CS 6300: Artificial Intelligence

Bayes' Nets

Instructor: Daniel Brown --- University of Utah

[Based on slides created by Dan Klein and Pieter Abbeel http://ai.berkeley.edu.]

Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 - George E. P. Box

- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information

Probability Recap

Conditional probability

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

Product rule

$$P(x,y) = P(x|y)P(y)$$

Chain rule

$$P(X_1, X_2, \dots X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$$
$$= \prod_{i=1}^n P(X_i|X_1, \dots, X_{i-1})$$

• X, Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$ P(x|y) = P(x)

• X and Y are conditionally independent given Z if and only if: $X \!\perp\!\!\!\perp Y | Z$

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

$$X \perp \!\!\! \perp Y | Z$$

if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

or, equivalently, if and only if

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

Prove it!

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

implies

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

Prove it!

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

implies

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

$$P(x|z,y) = \frac{P(x,y,z)}{P(y,z)} = \frac{P(z)P(x,y|z)}{P(z)P(y|z)} = \frac{P(z)P(x|z)P(y|z)}{P(z)P(y|z)} = P(x|z)$$

Conditional Independence

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

Conditional Independence and the Chain Rule

• Chain rule: $P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$

Trivial decomposition:

$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain}, \text{Traffic})$$

With assumption of conditional independence of T and U given R:

$$P(\mathsf{Traffic}, \mathsf{Rain}, \mathsf{Umbrella}) = P(\mathsf{Rain})P(\mathsf{Traffic}|\mathsf{Rain})P(\mathsf{Umbrella}|\mathsf{Rain})$$

- Why useful?
- Bayes'nets / graphical models help us express conditional independence assumptions

Ghostbusters Chain Rule

- Two places to check for a ghost (top, bottom).
- Each sensor depends only on where the ghost is
- That means, the two sensors are conditionally independent, given the ghost position
- T: Top square is redB: Bottom square is redG: Ghost is in the top
- Givens:

P(T,B,G)) = P(G	i) P(T	G) F	P(B	G)
----------	---------	--------	------	-----	----

Т	В	G	P(T,B,G)
+t	+b	+g	0.16
+t	- b	5 0	0.16
+t	<u>b</u>	g +	0.24
+t	<u>b</u>	90	0.04
-t	+b	+g	0.04
-t	+b	-g	0.24
-t	b	gg +	0.06
-t	-b	5 0	0.06

Bayes'Nets: Big Picture

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we'll be vague about how these interactions are specified

Example Bayes' Net: Insurance

27 Binary Variables

2^27! Entries in full joint dist.

Can simplify by specifying local interactions (dependencies)

Example Bayes' Net: Car

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- Arcs: interactions
 - Similar to CSP constraints
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)

Example: Coin Flips

N independent coin flips

No interactions between variables: absolute independence

Example: Traffic

Variables:

R: It rains

■ T: There is traffic

Model 1: independence

Model 2: rain causes traffic

Why is an agent using model 2 better?

Example: Traffic II

Let's build a causal graphical model!

Variables

T: Traffic

R: It rains

L: Low pressure

D: Roof drips

B: Ballgame

C: Cavity

Example: Traffic II

- Let's build a causal graphical model!
- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity

Example: Alarm Network

Variables

■ B: Burglary

A: Alarm goes off

M: Mary calls

■ J: John calls

■ E: Earthquake!

Example: Alarm Network

Variables

■ B: Burglary

A: Alarm goes off

M: Mary calls

J: John calls

■ E: Earthquake!

Bayes' Net Semantics

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph (DAG)
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

CPT: conditional probability table

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - Claim: To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example:

Probabilities in BNs

Why are we guaranteed that setting

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

results in a proper joint distribution?

- Chain rule (valid for all distributions): $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | x_1 \dots x_{i-1})$
- Assume conditional independences: $P(x_i|x_1,...x_{i-1}) = P(x_i|parents(X_i))$

$$\rightarrow$$
 Consequence: $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$

- Doesn't say anything about causality (more later)!
- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Example: Coin Flips

$$P(X_1)$$

h	0.5
t	0.5

Γ	1	\mathbf{v}	-	`
\boldsymbol{I}	Į	Λ	2	_)
_	`		_	,

h	0.5
t	0.5

$$egin{array}{c|c} P(X_n) & & 0.5 \ t & 0.5 \ \hline \end{array}$$

$$P(h, h, t, h) = 0.5 * 0.5 * 0.5 * 0.5$$

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Traffic

$$P(+r,-t) =$$

Example: Alarm Network

0.01

0.99

-a

-a

+m

-m

0.05

0.95

-a

Е	P(E)
+e	0.002
Ψ	0.998

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Example: Traffic

Causal direction

\boldsymbol{P}	T	٦	Į	3)
1	/ τ	7	1	v

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Example: Reverse Traffic

Reverse causality?

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

$$P(x_i|x_1,\ldots x_{i-1}) = P(x_i|parents(X_i))$$

Bayes' Nets

- So far: how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution
 - Today:
 - First assembled BNs using an intuitive notion of conditional independence as causality
 - Then saw that key property is conditional independence
 - Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)

