
Transparent Checkpoints of Closed Distributed Systems in Emulab

Anton Burtsev Prashanth Radhakrishnan † Mike Hibler Jay Lepreau
University of Utah, School of Computing † NetApp
{aburtsev, mike, lepreau}@cs.utah.edu shanth@netapp.com

Abstract
Emulab is a testbed for networked and distributed systems
experimentation. Two guiding principles of its design are
realism and control of experimentation. There is an inherent
tension between these goals, however, and in some aspects of
the testbed’s design, Emulab’s implementers favored realism
over control. Thus, Emulab provides wide-ranging control
over an experiment’s environment and initial conditions, but
relatively little control over its execution—in particular, the
ability to suspend, preempt, or replay the experiment.

We have extended Emulab with a new means of control
over experiment execution: the ability to cleanly checkpoint
the execution of the set of nodes and networks that comprise
an experiment. Conventional checkpoint mechanisms can
easily degrade the fidelity of experiment results as a conse-
quence of checkpoint downtimes, overheads of background
state saving, and unintended distributed checkpoint synchro-
nization effects. In this paper we demonstrate a checkpoint-
ing technique that is transparent with respect to the execu-
tion of the system under test, almost completely concealing
the underlying checkpoint activity.

Building on our checkpoint mechanism, we have im-
plemented two powerful facilities for experiment execution
control: the ability to preemptively swap-out experiments
without losing their run-time state, and the ability to time-
travel through the run of a system.

Categories and Subject Descriptors D.4.5 [Operating Sys-
tems]: Reliability—checkpoint/restart; D.4.7 [Operating
Systems]: Organization and Design—distributed systems

General Terms Design, Performance

Keywords distributed checkpointing, transparent check-
pointing, Emulab, network testbed

† Work performed while at the University of Utah.

c© ACM, 2009. This is the author’s version of the work. It is
posted here by permission of ACM for your personal use. Not for
redistribution.
The definitive version was published in Proceedings of the Fourth
ACM SIGOPS/EuroSys European Conference on Computer Sys-
tems, Nuremberg, Germany, Apr. 2009, http://doi.acm.org/
10.1145/NNNNNNN.NNNNNNN (to be provided)

1. Introduction
Emulab is a public testbed for networked and distributed
systems experimentation [White 2002]. It manages a pool
of physical machines and a large switching infrastructure,
providing a flexible way to remotely and automatically con-
figure almost any experimental network within a matter of
minutes. It is designed and built in support of two main prin-
ciples: realism and control of experimentation.

Realism means that the experiment environments created
by Emulab are like production environments to a fine level of
detail. This is key to ensuring that the results of experiments
performed in Emulab are meaningful for predicting how sys-
tems will behave when deployed in the real world. Experi-
ments in Emulab are carried out on real hardware (typically
PCs) running production operating systems, with nodes con-
nected by real networks. An entire physical infrastructure is
allocated for the experiment upon creation—dedicated phys-
ical nodes connected by physical, switched Ethernet links.
Users are given full freedom to install and configure any
component of the software stack inside an experiment.

Control over experiments is essential for effective re-
search and repeatability of experiment results. Most experi-
ments in Emulab never cross the boundaries of their exper-
imental networks, communicating with the external world
only through a set of well-defined channels. The “closed”
nature of Emulab-based experiments—controlled external
dependencies and side-effects—offers a unique opportunity
to reproduce, modify, and re-execute experiments in a di-
rected way.

Emulab today provides a great deal of control over an ex-
periment’s environment and its initial conditions. However,
Emulab permits relatively little control over experiment ex-
ecution. Experiments can be modified and re-launched in a
controlled way, but it is not currently possible to suspend,
preempt, rollback, or replay them. This is because is it is
difficult to provide such controls without sacrificing the re-
alism of the execution environments that Emulab provides,
and which Emulab’s users demand.

In this paper, we report our experience in providing new
controls over experiment execution that do not interfere with
realism. We have extended Emulab with two new features:
the ability to preemptively suspend experiments without los-
ing their run-time state, and the ability to time-travel through

1

http://doi.acm.org/10.1145/NNNNNNN.NNNNNNN
http://doi.acm.org/10.1145/NNNNNNN.NNNNNNN

(i.e., rollback and replay) the run of a system. Both rely on
the ability to checkpoint the execution of a computer net-
work. Our goal for checkpointing is to be transparent with
respect to the execution of the system under test: trans-
parency here means that a run of the system with check-
pointing is the same as it would be without checkpointing
as observed from within the system.1 All measurable param-
eters of the system (e.g., CPU allocation, elapsed time, disk
throughput, network delays, and bandwidth) should remain
identical to the non-checkpointed execution.

Although checkpointing is a well-studied technique, to
our knowledge checkpoint transparency as defined here has
never been addressed as a separate problem. In the local
(single-machine) case, transparency of a checkpoint typi-
cally means having the smallest possible downtime in order
to save the system state: a downtime that can be optimized
to be on the order of several milliseconds [Cully 2008].
The price for achieving this small downtime is having back-
ground work done concurrently with the running system to
pre-copy or copy-on-write the necessary state [Osman 2002,
Srinivasan 2004, Cully 2008]. This background activity can
affect the realism of execution.

In the distributed case, the checkpointer must ensure con-
sistency of a checkpoint across the network [Chandy 1985].
Intuitively, consistency means that the system is saved in a
state that can only occur during a failure-free, correct ex-
ecution [Elnozahy 2002]. To provide this logical correct-
ness, existing solutions may drop, suspend, or replay exter-
nal communication until the checkpoint commits. This also
perturbs realism of execution by introducing packet delays,
timeouts, traffic bursts, and replay buffer overflows.

Our approach to retaining realism is to conceal check-
point activity from the system under test. We employ a
straightforward principle: if we can “instantly” freeze the ex-
ecution and time of an experiment, the system will not be af-
fected by the checkpoint. Checkpoint transparency requires
that time and execution of a system under test are stopped
atomically from the point of view of that system.

To ensure atomicity of the checkpoint in the local case,
we implement a temporal firewall: a minimal layer of con-
trol inside a system’s kernel, designed to isolate time and
execution of the checkpointing code from the rest of the sys-
tem. We virtualize time and atomically stop execution of all
code running inside the temporal firewall, making the check-
point transparent to that part of the kernel code and to all
user code. Only the code that participates in the checkpoint
runs outside of the firewall, and only that code will see “non-
transparent” behavior.

To provide atomicity of a checkpoint across the network
(i.e., over an entire Emulab experiment), we perform a coor-
dinated checkpoint. First, to reduce the effects of checkpoint

1 This definition is different from “checkpoint transparency,” which is tradi-
tionally defined with respect to implementation: i.e., a checkpoint mecha-
nism is transparent if it requires no modification to the checkpointed system.

skew between machines, we synchronize the clocks of all
the machines that are involved in an experiment. This helps
to avoid packets that may be sent or received in the short
time that some machines are suspended and others are not.
Second, to avoid replay of packets that are in-flight due to
network delay, we checkpoint the in-flight network state us-
ing Emulab’s “delay nodes.”

The primary contribution of our work is the implemen-
tation of a transparent checkpointing mechanism for a dis-
tributed system. We detail the challenges that must be over-
come to implement a checkpointer that is transparent—i.e.,
that does not interfere with observable behaviors—to a dis-
tributed system under test. We present a novel mechanism,
the temporal firewall, that can be used as a general way to
virtualize time and execution inside the Linux kernel. We
show how our emphasis on transparency changes the classi-
cal implementation of a distributed checkpoint. Finally, we
evaluate our work by implementing two powerful control
mechanisms on top of the transparent checkpoint: stateful
swap-out and time travel for experiments in Emulab.

2. Emulab Background
Emulab is a widely used, time- and space-shared testbed fa-
cility and “operating system” for networked and distributed
system experimentation [White 2002].

To use the Emulab testbed, a user creates an experiment
that defines the static and dynamic configuration of a net-
work. The static part describes the devices in the network,
the links between them, and the configuration of these ele-
ments. This includes the operating systems that are loaded
onto the devices and the bandwidth, latency, and loss char-
acteristics of network links. Although Emulab can manage
many types of devices, in this paper we are concerned with
experiments that use PC-class devices connected by wired
network links. The dynamic portion of an experiment de-
scribes events that are scheduled to occur within an experi-
ment, e.g., program executions.

