
Time-Travel in Closed Distributed SystemsTime-Travel in Closed Distributed Systems
Anton Burtsev, Prashanth Radhakrishnan, Mike Hibler, Jay LepreauAnton Burtsev, Prashanth Radhakrishnan, Mike Hibler, Jay Lepreau

University of Utah, School of ComputingUniversity of Utah, School of Computing

Basic Time-Travel

Time-Travel in ActionMotivation and Goals

 Distributed systems are complex:
 Non-deterministic
 Asynchronous

 We need a tool to analyze and debug long-running
distributed systems

 Our Goal: Time-travel a network of thousands of virtual
machines spread across multiple physical machines in the
Emulab testbed environment

What's New?
 Existing solutions employ only deterministic time-travel and

operate on:
 A single VM [King et al., USENIX05] or
 Multiple VMs on one physical machine [Ho et al., GRID04] or
 Specific user applications across physical machines [Geels

et al., USENIX06]

 Our work differs in the following ways:
 It is designed to be a practical system that time-travels multi-

node experiments in "Emulab Classic"
 We emphasize system scalability. Some design decisions

towards this end include:
 VMs distributed across physical machines
 "Closed world" assumption
 Relaxed determinism
 Cooperative replay

 We allow state mutations during replay by non-determinism

Emulab – The “Closed World”

Virtual Machines VM1, VM2 and VM3 constitute the time-travel system. These are “user-
domains” (domU) that run on top of the Xen Virtual Machine Monitor. Xen, with assistance from
an administrative domain (dom0), virtualizes CPU, memory, and physical devices (disk and
network) to the domUs.

The figure above illustrates the state of the time-travel system at three points in time: current
execution (Tc), initial state (To) and at an arbitrary point (Ti) in the execution history. The system
can be time-traveled to any point in the interval (To, Tc].

Logging
During original execution, log disk and
network interactions of the time-traveling
domU. Logging happens in dom0, where
the physical device drivers reside.

Replay
During time-travel run of the domU,
replay the contents of the log to recreate
domU's disk and network interactions.

 Experiments in Emulab Classic are typically "closed" - nodes
within an experiment tend to communicate only with each other

 "Closed world" assumption helps improve scalability and
enables exploring relaxed determinism

 Emulab's reliable, low-latency network fabric for control plane
helps simplify the overall system by bounding clock skews to
microsecond range [Veitch et al., IMC04]

 Emulab automation makes it easy to setup large-scale
experiments

Why Relax Determinism?
 Mutating debugging operations are incompatible with

deterministic replay

 Non-deterministic time-travel reduces logging overhead

 Some applications may not need determinism for
debugging

Implementation

 Uses existing Xen VMM technology

 Implements both non-deterministic and deterministic time-
travel in an attempt to compare them

 Logs sources of non-determinism during original execution
 Timer Interrupts, Disk I/O, Network I/O, Physical Time

 Employs cooperative logging
 Obviates logging of packet contents

 Takes periodic consistent distributed checkpoints for
efficient time-travel
 Tag all network packets with checkpoint "epoch-id"

 Replay
 Deterministic: uses branch counters
 Non-deterministic: uses VM virtual time

Time

...

...

sda
eth0

domU
VM1

dom0(Linux)

Xen

Pr
oc

es
s

Pr
oc

es
s

domU
VM2

dom0(Linux)

Pr
oc

es
s

Pr
oc

es
s

domU
VM3

dom0(Linux)

Pr
oc

es
s

Xen

Xen

sda
eth0

sda
eth0

..
.

Time T
i

Time T
0

Initial State

Current Execution T
c

Ti
m

e-
Tr

av
el

 Z
on

e

sdaeth0

domU
VM

dom0
(Linux)

Xen

L
og

gi
ng

E
ng

in
e

P
ro

ce
ss

Hardwar
e

Lo
g

P
ro

ce
ss

Hardware

sdaeth0

domU
VM

dom0
(Linux)

Xen

R
ep

la
y

E
ng

in
e

P
ro

ce
ss

Hardware

Lo
g

P
ro

ce
ss

 Long-running
 Intricate component interaction

Current Status, Future Work, and Conclusions

 Prototype non-deterministic time-travel is working
 LVM for disk checkpointing
 Xen mechanisms for memory checkpointing

 Future work:
 Implementing deterministic time-travel
 Making disk checkpointing efficient by leveraging versioning filesystem

research work, like Ventana [Pfaff et al., NSDI06] and Parallax
[Warfield et al., HOTOS05]

 Making memory checkpointing efficient by implementing CoW memory
 Evaluating determinstic vs. non-deterministic time-travel

 Research questions:
 Is non-deterministic replay useful for many applications?
 Does non-deterministic replay have performance advantages?
 What is the overhead of time-traveling a network of virtual machines?

