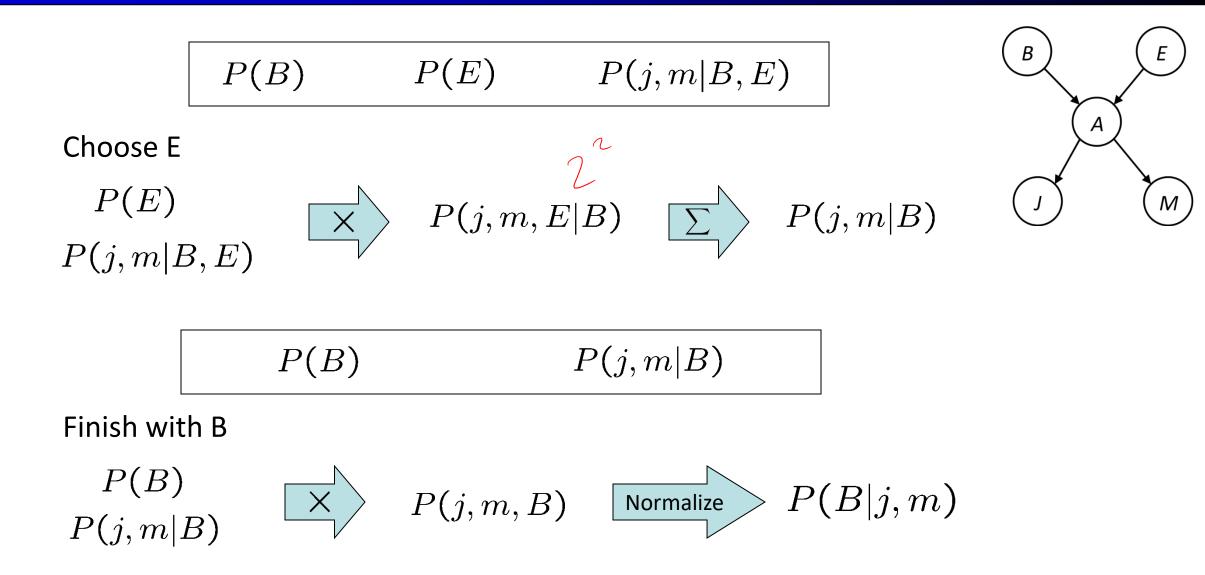




Example



Example



- How much computation did we do?
- Look at size of the factors

Same Example in Equations

$$P(B|j,m) \propto P(B,j,m)$$

$$P(B)$$
 $P(E)$ $P(A|B,E)$ $P(j|A)$ $P(m|A)$

$$P(B|j,m) \propto P(B,j,m)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)P(e) \sum_{a} P(a|B,e)P(j|a)P(m|a)$$
$$= \sum_{e} P(B)P(e)f_1(B,e,j,m) \checkmark$$

$$= P(B) \sum_{e} P(e) f_1(B, e, j, m)$$
$$= P(B) f_2(B, j, m)$$

marginal can be obtained from joint by summing out use Bayes' net joint distribution expression

Α

Μ

use $x^*(y+z) = xy + xz$

joining on a, and then summing out gives f_1

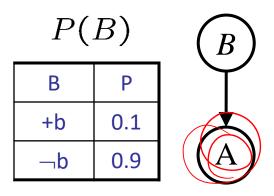
use $x^*(y+z) = xy + xz$

joining on e, and then summing out gives f_2

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!

Example 2: P(B|+a)

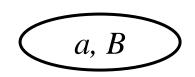
Start / Select



$P(A|B) \rightarrow P(a|B)$

В	А	Р
+b	+a	0.8
b	٦a	0.2
−b	+a	0.1
h		0.0
2	a	0.5

Join on B



P(a,B)

Α	В	Р
+a	+b	0.08
+a	−b	0.09

P(B a)
-------	---

Normalize

А	В	Р
+a	+b	8/17
+a	−b	9/17

Another Variable Elimination Example

Query: $P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$

Start by inserting evidence, which gives the following initial factors:

Eliminate X_1 , this introduces the factor $f_1(Z, y_1) = \sum_{x_1} p(x_1|Z)p(y_1|x_1)$, and we are left with:

 $p(Z)f_1(Z, y_1)p(X_2|Z)p(X_3|Z)p(y_2|X_2)p(y_3|X_3)$

Eliminate X_2 , this introduces the factor $f_2(Z, y_2) = \sum_{x_2} p(x_2|Z) p(y_2|x_2)$, and we are left with:

 $p(Z)f_1(Z, y_1)f_2(Z, y_2)p(X_3|Z)p(y_3|X_3)$

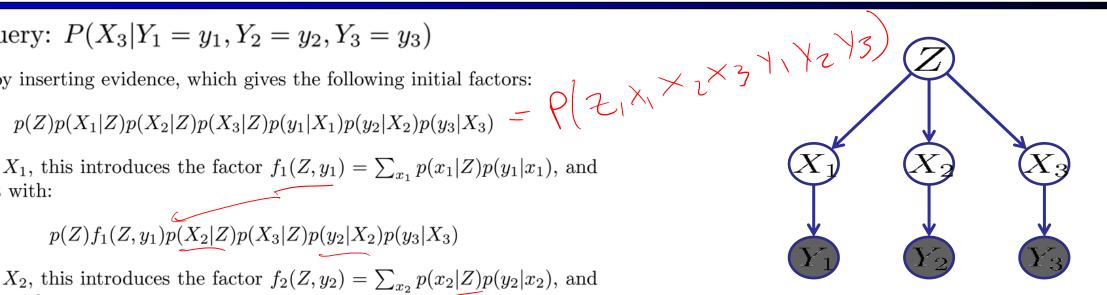
Eliminate Z, this introduces the factor $f_3(y_1, y_2, X_3) = \sum_z p(z) f_1(z, y_1) f_2(z, y_2) p(X_3|z)$, and we are left:

 $p(y_3|X_3), f_3(y_1, y_2, X_3)$

No hidden variables left. Join the remaining factors to get:

 $f_4(y_1, y_2, y_3, X_3) = P(y_3|X_3)f_3(y_1, y_2, X_3).$

Normalizing over X_3 gives $P(X_3|y_1, y_2, y_3)$.