Once an experiment is created, it can be swapped in. Em-
ulab maps the network description within the experiment
onto physical resources of the testbed [Ricci 2003]. Emulab
allocates nodes and network links from its pool of resources
and configures them. Nodes are loaded with the user’s choice
of software [Hibler 2003] and then booted. Network connec-
tions are built by creating VLANs within Emulab’s switch-
ing infrastructure. Special conditions on network links are
established by interposing delay nodes on the paths between
nodes [Ricci 2007]. A delay node shapes the traffic on the
link according to the experiment’s specification, but is oth-
erwise transparent to the experimental network.

Once a user’s experiment is swapped in, the user can login
to the allocated nodes and perform work. In addition to the
nodes and networks allocated to his or her experiment, an
experimenter can use additional services that are provided
by Emulab. First, users can access their resources through a

2

Figure 1. A three-node Emulab experiment running the
“iperf” benchmark. Emulab emulates network links us-
ing switch configurations and special delay nodes. Emulab
servers provide control interfaces to experiment nodes, an
event system for controlling experiment execution, NFS file
storage, and other services.

dedicated control network that provides access to all Emulab
machines. Second, to bootstrap, monitor, and control the ex-
periment, users rely on network services that are provided by
Emulab: DNS, NTP, NFS-mounted persistent storage, and a
distributed event system supporting synchronized activities
across nodes. Figure 1 illustrates a simple three-node Emu-
lab experiment and highlights core Emulab services.

Most users perform their work within the closed world
provided by Emulab: i.e., systems under test interact only
within the experimental network, and perhaps with the net-
work services that Emulab provides. In a typical Emulab ex-
periment, an experimenter uses NFS-mounted filesystems to
store experiment applications, access experiment scripts, and
store experiment results. To orchestrate an experiment exe-
cution, users rely on Emulab’s event system, which imple-
ments an experiment-wide notification system.

When a user is finished working, he or she tells Emulab to
swap-out the experiment. (A swap-out may also occur if Em-
ulab believes that the experiment is idle.) This releases the
hardware resources that were allocated to the experiment,
without preserving the dynamic state of those resources. The
experiment itself stays within Emulab’s database, however,
so that it may be swapped-in again in the future. If and
when that happens, the experiment starts again from its ini-
tial state, i.e., with freshly configured resources.

3. Challenges of Transparent Checkpointing
The checkpointing of applications has long been a useful
technique. Originally aimed at providing crash recovery, it
is now also used for debugging and system analysis [King
2005, Zeller 2002, Tucek 2007, Dunlap 2002, Yang 2006].
This shift in the purpose of checkpoint systems changes the
focus for the properties they must provide: applications are

expected to behave similarly across checkpointed and non-
checkpointed runs, not just run with acceptable overhead.

This section explains the challenges we faced in conceal-
ing checkpointing from systems under test, given the con-
straints imposed by our need to preserve system-level real-
ism for Emulab-based experiments as described above.

3.1 Encapsulation and atomicity
Checkpointing relies on the ability to encapsulate the state
of a running system. Encapsulation ensures that a check-
pointed system has no external dependencies and thus can
be saved and restarted later. Typically, encapsulation is
achieved through the use of a virtualization layer, often im-
plemented by a virtual machine. Virtualization is used to cre-
ate a clear boundary separating system dependencies, that is,
a boundary between the hosted “guest system” and the phys-
ical hardware managed by the virtual machine “hypervisor.”

Traditionally, virtual machines are thought of as sealed
containers that fully virtualize all resources, and which
therefore can be stopped and resumed at any time. Trans-
parency of a local checkpoint is taken for granted. In prac-
tice, however, maintaining full encapsulation at all times can
significantly degrade the performance of a virtual system. To
improve performance, a virtual environment may choose to
violate full isolation and allow sharing of some state between
a guest system and the hypervisor. This creates a challenge
for checkpoint transparency, because such a virtual machine
cannot be stopped atomically: some state of the guest system
must be encapsulated at the time of the checkpoint.

For example, to avoid an extra layer of memory virtual-
ization, the paravirtualized interface of Xen [Barham 2003]
exposes the physical memory layout to the guest operating
system. To modify its page tables, a paravirtualized guest
kernel executes code that uses real physical addresses. Thus,
it cannot be checkpointed and then resumed on a physical
machine with a different memory layout.

Even more work must be done to ensure the encapsulation
of virtual devices. These devices serve the dual purposes of
protecting and multiplexing the real hardware among guest
systems. Like their physical counterparts, virtual devices
maintain state: they go through the process of initialization
and often establish user sessions as well. Furthermore, to
improve performance, virtual devices handle guest requests
asynchronously and hence can store a significant number
of “in-flight” requests. To achieve encapsulation, during a
checkpoint the virtual machine has to shutdown its devices.
When resumed, the devices have to be reconnected.

Generally, there are two ways to encapsulate the state
shared between a virtual machine and hypervisor. In the first,
the virtual machine can be checkpointed externally by the
hypervisor, requiring no work on the part of the virtual ma-
chine to encapsulate its run-time state. When resumed, the
shared state is recreated by the hypervisor. The advantage
of this approach is that it is possible to ensure the atomic-
ity of a checkpoint with respect to the execution inside the

3

virtual machine. Unfortunately, it requires the full virtual-
ization of physical memory and rather complex reasoning
about virtual devices (e.g., the state they share, the protocol
they follow). For example, if it is impossible to describe the
shared state declaratively, the restore protocol must replay
communication between the virtual machine and hypervisor
to recompute it [Swift 2004, Lagar-Cavilla 2007].

In the second approach, shared state is serialized and en-
capsulated by the virtual machine itself. An advantage of this
approach is that a virtual machine can reuse existing shut-
down/boot protocols to tear down and re-establish connec-
tions to the shared state. As a result, implementation of a
checkpoint requires only minimal changes to a virtual ma-
chine and hypervisor. Unfortunately, the checkpoint loses its
atomicity, because the guest system must participate in its
own checkpoint. This violates transparency even if check-
pointing is concealed by virtualized time.

Our solution lies between these two approaches. We rely
on a virtual machine to encapsulate its state: however, we
implement an isolation layer within the guest kernel that
hides checkpointing from most of the guest kernel and from
all user-level applications.

3.2 Checkpoint synchronization
The asynchronous nature of any distributed system makes
it impossible to trigger checkpoints on all nodes simultane-
ously. An immediate result of unsynchronized checkpoints
is that a running system becomes partially suspended during
a checkpoint, i.e., some nodes stop before others. This cre-
ates two major anomalies observed by the system, packet
delays and in-flight packets. Packet delays are caused by
a sender being suspended before the receiver. In the worst
case, such delays result in packet timeouts and retransmis-
sions. In-flight packets are caused by the receiver being sus-
pended before the sender. (Packets “in flight” due to the
bandwidth-delay product of a link are different and are dis-
cussed in the next section.)

Once introduced to the system, in-flight packets cannot be
removed transparently. In-flight packets are strictly artifacts
of unsynchronized checkpointing; their presence and subse-
quent replay will necessarily affect experiment realism. It is
impossible to drop or replay in-flight packets without break-
ing the fidelity of experimentation.

To avoid losing in-flight packets, a checkpoint algorithm
typically logs and replays these packets immediately after
completing the checkpoint. Assuming a zero-delay network,
new packets may begin to arrive at a node immediately
after it is resumed. To avoid out-of-order delivery, these
new packets must be queued behind the in-flight packets
logged during the checkpoint [Elnozahy 2002].This results
in longer delays for the new packets and possible throughput
degradation. An obvious way to mitigate these delays is to
drain the queue more rapidly by replaying in-flight packets
faster. However, this breaks realism by creating an artificial
traffic burst.

Another complication of increasing replay speed is that
under a high steady-state load, network receive buffers in
the system under test will be filled to near capacity, a nat-
ural consequence of flow-controlled protocols such as TCP.
Therefore, any attempt to inject more packets during replay
may result in unintended packet loss if these buffers overfill.

