CS 6300: Artificial Intelligence

Bayes' Nets

Instructor: Daniel Brown --- University of Utah
[Based on slides created by Dan Klein and Pieter Abbeel http://ai.berkeley.edu.]

Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
- May not account for every variable
- May not account for all interactions between variables
- "All models are wrong; but some are useful."
- George E. P. Box

- What do we do with probabilistic models?
- We (or our agents) need to reason about unknown variables, given evidence
- Example: explanation (diagnostic reasoning)
- Example: prediction (causal reasoning)
- Example: value of information

Probability Recap

- Conditional probability $\quad P(x \mid y)=\frac{P(x, y)}{P(y)}$
- Product rule

$$
P(x, y)=P(x \mid y) P(y)
$$

- Chain rule

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots X_{n}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots \\
& =\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

- X, Y independent if and only if: $\forall x, y: P(x, y)=P(x) P(y) \quad P(x \mid y)=P(x)$
- X and Y are conditionally independent given Z if and only if:

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

$$
X \Perp Y \mid Z
$$

if and only if:

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

or, equivalently, if and only if

$$
\forall x, y, z: P(x \mid z, y)=P(x \mid z)
$$

Prove it!

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

implies

$$
\forall x, y, z: P(x \mid z, y)=P(x \mid z)
$$

Prove it!

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

implies

$$
\forall x, y, z: P(x \mid z, y)=P(x \mid z)
$$

$$
\mathrm{P}(x \mid z, y)=\frac{P(x, y, z)}{P(y, z)}=\frac{P(z) P(x, y \mid z)}{P(z) P(y \mid z)}=\frac{P(z) P(x \mid z) P(y \mid z)}{P(z) P(y \mid z)}=P(x \mid z)
$$

Conditional Independence

- What about this domain:
- Traffic
- Umbrella
- Raining

Conditional Independence and the Chain Rule

- Chain rule:

$$
P\left(X_{1}, X_{2}, \ldots X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots
$$

- Trivial decomposition:
$P($ Traffic, Rain, Umbrella $)=$ P (Rain) P (Traffic \mid Rain) P (Umbrella|Rain, Traffic)

- With assumption of conditional independence of T and U given R :
$P($ Traffic, Rain, Umbrella $)=$ P (Rain) P (Traffic|Rain) P (Umbrella|Rain)
- Why useful?
- Bayes'nets / graphical models help us express conditional independence assumptions

Ghostbusters Chain Rule

- Two places to check for a ghost (top, bottom).
- Each sensor depends only

$$
P(T, B, G)=P(G) P(T \mid G) P(B \mid G)
$$ on where the ghost is

- That means, the two sensors are conditionally independent, given the ghost position
- T: Top square is red B: Bottom square is red G: Ghost is in the top
- Givens:
$P(+g)=0.5$
$P(-g)=0.5$
$P(+t \mid+g)=0.8$
$\mathrm{P}(+\mathrm{t} \mid-\mathrm{g})=0.4$
$P(+b \mid+g)=0.4$

0.50				
	+t	-b	+g	0.24
	+t	-b	-g	0.04
0.3	-t	+b	+g	0.04
0.50				
	-t	+b	-g	0.24
	-t	-b	+g	0.06
yyyy	-t	-b	-g	0.06

$P(+b \mid-g)=0.8$

Bayes'Nets: Big Picture

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
- Unless there are only a few variables, the joint is WAY too big to represent explicitly
- Hard to learn (estimate) anything empirically about more than a few variables at a time

- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- More properly called graphical models
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions
- For about 10 min , we'll be vague about how these interactions are specified

Example Bayes' Net: Insurance

27 Binary Variables
$2^{\wedge} 27$! Entries in full joint dist.

Can simplify by specifying local interactions (dependencies)

Example Bayes' Net: Car

Graphical Model Notation

- Nodes: variables (with domains)
- Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
- Similar to CSP constraints
- Indicate "direct influence" between variables
- Formally: encode conditional independence (more later)
- For now: imagine that arrows mean
 direct causation (in general, they don't!)

Example: Coin Flips

- N independent coin flips

- No interactions between variables: absolute independence

Example: Traffic

- Variables:
- R: It rains
- T: There is traffic

- Model 1: independence
- Model 2: rain causes traffic

- Why is an agent using model 2 better?

Example: Traffic II

- Let's build a causal graphical model!
- Variables
- T:Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity

Example: Traffic II

- Let's build a causal graphical model!
- Variables
- T:Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity

Example: Alarm Network

- Variables
- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!

Example: Alarm Network

- Variables
- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!

Bayes' Net Semantics

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph (DAG)
- A conditional distribution for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- CPT: conditional probability table

$$
P\left(X \mid A_{1} \ldots A_{n}\right)
$$

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- Claim: To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

- Example:

$$
P(+ \text { cavity },+ \text { catch },- \text { toothache })=P(+ \text { cavity }) P(+ \text { catch } \mid+ \text { cavity }) P(- \text { toothache } \mid+ \text { catch })
$$

Probabilities in BNs

- Why are we guaranteed that setting

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

results in a proper joint distribution?

- Chain rule (valid for all distributions): $\quad P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)$
- Assume conditional independences: $\quad P\left(x_{i} \mid x_{1}, \ldots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
\rightarrow Consequence: $\quad P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
- Doesn't say anything about causality (more later)!
- Not every BN can represent every joint distribution

- The topology enforces certain conditional independencies

Example: Coin Flips

$$
P(h, h, t, h)=0.5 * 0.5 * 0.5 * 0.5
$$

Example: Traffic

Example: Alarm Network

Example: Traffic

- Causal direction

$P(T, R)$

$+r$	$+t$	$3 / 16$
$+r$	$-t$	$1 / 16$
$-r$	$+t$	$6 / 16$
$-r$	$-t$	$6 / 16$

Example: Reverse Traffic

- Reverse causality?

$P(T, R)$

$+r$	+t	$3 / 16$
$+r$	-t	$1 / 16$
$-r$	+t	$6 / 16$
$-r$	-t	$6 / 16$

Causality?

- When Bayes' nets reflect the true causal patterns:
- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts
- BNs need not actually be causal

- Sometimes no causal net exists over the domain (especially if variables are missing)
- E.g. consider the variables Traffic and Drips
- End up with arrows that reflect correlation, not causation
- What do the arrows really mean?

- Topology may happen to encode causal structure
- Topology really encodes conditional independence

$$
P\left(x_{i} \mid x_{1}, \ldots x_{i-1}\right)=P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

Bayes' Nets

- So far: how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution
- Today:
- First assembled BNs using an intuitive notion of conditional independence as causality
- Then saw that key property is conditional independence
- Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)