Computational complexity critically depends on the largest factor being generated in this process. Size of factor = number of entries in table. In example above (assuming binary) all factors generated are of size 2 --- as they all only have one variable (Z, Z, and X_3 respectively).

Variable Elimination Ordering

- For the query $P(X_n | y_1, ..., y_n)$ work through the following two different orderings as done in previous slide: Z, X_1 , ..., X_{n-1} and X_1 , ..., X_{n-1} , Z. What is the size of the maximum factor generated for each of the orderings? Choose X_1 $Z(X_1(Z) P(Y_1|X_1))$ $S(Xn)Y_{1}, Y_{n}, E)$ X_2 X• • • • • • Y_n Y_2 Y_1 n-
- Answer (assuming binary) : 2ⁿ⁺¹ (start with Z) versus 2² (start with Xs)
- In general: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

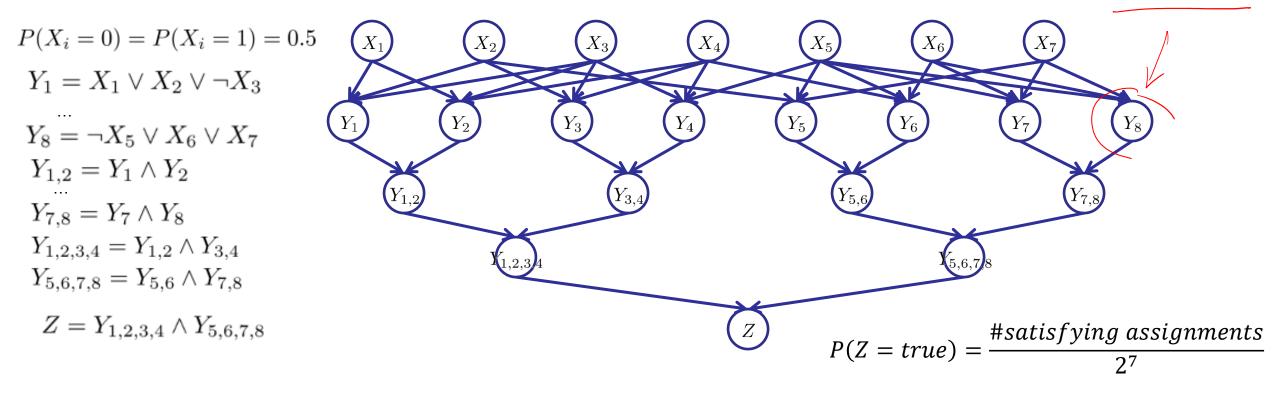
- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ vs. 2
- Does there always exist an ordering that only results in small factors?
 - No!

Worst Case Complexity?

3-SAT constraint satisfaction problem:

$$X_1 \times_2 \dots \times_7 \in \mathcal{E} \mathcal{O}(13)$$

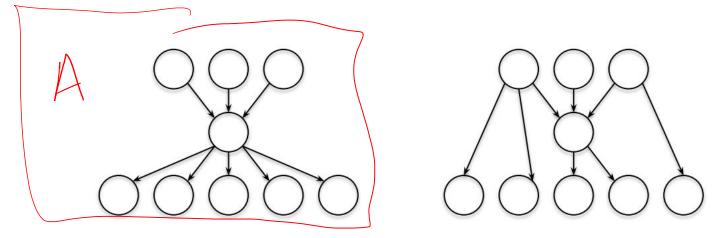
 $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_6 \lor \neg x_7) \land$



- If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.
- Hence inference in Bayes' nets is NP-hard. No known efficient probabilistic inference in general.

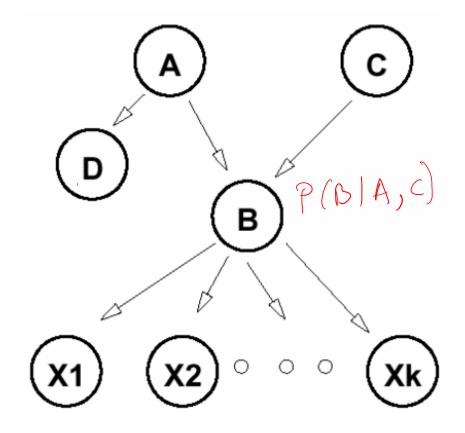
Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient
 - Poly-tree is a directed graph with no undirected cycles
 - Polynomial time and space
 - Linear in network size if you eliminate in the right order



Polytrees cont.

- Always pick a singly-connected node to eliminate
 - Always exists for a polytree
- Example: D, A, C, X1,...Xk,B
 - No factor ever larger than original conditional probability tables!
 - Eliminating B first would be much worse!



Bayes' Nets

- Representation
- Conditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - ✓ Inference is NP-complete
 - Sampling (approximate)