Finally, a checkpointed system will experience the effects
of poor synchronization not only when nodes are being sus-
pended for checkpointing, but also when they are being re-
sumed. At restart, some nodes will be restarted before others,
leading to problems with packet delays and in-flight packets.

Thus, a primary design principle of our checkpointing so-
lution is to minimize the number of in-flight packets. Unless
the downtime of a local checkpoint can be reduced to the
order of packet inter-arrival time, it is impossible to avoid
packet logging and replay for a traditional, non-coordinated
checkpoint [Chandy 1985]. Our approach is to synchronize
clocks across the network and implement a coordinated, dis-
tributed checkpoint ensuring that all nodes are suspended for
checkpoint near-simultaneously.

3.3 Bandwidth-delay product
Irrespective of checkpoint synchronization, a large number
of packets may be in flight at the moment of checkpoint due
to network delays. The number is limited by the bandwidth-
delay product of each link. In contrast to in-flight packets
caused by imprecise checkpoint synchronization, it is gener-
ally possible to replay bandwidth-delay packets without vi-
olating the fidelity of network experimentation. In practice,
however, two issues make transparent replay a challenging
task: the need for per-path replay, and the implementation of
an accurate delay emulator.

The transparency of replay with respect to packet delays
requires an implementation of a per-path replay. The prob-
lem stems from the potential asymmetry of bandwidth-delay
products on different paths. After a checkpoint, the replay
log will be dominated by packets from paths with high
bandwidth-delay products. When resumed, packets from
faster, low-delay paths will experience anomalous delays
as they wait for the replay of large bandwidth-delay paths.

Replaying packets from different paths separately, one
can ensure in-order delivery for each path, but avoid block-
ing across different paths. An implementation of this ap-
proach, however, requires the knowledge of paths between
nodes, which may not be available.

An alternative to logging per path is to log per flow.
Flows are convenient as they can be easily identified at
the receiver—packets from the same source-destination pair
belong to the same flow. A limitation of this approach is that
it assumes the ability to identify the source and destination
addresses for any protocol.

An additional complication for implementing an accu-
rate replay mechanism is that, in environments such as Em-
ulab, link characteristics are implemented through emula-
tion [Rizzo 1997]. To retain the realism of delay emulation

4

during replay, the rather complex functionality of a delay
emulator must be implemented on every node participating
in the replay of in-flight packets.

Our solution follows two design choices. First, we do not
assume the availability of per-path or per-stream informa-
tion for Emulab experiments. Emulab is intended to support
experimentation with any protocols above Layer 2. Second,
instead of implementing an accurate per-node replay mecha-
nism, we rely on Emulab’s existing traffic-shaping architec-
ture to capture all in-flight packets, using delay nodes.

4. Checkpoint Implementation
As stated earlier, we use virtualization to provide encapsula-
tion for our checkpoint implementation. Since a key element
of Emulab’s design is to provide flexibility by allowing con-
figuration for all levels of the software, we rejected process-
level containers in favor of low-level, full-system virtualiza-
tion. To further meet the Emulab goal of realism, we chose
a paravirtualization strategy. Our checkpoint mechanism is
based on the Xen virtual machine monitor [Barham 2003], a
simple, extensible, and mature open-source hypervisor.

We extended Xen’s live-migration mechanisms to support
live checkpoint, i.e., saving the memory and device state of
a running system.2 The following sections describe how we
ensure the transparency of a checkpoint in both the local
and distributed cases. We implement our prototype using a
paravirtualized Linux kernel supported by Xen.

4.1 Atomicity
The transparency of a checkpoint requires that the time and
execution of a system be stopped atomically. Xen’s lack of
full resource virtualization, as well as the complexity of the
state shared between a virtual machine and the hypervisor,
forced us to abandon the idea of implementing atomicity
entirely by means of the hypervisor, i.e., externally with
respect to a virtual machine.

Instead, we maintain atomicity internally, with the aid of
the guest kernel. Inside the guest kernel, we create a small
control layer that we call a temporal firewall. We suspend
execution and time inside the firewall. The code needed to
reach an encapsulated state runs outside of the firewall. This
design allows us to avoid massive changes to the hypervisor
and rely on the existing checkpoint code in the guest kernel.
At the same time, it ensures checkpoint atomicity for the
bulk of the guest system, which is inside the firewall.

The code needed to perform a checkpoint is a mixture of
synchronous and asynchronous activities, spread across dif-
ferent parts of the Linux kernel. To isolate this code from
that running inside the temporal firewall, we modified the
mechanism controlling execution flow inside the Linux ker-
nel (Figure 2).

2 Similar functionality was concurrently implemented and committed to the
mainstream Xen by the Remus team [Cully 2008].

Figure 2. Temporal firewall

To preserve the functionality of the checkpoint mecha-
nism, we identified which activities must be executed out-
side of the firewall. These consist of the “suspend” thread,
virtual device drivers, and the event-driven XenBus handlers
used for checkpoint coordination with the virtual machine
monitor. No user-level activity is needed, and only six kernel
threads need to run during a checkpoint. Although we sus-
pend all device drivers for a checkpoint, block device drivers
need their IRQ handlers to run outside of the firewall in order
to drain in-flight requests before shutting down connections
to shared state. XenBus event channels and watch handlers
must also run to provide cross-domain communication.

Although no user-level code is currently necessary during
the Xen checkpoint, we have implemented mechanisms to
control both user- and kernel-level execution. The Linux
kernel provides primitives to control user-level code at the
granularity of threads. Since the user-level code executes
solely inside user-level threads, by selectively stopping these
threads we can control all user-level activity.

Control over the kernel code is less straightforward.
There are four main types of activity inside the Linux kernel:
kernel threads; interrupt signal handlers (IRQs, interrupts,
and exceptions); deferrable functions (soft IRQs, tasklets,
and workqueues); and timer jobs. Execution is transferred
between these activities in either a synchronous or asyn-
chronous way. However, we only needed to modify a small
amount of code to enforce the firewall, i.e., to allow execu-
tion of code outside of the firewall.

First, we modified the schedule function, which com-
putes the next thread to run, to selectively stop threads inside
the kernel. By controlling schedule, we can prevent exe-
cution of user-level threads and stop the set of kernel threads
that process kernel workqueues. At the same time, we do
not break scheduling entirely. The threads needed for check-
pointing continue to run and share the CPU. Although many
scheduling algorithms need some notion of progressing time
to account for CPU consumption and to implement preemp-
tive scheduling, the Linux kernel does not. This allows us to

5

run during a checkpoint without any notion of progressing
time, with kernel threads behaving cooperatively, yielding
the CPU while waiting for external events.

Second, we modified kernel interrupt and soft-IRQ dis-
patch handlers to selectively suspend interrupt activity. How-
ever, this mechanism is not needed in practice, since we sus-
pend all activity that would normally generate interrupts. By
suspending all user-level and kernel threads, we stop the ori-
gins of most system activity. Furthermore, there are no de-
ferred functions required for checkpointing and virtual de-
vice drivers are suspended, so there are no unwanted IRQs
coming from outside the guest system. The only IRQs we
receive during a checkpoint are from the XenBus virtual de-
vice, which is needed for checkpointing and is left running
outside of the firewall. Finally, we do not need to firewall
exception handlers in general: none should occur in a prop-
erly functioning Linux kernel. The only exception that might
occur is a page fault, which we run outside the firewall.

We did not need to modify the return path for interrupts
and system calls. Although the return path has the ability to
pass execution to a soft-IRQ handler or the scheduler, we
already control execution of these elements, so there is no
need for additional mechanisms.

Lastly, as a consequence of virtualizing time for a guest
system (discussed below), we effectively stop the timer inter-
rupt handler during a checkpoint. Thus, timer jobs inside the
system will not be scheduled since time does not progress.

4.2 Time virtualization
Traditionally, to keep track of time, an operating system re-
lies on counting periodic timer interrupts. Due to the concur-
rent execution of multiple virtual machines and contention
for the CPU, this approach is impossible in a virtualized en-
vironment. First, if the guest system is not running at the
moment of interrupt delivery, the interrupt can be delayed or
lost. Second, a guest system may not run continuously be-
tween interrupts. Finally, the correct operation of the guest
kernel and user-level applications may rely on the presence
of a high-precision time source.

