Manycores: challenges for OS

Flux Research Group Anton Burtsev

Problems with current OS

- Solid monolithic structure
 - No explicit isolation and sharing
 - Hard to scale
- Single model of resource use
 - Unsuitable for specialized environments
 - Sheduling, security, etc. problems
 - Cannot run Linux and Windows in parallel

What we want?

- Reuse existing OS software stack
- Smaller, more flexible, more scalable
- Good balance between general and specific OS environments
- Insight: much like a data-center OS
 - Cloud of cores

How it will look?

How it will look?

How it will look?

What we need (in hardware)?

- Cross-core isolation
 - Protect cores from each other
- Core preemption
- Cross-core communication
 - Fast cross-core interrupts for communication
 - Message-like interface to send data without touching memory

Wild OS ideas

- Spatial scheduling
 - Application is always running
 - Just gets fewer or more cores
 - Hotplug CPU is already supported
- Specialized cores
 - One device driver per core
 - Language support for heterogeneity

Wild OS ideas (2)

- Thread farms
 - Libc calls out to another core
 - Exceptions, pagefaults same
- Kilocores
 - Core becomes a resource
 - Pass core as an argument to a function
 - Needs hardware support for efficient address space transfer

Conclusions

- Ensure Linux' soft landing on manycores
- Evaluate how new OS structure affect performance
 - Identify anomalies
 - Figure out needed hardware support

Give us more cores!

Acknowledgments: Rob Ricci, Flux Research Group

Thank you.