Please use the LATEX template to produce your writeups. See the Homework Assignments page on the class website for details. Hand in through gradescope.

1 Functional Approximation

We revisit the simplied version of blackjack from Homework 5. The deck is infinite and the dealer always has a fixed count of 15 . The deck contains cards 2 through $10, \mathrm{~J}, \mathrm{Q}, \mathrm{K}$, and A, each of which is equally likely to appear when a card is drawn. Each number card is worth the number of points shown on it, the cards J, Q, and K are worth 10 points, and A is worth 11 . At each turn, you have two possible actions: either hit or stay.

Unhappy with your experience with basic Q-learning, you decide to featurize your Q-values. Consider the two feature functions:

$$
f_{1}(s, a)=\left\{\begin{array}{ll}
0 & a=\text { stay } \\
+1 & a=\text { hit }, s \geq 15 \\
-1 & a=\text { hit }, s<15
\end{array} \quad \text { and } \quad f_{2}(s, a)= \begin{cases}0 & a=\text { stay } \\
+1 & a=\text { hit }, s \geq 18 \\
-1 & a=\text { hit }, s<18\end{cases}\right.
$$

Which of the following partial policy tables may be represented by the featurized Q-values unambiguously (without ties)? Derive your answers for each policy table.

s	$\pi(s)$								
14	hit	14	stay	14	hit	14	hit	14	hit
15	hit								
16	hit								
17	hit	17	hit	17	hit	17	hit	17	stay
18	hit	18	stay	18	stay	18	hit	18	hit
19	hit	19	stay	19	stay	19	stay	19	stay
(a)		(b)		(c)		(d)		(e)	