To address these issues, Xen exposes wall-clock time,
system time since boot, and run-time state statistics to the
guest system through shared memory regions that Xen up-
dates periodically. Additionally, the guest can account time
by requesting periodic timer interrupts, and by accessing
the hardware time-stamp counter register (TSC). To obtain
the most recent time values, the guest system interpolates
time values with nanosecond precision by reading a hard-
ware time-stamp register, which is used to compute the time
passed since the last memory update.

To conceal the passage of time associated with a check-
point, we virtualize all of these time sources and prevent the
real time from leaking inside the temporal firewall. First, we
prevent the hypervisor from updating the time values during
a checkpoint. Second, since both time values are interpo-
lated by accessing the time-stamp register, we restrict the

guest system’s access to it during a checkpoint. By suspend-
ing the system time, we entirely stop time accounting inside
the Linux guest. In particular, we prevent updating of the
xtime and jiffies variables, and stop processing of the
POSIX timers.

We must also virtualize the hypervisor’s run-time state
statistics. These statistics reflect the amount of time a guest
system spends in one of four states: running, runnable but
not scheduled due to CPU contention, blocked by some
other system activity, or idle. In the face of contention for
the physical CPU, a guest system relies on run-time state
statistics to improve its scheduling decisions. To virtualize
the run-time state statistics, we modify the hypervisor to
suspend accounting of state changes during a checkpoint.

Finally, we virtualize periodic, polling, and single-shot
timers by suspending them for the duration of a checkpoint.
By stopping the periodic timer, we suspend the delivery of
timer interrupts to the guest kernel.

4.3 Checkpoint synchronization
As discussed in Section 3, the transparency of a distributed
checkpoint requires atomicity across the network. Essen-
tially we need to stop all of the nodes in a distributed system
at the same time.

Ideally, the checkpoint system should be able to trigger
a checkpoint immediately in response to any system event
(e.g., arrival of a network packet, or execution of a break or
watch point). In practice, it is impossible to ensure the atom-
icity of such an approach because of the lack of checkpoint
synchronization across the system. A checkpoint notification
mechanism that triggers a checkpoint on every node will ex-
perience variable delays due to network transmission, stack
processing, and virtual-machine scheduling.

Alternatively, one can rely on clock synchronization al-
gorithms to schedule the execution of a global checkpoint
across a network. Potentially, this approach delivers much
higher synchronization accuracy, since it is only limited by
clock synchronization error. The disadvantage is that check-
point events must be scheduled in advance on all nodes.

We support both techniques in our implementation using
a common mechanism. Recall that Emulab has a high-speed,
low-latency control network that provides access to all nodes
(Section 2). On top of this we have implemented a fast
publish-subscribe checkpoint notification bus. All nodes in
the system subscribe to the bus, and any node can publish a
notification in order to trigger an action on all nodes.

To support event-driven checkpoints, nodes use the notifi-
cation bus directly, sending a “checkpoint now” notification.
For scheduled checkpoints we use the same mechanism, and
also synchronize the clocks on all nodes across the network.
Scheduling a checkpoint consists of sending a “checkpoint
at time t” notification. The time is far enough in the future
to allow for propagation and processing of the notifications.
Upon receiving the notification, nodes schedule their check-
points locally. Accurate local timers and clock synchroniza-

6

tion algorithms ensure precise checkpoint synchronization
across the network. At the end of a checkpoint, we resyn-
chronize all nodes so that they resume simultaneously. This
is done using a barrier to detect when all nodes have finished
checkpointing, followed by a “resume” notification.

To synchronize clocks we rely on the Network Time Pro-
tocol (NTP) [Mills 1991]. Under perfect LAN conditions,
NTP provides clock synchronization with an error of 200 µs.
To ensure such conditions, we run NTP over the Emulab
control network. We chose NTP for two reasons. First, we
do not want Emulab to depend on hardware synchroniza-
tion devices [IEEE 2004, Micheel 2001], as it will increase
cost and restrict further deployment of the testbed. Second,
we are not sure that existing implementations of TSC-based
protocols [Veitch 2004] perform well in the face of varying
CPU temperature and dynamic-frequency scaling.

4.4 Transparency of the network core
To transparently handle in-flight packets generated due to
network delays, we leverage Emulab’s delay nodes. As de-
scribed in Section 2, Emulab can shape a network link (set
bandwidth, latency, and loss characteristics) by interposing
a delay node on the link. Thus, instead of implementing a
delay-accurate replay mechanism on all nodes in a system
under test, we need only checkpoint the network core—i.e.,
the set of delay nodes. This lets us capture most of the in-
flight packets in the network. Because the links between
a delay node and the endpoints are zero-delay links, only
packets that are physically in flight need to be logged at the
receiving node. This reduces the size of the replay log to a
number bounded by the synchronization error.

There are two possible methods for checkpointing delay
nodes. One is to run delay nodes as virtual machines under
the hypervisor and rely on our node checkpoint mechanism.
The other is to implement a new checkpoint mechanism for
the traffic-shaping subsystem. In Emulab, this subsystem is
the FreeBSD Dummynet module [Rizzo 1997]. We chose
the latter approach for two reasons.

First, the overhead of virtualization seems to be pro-
hibitive for implementing an accurate, high-speed delay em-
ulation as required in Emulab. Xen’s network path has been
shown to become CPU-bound under high loads [Cherkasova
2005, Santos 2008].

Second, Xen’s time architecture provides no guarantees
about the accuracy of timer-interrupt frequency or jitter.
Periodic timer interrupts are critical for Dummynet, which
relies on the system clock to implement delay scheduling.
Furthermore, to reduce the overhead of time management,
Xen limits the resolution of a guest timer’s interrupt to 1 ms.

Our delay-node checkpoint mechanism saves the state as-
sociated with Dummynet. This state consists of a hierarchy
of pipes, router queues, and the packets queued in those
pipes and queues. For the checkpoint, we implement func-
tions serializing and deserializing the state of this hierarchy.

Similar to what we did for Xen, we implemented a live-
checkpoint mechanism within the Dummynet module. Dur-
ing a checkpoint we suspend Dummynet and serialize the
state non-destructively. After the checkpoint completes, we
resume execution by unblocking Dummynet and virtualizing
time to account for the time spent in the checkpoint.

5. Stateful Swapping
The demand for physical resources in Emulab often ex-
ceeds its capacity. To improve resource utilization, Emulab
provides a weak form of time-sharing: swap-out of inac-
tive experiments. Upon swap-out, the run-time state of an
experiment—i.e., the memory and disk state of experiment
nodes—is freed and lost. If the experiment is later swapped
in again, a user must manually recover his or her previous
“node-local” state.

Using our transparent checkpoint mechanism, we ex-
tended Emulab with the ability to swap-out experiments
without losing their node-local state. Our implementation
ensures that the entire period of inactivity—the swapped-
out time—is transparent to the experiment. Effectively, we
extended Emulab with a coarse-grained scheduling mecha-
nism similar in nature to OS process scheduling.

There are two significant challenges associated with mak-
ing this mechanism practical in Emulab. The first is efficient
handling of potentially large experiment state, due to the
large local disks on nodes. The second is dealing with ex-
periment connections to the “external world,” including Em-
ulab infrastructure and the Internet, which are not part of the
checkpointed environment.

5.1 Disk state
To be practical, stateful swapping has to be fast. The run-
time state of an experiment typically consists of tens of gi-
gabytes of data, mostly on node disks. The way in which
disk state is saved and restored at swap time is critical to the
performance of the system, since naive approaches might re-
quire tens of minutes or even hours to transfer this state to
and from persistent storage. We employ multiple optimiza-
tions to reduce the swapping time.

Several observations help to reduce the amount of state
that must be transferred upon swap-out. First, an experi-
ment changes relatively little disk state between swap-in and
swap-out. Thus, it is useful to save only the changes gener-
ated since the last swap-in. Second, nodes within and across
experiments use a relatively small set of base filesystem im-
ages, which can be cached on the experimental nodes and
shared across experiments.

Based on these observations, we split the virtual disk of
a guest system into three components (Figure 3, left side):
an immutable base file system image (“Golden image”), the
aggregated disk changes made with respect to the base image
for all previous swap-ins (“Aggregated delta”), and all disk
changes since the current swap-in (“Current delta”). These

7

Aggregated

delta

Current

delta

R

R,W

Golden

image
R

VMs

Logical Disk
R,W

Miss

Hit

Hit

Linear addressing

VBA == PBA

VBA

Hash
R,W

R

Golden image

Second−level branch

Hash

Miss

R

First−level branch

Base volume

Figure 3. Three-level branching storage with a correspond-
ing virtual block address translation scheme

parts are stitched together to provide a logical disk by using
a copy-on-write storage mechanism.

This partitioning has several benefits. First, saving an ex-
periment’s state during swap-out requires saving only the
small current delta. Second, the golden image can be cached
in advance, requiring only that the aggregated delta—which
is typically much smaller than the golden image—be trans-
ferred during the swap-in. Finally, because the golden image
is immutable, it can be shared across virtual machines that
reside on a common physical node.

To further reduce the size of the current delta, we elim-
inate most of the blocks freed by the guest filesystem. The
need for, and complexity of, this optimization stems from the
semantic gap between the hypervisor and the guest system.
Xen virtualizes disks at the block level. Thus, filesystem-
specific information is not available to the swapping system.
We verified that this optimization is crucial by running a
make followed by make clean command on a Linux ker-
nel source tree. Free-block elimination reduces the delta size
from 490 MB to 36 MB. We eliminate free blocks by im-
plementing filesystem-specific plugins to snoop on writes at
the level below the guest system. A plugin constructs a free-
block metadata map that is consistent with respect to the data
blocks on the disk. We have implemented free block elimi-
nation for the Linux ext3 filesystem.

To reduce the latency of a “context switch” between two
experiments (i.e., swap-out one, swap-in the other), we rely
on background disk data transfer and pipeline swap-out and
swap-in. During a swap-in, the virtual machine is resumed
as soon as its memory image is downloaded. The entire
disk state is either paged on demand (individual disk blocks
copied to local disk on first reference) or lazily copied (con-
tinuous background copying of the entire disk state) to the
experiment node. Similarly, during the swap-out we eagerly
begin copying the delta image to persistent storage before
the guest’s execution is suspended.

5.2 The external world
If an experiment interacts with the external world, a check-
point may distort execution of the experiment in two signif-
icant ways. First, since time is suspended during swap-out,
time inside the experiment progresses slower than outside.

An experiment and the external world can confuse each other
with their differing notions of time. Second, if an interaction
with the external world is stateful, any “outside” component
of that state will not be preserved across swap-out, leading
to a mismatch when swapped back in. While it is impossi-
ble to provide a general solution for supporting all possible
types of external world interactions, it is possible to solve
the problem for the Emulab control interface.

With the exception of the event system, dealing with
these issues is relatively straightforward. To conceal time
differences between an experiment and Emulab-provided
services, we rely on the knowledge of the DNS, NTP and
NFS protocols to transduce timestamps embedded in proto-
col messages. We convert timestamps found in the inbound
packets to the guest system’s virtual time, and those in the
outbound packets to the actual time. We implement this tech-
nique for NFS by filtering NFS commands containing times-
tamps. Fortunately, most Emulab control services are state-
less: DNS, NTP, and NFS version 2 are stateless by design,
so there are no issues related to state saving.

Emulab’s event service is both stateful and time-aware.
The per-experiment event scheduler runs on an Emulab
server and dispatches events to experiment nodes at the
appropriate times, optionally receiving notifications when
events complete. When an experiment is swapped out, the
event scheduler could be suspended, but this does not ad-
dress the fact that connections to event agents can be stateful
TCP connections. Our solution is to move the event sched-
uler into the closed world of the experiment. Although we
have not yet implemented this, there is no need for the sched-
uler to run on an Emulab server; it is strictly historical.

5.3 Implementation status
We have implemented most parts of the stateful swapping
system and demonstrated it in a non-production version of
Emulab. Details of the implementation can be found in [Rad-
hakrishnan 2008]; we summarize the work here.

Our copy-on-write disk storage is based on the snap-
shots provided by the Linux Logical Volume Manager
(LVM) [Redhat 2006]. We modified LVM to provide the
semantics of branching storage, i.e., support for a tree-like
structure with recursive immutable snapshots and any num-
ber of mutable branches. Furthermore, we optimized LVM to
achieve an order-of-magnitude improvement in COW write
performance. We continue to work on improving the read
performance for deeply nested snapshot trees.

To implement background data transfer, we take advan-
tage of LVM mirror volumes, a facility that allows RAID1-
style redundancy. By locating half of a mirror volume on a
remote machine across NFS, we get automatic remote redi-
rection of reads and remote mirroring of writes. The orig-
inal implementation of LVM mirror volumes synchronizes
data aggressively, causing a significant impact on VM per-
formance and thus affecting the realism of experimentation.

8

To address this, we added a rate-limiting function that slows
synchronization activity relative to normal system I/O.

We optimize our branching storage for a three-level store.
We implement the copy-on-write portion as a redo log, i.e.,
redirecting writes to the log and keeping the original disk
intact. The log is optimal for our case as it avoids writes to
the immutable aggregate delta and base filesystem images. It
also allows us to rely on locality of access provided natively
by the base system image, without getting into the complex-
ity of handling defragmentation typical in write-anywhere
approaches. When performing a logical to physical block
address translation, writes incur the cost of a single hash
lookup to index into the log (Figure 3, right side). Reads
incur the cost of two lookups: first in the write log and then
in the aggregated delta. If both fail, reads are redirected to
the base filesystem image, which uses linear addressing.

To optimize write speed, we ensure that the filesystem
block size is always a multiple of an LVM block size. Thus,
copy-on-write is always a complete overwrite and never
requires a read-before-write.

We further optimize reads by preserving data locality
in the base filesystem and the aggregated delta. Allocation
of data in the on-disk delta representing a COW branch
happens on a first-write basis, i.e., when a block is written
for the first time since the creation of the branch. Over the
course of several swap-outs and swap-ins, the aggregated
delta is repeatedly merged with a disk delta. Over time, data
locality in these branches may be lost, resulting in poor read
performance due to excessive disk seeks. Thus, when we
merge the disk and aggregated deltas offline after a swap-out,
we reorder blocks in the aggregated delta to restore locality.

6. Time-Travel System
Another compelling use of transparent checkpointing in
Emulab is experiment time-travel. The ability to navigate
and inspect the execution history of a system is a pow-
erful aid in debugging and analyzing complex networked
systems. Backward navigation unrolls the execution of a
system to a state in its past. Forward navigation replays a
system run, reproducing its execution deterministically or
non-deterministically. Designing and implementing a facil-
ity to make this possible for realistic, large, and long-running
distributed systems was an initial motivation for our work.

Time-travel in Emulab allows a user to preserve the exe-
cution of an experiment and later, if desired, play it forward
from any point in time that the experimenter deems inter-
esting. For example, if a feature begins to develop only af-
ter a certain period of time or develops randomly within the
run, time-travel would allow continuation of the experiment
around the points of interest. Similarly, if a phenomenon is
observed mid-way through an experiment run and the user
wants to understand the circumstances under which it oc-
curs, it is possible to restart the run from a point just before
the appearance of the phenomenon. The user could revisit

the point of appearance many times, each time with a differ-
ent set of environmental conditions.

Using our distributed checkpoint mechanism, we have
implemented a prototype for time-travel with non-determin-
istic replay. The prototype captures the original run of an
experiment by frequent checkpointing during its execution.
Backward navigation is implemented by restarting the ex-
periment from a particular checkpoint. The closed-world as-
sumption and the control mechanisms described in Section 5
ensure that experiments are not broken during replay due to
external dependencies. The control mechanisms also allow
the user some limited experiment control from the outside.

The transparency of checkpoints is essential to providing
frequent checkpointing without affecting the realism of ex-
perimentation. This allows a user to introspect, or debug via
replay, any unexpected execution without the need to recre-
ate the faulty situation “with debugging turned on.”

After time-travelling to a point in the past, intentional
state mutation or non-determinism may change the behavior
of the replayed execution relative to the original run. As
such, every replay run creates a new branch in the execution
history of a system. The result is that time-travel sessions
form a tree, with internal nodes representing checkpoints and
leaves representing checkpoints or active executions. This is
in contrast to deterministic replay, where state mutations are
disallowed, and checkpoints are arranged in a linear chain.

To support iterating over a single point of execution under
different experimental conditions, we rely on our branching
storage system. We use one of the two local disks available
on most Emulab nodes to store disk and memory snapshots.
This allows us to store time-travel trees with thousands of
nodes and provide support for various system analyses. For
example, a model checker could branch from past execution
checkpoints to test unexplored states.

Our current and future work focuses on support for vary-
ing degrees of determinism during replay and turning our
time-travel system into a platform for different types of sys-
tem analyses. During replay we plan to allow relaxed deter-
minism, which permits a user to mutate the system state and
perturb selected system inputs. For instance, users should be
able to skew interrupt delivery times, reorder packets, and
dilate system time for the purposes of automated bug find-
ing [Tucek 2007, Qin 2005], model checking [Yang 2006,
Killian 2007], delta debugging [Zeller 2002], capacity test-
ing [Gupta 2006; 2008], performance debugging, and other
analyses. In this way, the time-travel system could present
non-determinism as a “knob” that could be turned up to in-
crease perturbation during replay, or turned down to enforce
deterministic replay. To provide instruction-level accurate
replay, we plan to work on a deterministic replay mecha-
nism similar to TTVM [King 2005] and SMP-ReVirt [Dun-
lap 2008]. Deterministic replay will provide support for dis-
tributed system debugging [Geels 2007] and forensic intru-
sion analysis [Dunlap 2002].

9

19.9

20.0

20.1

20.2

20.3

20.4

 0 1000 2000 3000 4000 5000 6000

T
im

e
 (

m
s
)

Iteration

19.9

20.0

20.1

 4140 4180 4220

Figure 4. Periodic checkpointing of a microbenchmark ex-
ecuting a 10 ms sleep in a loop

7. Evaluation
In this section we evaluate our implementations of trans-
parent checkpointing and stateful swapping. All tests were
run in Emulab on experiments configured to use “pc3000”
nodes connected via 1 Gbps Ethernet experiment links. The
pc3000 nodes are Dell PowerEdge 2850 rackmount PCs,
each configured with a single 3.0 GHz 64-bit Xeon processor
with hyperthreading support, 2 GB RAM, and two 146 GB,
10,000 RPM SCSI disks. On these we load 6 GB virtual ma-
chine disk images containing a 32-bit Linux Fedora Core 4
system configured on top of an ext3 root filesystem. Each
virtual machine is configured with 256 MB of memory. All
machines are connected to the Emulab control network, a
dedicated 100 Mbps Ethernet LAN.

7.1 Transparent checkpointing
Our first tests were designed to evaluate the transparency of
the checkpointing mechanism. To do this we quantify what
effect checkpointing has with respect to four measurable
metrics: time, CPU allocation, network I/O, and disk I/O,
as observed by the system under test.

Time. We evaluated our time virtualization mechanisms
by running a synthetic microbenchmark that measures the
passage of wall-clock time. The benchmark invokes the
Linux usleep function in a loop, sleeping for 10 ms in each
loop. After every sleep, we read the system time directly us-
ing the gettimeofday function to measure the actual time
of each iteration. The measured iteration time for a system
with no checkpointing is 20 ms. We then run the benchmark
while performing a checkpoint every 5 seconds. The mea-
sured time for each iteration during the checkpointed run is
shown in Figure 4, with the inset figure showing detail of a
100-iteration interval around a single checkpoint. (The time
of that checkpoint is shown by the dashed vertical line.)

While this figure shows a detectable pattern of spikes
corresponding to checkpoints, the impact is minor. During
normal intra-checkpoint execution, for 97% of the iterations
the timer is accurate to within 28 µs. The inset plot shows

 240

 250

 260

 270

 280

 290

 300

 0 100 200 300 400 500 600

T
im

e
 (

m
s
)

Iteration

 235

 240

 245

 250

 255

 260

 405 410 415 420

Figure 5. A microbenchmark executing a CPU-intensive
job in a loop

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25

T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

Time (sec)

 30

 35

 40

 45

 50

 55

 60

 13.5 14 14.5 15

Figure 6. Iperf running on a 1 Gbps network

that a checkpoint briefly increases measurement error to
±80 µs. This defines an empirical limit on the transparency
of time for local checkpoint in our implementation.

CPU allocation. The previous benchmark shows that we
effectively virtualize time as seen directly by user code. An-
other concern is how well the temporal firewall works for
concealing the checkpoint from a CPU-intensive task. We
evaluated the transparency of a checkpoint with respect to
CPU time allocation using another synthetic microbench-
mark. This benchmark executes a CPU-intensive workload
in a loop. For every iteration, we measure how long it took
to complete the work. The measured time for a system with
no checkpointing is 236.6 ms. For 90% of the iterations the
work was completed within 9 ms of this average value. We
then run the benchmark while performing a checkpoint ev-
ery 5 seconds. The measured time for each iteration during
the checkpointed run is shown in Figure 5, with the inset fig-
ure showing detail of a 20-iteration interval around a single
checkpoint (again, indictaed by a dashed vertical line).

Once again there is a detectable pattern of spikes at each
checkpoint. Here proper time virtualization and atomicity
provided by the temporal firewall ensure allocation of CPU

10

0.0

0.5

1.0

1.5

2.0

 0 50 100 150 200 250 300

T
h
ro

u
g
h
p
u
t
(M

B
/s

e
c
)

Time (sec)

Figure 7. Four-node BitTorrent experiment

time to within 27 ms of the expected value. Note that this
is considerably less accurate than demonstrated in the previ-
ous benchmark. As this benchmark is extremely sensitive to
background activity, this discrepancy is explained by resid-
ual checkpoint-related activity. To verify this hypothesis, we
ran the same benchmark, but instead of performing check-
points, we periodically ran different jobs in the the Xen priv-
ileged domain. Even the simplest operations affected perfor-
mance of the benchmark. Listing the contents of the root
directory with the ls command, computing a checksum of
the Linux kernel binary with sum, and simple invocation of
the Xen daemon (xm list) increased the time of the bench-
mark by 5–7 ms, 13–17 ms, and 130 ms respectively.

Network I/O: Microbenchmark. To verify transparency
of a checkpoint with respect to network behavior, we con-
structed an experiment with two nodes communicating over
a 1 Gbps network. In this experiment we ran iperf, sending a
TCP stream in one direction between the nodes, and check-
pointed the iperf session every 5 seconds. Network measure-
ments were obtained by capturing a packet trace on the re-
ceiving node.

Figure 6 shows the throughput of a checkpointed session
observed over a period of 25 seconds; dashed lines show the
checkpoint events. The plotted throughput values are aver-
ages taken over 20 ms intervals throughout the run. The in-
set graph shows detail of a two-second window surrounding
a checkpoint. The slight drop in throughput immediately fol-
lowing the checkpoint is attributable to interference between
background checkpoint activity and the guest system.

Analyzing the packet trace from the session, we observed
that the first four checkpoints cause inter-packet arrival de-
lays of 5801 µs, 816 µs, 399 µs, and 330 µs respectively,
for the four intervals that span the checkpoint boundaries.
This is in contrast to an average 18 µs inter-packet arrival
time observed throughout the run. The packet delays are
the result of a fundamental limitation on the transparency
of our checkpoint implementation, which is defined by the
accuracy of the clock synchronization algorithm. We in-

spected the packet trace to confirm that checkpoints caused
no retransmissions, double acknowledgements, or changes
of window size for the TCP session.

Network I/O: Real application. To evaluate how dis-
tributed checkpoint performs on a more realistic applica-
tion, we conducted a multi-node BitTorrent experiment. Bit-
Torrent is a popular peer-to-peer program for cooperatively
downloading large files. Peers act as both clients and servers:
once a peer has downloaded a part of a file, it serves that part
to other peers. To get more predictable behavior, we modi-
fied BitTorrent to use a static tracker.

The experiment was configured with four Emulab nodes—
one seeder and three clients—on a 100 Mbps LAN. The
clients all download the same 3 GB file, initially present
only on the seeder node. We started checkpointing of the
experiment 70 seconds into the run, giving BitTorrent time
to reach a steady state. We then took periodic checkpoints
every 5 seconds for another 100 seconds, at which point we
stopped checkpointing and let the system run for another
100 seconds. Network measurements were obtained by cap-
turing a packet trace on the seeder node. Figure 7 plots the
outgoing throughput as observed on the seeder node. The
three lines in the plot, which largely overlap with one an-
other, represent traffic to the three different clients.

The graph shows that each of the clients has an aver-
age throughput around 1 MB/sec, although the application
is bursty. Each checkpoint causes a small drop in throughput
around the checkpoint event as we observed in our previous
experiment; however, this disturbance is small. Moreover,
repeated checkpointing does not change the obvious “cen-
ter line” that runs through the graph.

Disk I/O: Copy-on-write performance. Since a copy-
on-write storage system is an integral part of the check-
point implementation, we evaluate its effect on the fidelity
of experimentation. To do this, we configured the popular
Bonnie++ benchmark [Coker 2003] to operate on a 512 MB
file—twice the size of the guest system’s memory. We then
ran Bonnie++ on three configurations of a guest system: a

11

Branch
Branch−Orig
Base

 20

 40

 50

 60

 70

 80

 90

Block−ReadsCharacter−ReadsBlock−RewritesBlock−WritesCharacter−Writes

T
h

ro
u

g
h

p
u

t
(M

B
/s

ec
)

 0

 10

 30

Figure 8. Comparison of a copy-on-write storage against
native disk speed

raw disk partition (Base), a two-level branching storage im-
plemented by LVM (Branch-Orig), and a two-level branch-
ing storage with our modifications (Branch). The results are
shown in Figure 8.

On a freshly created disk, sequential block writes to a
branch incur 17% overhead compared to a native disk. This
is explained by additional seeks performed by the branch
device to update the on-disk metadata regions that are dis-
tributed over the entire disk. We conducted additional tests
to check how this behavior changes as a disk ages and the
metadata regions are filled up. Not surprisingly, we found
that metadata overhead disappears and branch storage per-
forms within 2% of the native disk.

Block writes to the original LVM are 74% slower than
writes to our modified branch device. This is a result of
our optimization eliminating the read-before-write overhead
described in Section 5. As the disk ages and more writes go
directly to a branch, read-before-write overhead disappears,
and Branch-Orig and Branch perform equally well.

Disk I/O: Background data transfer. Background data
transfers also play a big role in out stateful swap-out im-
plementation, so we studied their effect on experiment disk
I/O. We did this by copying a large file to simulate a disk-
intensive workload, while measuring throughput to disk at
one-second intervals. We ran the benchmark in three scenar-
ios: with no swap activity occurring, during swap-in (lazy
copy-in), and during swap-out (eager copy-out). Figure 9
plots the write throughput for these three cases. For the
swap-out case, the swap is triggered 60 seconds into the run.
In the graph, this eager copy-out case looks very similar to
the run with no swapping, with only a 9% increase in execu-
tion time. However, the lazy copy-in case has a more notice-
able overhead, resulting in a 19% increase in execution time
and a 45% drop in throughput. This is caused by a limita-
tion of our rate-limiting feature, leading to more aggressive
prefetching of data compared to the swap-out case.

7.2 Stateful swapping
Finally, we offer some preliminary insight into the perfor-
mance of the stateful swapping implementation. To mea-
sure the swapping performance, we used a single node ex-
periment that we swapped in, and then out, four times con-

 0

 5

 10

 15

 20

 0 50 100 150 200 250 300

T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

Time (sec)

No swap-out
Swap-in with lazy copy-in

Swap-out with pre-copy

Figure 9. Effect of a background data transfer on disk
throughput

secutively. During every swapped-in session, the experiment
generated 275 MB of disk data. When swapping out, node
state was transferred over the control network to the Emulab
file server. Although use of the 100 Mbps control network is
clearly a bottleneck and not ideal for large data transfers (as
compared to a 1 Gbps link or a SAN), Emulab is intention-
ally designed not to depend on “high end” infrastructure in
order to lower the barrier for its deployment at other sites.

The initial swap-in took eight seconds when the base sys-
tem image was cached on the physical VM-hosting node. If
that image was not cached, it took an additional 60 seconds
to download it. Subsequent swap-ins required downloading
the aggregated delta image that increased in size each swap
cycle. Without the lazy swap-in optimization, swap-in times
increased to over 150 seconds by the fourth iteration. With
the optimization, swap-in times were constant at approxi-
mately 35 seconds.

For swap-out, since the experiment was producing the
same amount of new data at each iteration, the times were
constant at 60 seconds. To simulate worst-case behavior
for the eager swap mechanism, we re-ran the tests with
a disk intensive workload running in the experiment. This
resulted in a 20% slowdown for swap-out times, attributable
to two factors. First, blocks overwritten during pre-copy
may be sent more than once. Second, we intentionally limit
the rate of pre-copy with a rate-limiting function to reduce
interference with the guest system’s execution.

8. Related Work
A classic work by Elnozahy [2002] provides a comprehen-
sive survey of distributed checkpointing protocols. Tradi-
tional approaches concentrate on consistency of the check-
point. In contrast to these approaches, our focus is systems-
level transparency to software under test.

Multiple systems optimize downtime of the checkpoint.
For instance, Remus implements an efficient checkpoint ca-
pable to checkpoint a Xen virtual machine 40 times per sec-
ond [Cully 2008]. Remus heavily relies on the background

12

copy-on-write state tracking for both disk and memory;
essentially, the guest system never leaves the checkpoint
mode. Furthermore, Remus delays external I/O until check-
point commits. Both background state-saving and buffered
I/O may harm realism of experimentation. Zap [Osman
2002] and Flashback [Srinivasan 2004] provide lightweight,
process-level checkpointing. In contrast, our approach check-
points systems from the OS up.

Xen implements live migration of virtual machines with-
out stopping interactive services [Clark 2005]. While Xen’s
goal was disallowing disruption during migration, we have a
stricter requirement of preventing the VM’s perception of a
checkpoint.

Replay debugging [King 2005], delta debugging [Qin
2005, Zeller 2002], and model checking systems [Yang
2006, Killian 2007] implicitly rely on transparency of the
checkpointing and can directly benefit from our work.

Copy-on-write and branching storage systems have a long
history. ZFS [Sun Microsystems, Inc. 2008] is a promising
production system, but was unavailable as open-source at the
time we started this project. Parallax [Meyer 2008] is a re-
cent implementation of a block-level copy-on-write storage
optimized to support large number of snapshots. It uses a
radix tree for block address translation. We believe our sim-
pler indexing scheme, ability to leverage linear addressing,
and data locality for the base system image better match
needs of the three-level storage used by stateful swap-out.

Recent work by Gupta [2006; 2008] virtualizes time to
slow down the passage of time from a virtual machine’s
perspective. The basic goal of this work is to subject the
guest system to network speeds much higher than what is
physically possible.

9. Conclusion
We have implemented a novel, transparent checkpointing fa-
cility for distributed systems in the Emulab network testbed.
Emulab seeks to provide its users with test environments that
are both realistic and highly controllable—and until now, in
order to maintain realism, Emulab has not provided check-
pointing to its users. In this paper we have reconciled re-
alism and control through the design and implementation
of checkpointing facility that is transparent to systems un-
der test within Emulab. Transparency is essential to make
checkpointing a precise research tool, capable of provid-
ing fidelity of distributed systems analysis. Transparency is
achieved through the design and use of a “temporal firewall,”
which we use to ensure the atomicity of suspending time and
execution. This firewall can be used as a general mechanism
to change the perception of time for the system under test
and conceal various external events.

Based on transparent checkpointing, we have imple-
mented two powerful means of control over experiment ex-
ecution. The first, stateful swap-out, provides a way to truly
time-share the resources of a computer network. The sec-

ond, time travel, creates a platform for experimenting with
various debugging, testing, and model-checking techniques.
Each of these facilities advances our notion of Emulab as
an operating system for a computer network. Furthermore,
each enhances Emulab as a basis for performing sound and
effective distributed systems research.

Acknowledgments
We thank Kevin Atkinson for helping us with many of ex-
periments described in Section 7. We also thank Eric Eide
for many fruitful discussions about this work, and for pro-
viding significant editing and typesetting help. Finally, we
thank the anonymous EuroSys reviewers and our shepherd,
Danny Dolev. Their comments helped us to improve this pa-
per greatly. This material is based upon work supported by
the National Science Foundation under Grant No. 0524096.

References
[Barham 2003] Paul Barham et al. Xen and the art of virtualization.

In Proc. SOSP, pages 164–177, Bolton Landing, NY, 2003.

[Chandy 1985] K. Mani Chandy and Leslie Lamport. Distributed
snapshots: determining global states of distributed systems.
ACM Trans. Comput. Syst., 3(1):63–75, 1985.

[Cherkasova 2005] Ludmila Cherkasova and Rob Gardner. Mea-
suring CPU overhead for I/O processing in the Xen virtual ma-
chine monitor. In Proc. USENIX, pages 387–390, Anaheim, CA,
2005.

[Clark 2005] Christopher Clark et al. Live migration of virtual
machines. In Proc. NSDI, pages 273–286, Boston, MA, May
2005.

[Coker 2003] Russell Coker. Bonnie++, 2003. http://

sourceforge.net/projects/bonnie/.

[Cully 2008] Brendan Cully et al. Remus: high availability via
asynchronous virtual machine replication. In Proc. NSDI, pages
161–174, San Francisco, CA, 2008.

[Dunlap 2002] George W. Dunlap et al. ReVirt: Enabling intrusion
analysis through virtual-machine logging and replay. In Proc.
OSDI, pages 211–224, Boston, MA, December 2002.

[Dunlap 2008] George W. Dunlap et al. Execution replay for
multiprocessor virtual machines. In Proc. VEE, pages 121–130,
Seattle, WA, March 2008.

[Elnozahy 2002] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min
Wang, and David B. Johnson. A survey of rollback-recovery
protocols in message-passing systems. ACM Comput. Surv., 34
(3):375–408, 2002.

[Geels 2007] Dennis Geels et al. Friday: Global comprehension for
distributed replay. In Proc. NSDI, pages 285–298, Cambridge,
MA, April 2007.

[Gupta 2006] Diwaker Gupta et al. To infinity and beyond: time-
warped network emulation. In Proc. NSDI, pages 87–100,
San Jose, CA, May 2006.

[Gupta 2008] Diwaker Gupta, Kashi V. Vishwanath, and Amin
Vahdat. DieCast: Testing distributed systems with an accurate
scale model. In Proc. NSDI, pages 407–421, San Francisco, CA,
April 2008.

13

http://sourceforge.net/projects/bonnie/
http://sourceforge.net/projects/bonnie/

[Hibler 2003] Mike Hibler, Leigh Stoller, Jay Lepreau, Robert
Ricci, and Chad Barb. Fast, scalable disk imaging with Frisbee.
In Proc. USENIX, pages 283–296, San Antonio, TX, June 2003.

[IEEE 2004] IEEE. IEEE 1558 standard for a precision clock syn-
chronization protocol for networked measurement and control
systems, September 2004.

[Killian 2007] Charles Killian et al. Life, death, and the critical
transition: Finding liveness bugs in systems code. In Proc. NSDI,
pages 243–256, Cambridge, MA, April 2007.

[King 2005] Samuel T. King, George W. Dunlap, and Peter M.
Chen. Debugging operating systems with time-traveling virtual
machines. In Proc. USENIX, pages 1–15, Anaheim, CA, April
2005.

[Lagar-Cavilla 2007] H. Andres Lagar-Cavilla, Niraj Tolia,
M. Satyanarayanan, and Eyal de Lara. VMM-independent
graphics acceleration. In Proc. VEE, pages 33–43, San Diego,
CA, 2007.

[Meyer 2008] Dutch T. Meyer et al. Parallax: virtual disks for
virtual machines. In Proc. EuroSys, pages 41–54, Glasgow,
Scotland, March–April 2008.

[Micheel 2001] Jörg Micheel, Stephen Donnelly, and Ian Graham.
Precision timestamping of network packets. In Proc. 1st ACM
SIGCOMM Workshop on Internet Measurement (IWM), pages
273–277, San Francisco, CA, November 2001.

[Mills 1991] David L. Mills. Internet time synchronization: The
network time protocol. IEEE Trans. Comm., 39:1482–1493,
1991.

[Osman 2002] Steven Osman, Dinesh Subhraveti, Gong Su, and
Jason Nieh. The design and implementation of Zap: a system
for migrating computing environments. In Proc. OSDI, pages
361–376, Boston, MA, May 2002.

[Qin 2005] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and
Yuanyuan Zhou. Rx: Treating bugs as allergies—a safe method
to survive software failures. In Proc. SOSP, pages 235–248,
Brighton, UK, October 2005.

[Radhakrishnan 2008] Prashanth Radhakrishnan. Stateful-
swapping in the Emulab network testbed. Master’s thesis, Uni-
versity of Utah, August 2008.

[Redhat 2006] Redhat. LVM2 Resource Page, 2006. http://

sourceware.org/lvm2/.

[Ricci 2003] Robert Ricci, Chris Alfeld, and Jay Lepreau. A solver
for the network testbed mapping problem. SIGCOMM Comput.
Commun. Rev., 33(2):65–81, April 2003.

[Ricci 2007] Robert Ricci et al. The Flexlab approach to realistic
evaluation of networked systems. In Proc. NSDI, pages 201–
214, Cambridge, MA, April 2007.

[Rizzo 1997] Luigi Rizzo. Dummynet: a simple approach to the
evaluation of network protocols. SIGCOMM Comput. Commun.
Rev., 27(1):31–41, 1997.

[Santos 2008] Jose Renato Santos et al. Bridging the gap between
software and hardware techniques for I/O virtualization. In Proc.
USENIX, pages 29–42, Boston, MA, 2008.

[Srinivasan 2004] Sudarshan M. Srinivasan et al. Flashback: A
lightweight extension for rollback and deterministic replay for
software debugging. In Proc. USENIX, pages 29–44, Boston,
MA, June–July 2004.

[Sun Microsystems, Inc. 2008] Sun Microsystems, Inc. ZFS,
June 2008. http://www.opensolaris.org/os/community/
zfs/.

[Swift 2004] Michael M. Swift et al. Recovering device drivers. In
Proc. OSDI, pages 1–16, San Francisco, CA, December 2004.

[Tucek 2007] Joseph Tucek et al. Triage: Diagnosing production
run failures at the user’s site. In Proc. SOSP, pages 131–144,
Stevenson, WA, October 2007.

[Veitch 2004] Darryl Veitch, Satish Babu, and Attila Pàsztor. Ro-
bust synchronization of software clocks across the Internet.
In Proc. 4th ACM SIGCOMM Conf. on Internet Measurement
(IMC), pages 219–232, Taormina, Italy, October 2004.

[White 2002] Brian White et al. An integrated experimental envi-
ronment for distributed systems and networks. In Proc. OSDI,
pages 255–270, Boston, MA, December 2002.

[Yang 2006] Junfeng Yang et al. Using model checking to find
serious file system errors. ACM Trans. Comput. Syst., 24(4):
393–423, November 2006.

[Zeller 2002] Andreas Zeller. Isolating cause-effect chains from
computer programs. In Proc. FSE, pages 1–10, Charleston, SC,
November 2002.

14

http://sourceware.org/lvm2/
http://sourceware.org/lvm2/
http://www.opensolaris.org/os/community/zfs/
http://www.opensolaris.org/os/community/zfs/

	Abstract
	Introduction
	Emulab Background
	Challenges of Transparent Checkpointing
	Encapsulation and atomicity
	Checkpoint synchronization
	Bandwidth-delay product

	Checkpoint Implementation
	Atomicity
	Time virtualization
	Checkpoint synchronization
	Transparency of the network core

	Stateful Swapping
	Disk state
	The external world
	Implementation status

	Time-Travel System
	Evaluation
	Transparent checkpointing
	Stateful swapping

	Related Work
	Conclusion
	Acknowledgments
	References

