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Abstract
For modern software systems, performance analysis can be a chal-
lenging task. The software stack can be a complex, multi-layer,
multi-component, concurrent, and parallel environment with multi-
ple contexts of execution and multiple sources of performance data.
Although much performance data is available, because modern sys-
tems incorporate many mature data-collection mechanisms, analysis
algorithms suffer from the lack of a unifying programming envi-
ronment for processing the collected performance data, potentially
from multiple sources, in a convenient and script-like manner.

This paper presents Weir, a streaming language for systems
performance analysis. Weir is based on the insight that performance-
analysis algorithms can be naturally expressed as stream-processing
pipelines. In Weir, an analysis algorithm is implemented as a graph
composed of stages, where each stage operates on a stream of
events that represent collected performance measurements. Weir
is an imperative streaming language with a syntax designed for the
convenient construction of stream pipelines that utilize composable
and reusable analysis stages. To demonstrate practical application,
this paper presents the authors’ experience in using Weir to analyze
performance in systems based on the Xen virtualization platform.

1. Introduction
The performance analysis of modern software systems is a chal-
lenging task. A modern enterprise system is a complex assembly
of numerous software components that operate at multiple levels
of the software stack and that use multiple levels of scheduling,
data caching and request buffering, and various forms of parallelism
including asynchronous and preemptive execution. Seeking to meet
the growing performance and scalability requirements, modern sys-
tems go even further and reimplement functionality of existing op-
erating system modules in custom runtimes that are tuned for their
specific needs [4, 16, 22, 23]. A configuration error, modification
to the system, change in a hardware setup, or even a change in a
workload can result in unpredictable system behavior [9, 13].

The systems community has addressed the needs of performance
analysis by concentrating on deploying lightweight data-collection
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mechanisms as part of the system stack. Significant progress has
been made in this area. Dynamic instrumentation [7, 18] and
hardware-based statistical sampling [14], for example, enable on-
demand, dynamic collection of performance information and fine-
grain attribution of performance events to specific parts of a system’s
code. The existing system stack provides a rich set of data collection
mechanisms, which covers virtually every component in the sys-
tem [10]. Performance of individual components can be well tested,
profiled, analyzed, and understood.

What is lacking, however, is generic infrastructure for analyz-
ing this data to understand the complex performance relationships
between systems components. As systems scale out to run a combi-
nation of multiple software components and custom runtimes, with
a hierarchy of schedulers that orchestrate execution on multiple
(and many-core) CPUs and GPU coprocessors, the performance
of systems becomes much less dependent on a single bottleneck.
The performance of such systems is largely determined by the avail-
ability of data, latency of communication, overheads of synchro-
nization, and efficiency of scheduling algorithms. The main task
of performance analysis is to correlate performance information
from multiple sources and reason about the behavior of overlapping,
transient performance bottlenecks.

To address the need for unifying analysis infrastructure, we
have created Weir, an imperative, streaming programming language
environment in which analysis algorithms can operate on multiple
streams of data. Weir reflects the nature of the performance domain:
the need to run queries, analyze, and correlate events across multiple
streams of performance data. The tracing technologies that already
exist in the systems stack provide the power to collect the streams
of performance events. Weir is designed to provide a convenient
interface for querying and processing those streams.

In Weir, an analysis algorithm is expressed as composition of
“stages” that operate on streams of performance data. Source stages
read raw performance data, which is collected by different tracing
mechanisms throughout the system stack, and convert each data
source into a stream of events. Events flow through the assembly of
stages, which is called a pipeline. The logic within the stages and
the topology of the pipeline encodes the meaning of the analysis
algorithm. Weir provides convenient language syntax for encoding
analysis algorithms as pipelines.

Traditionally, the work on streaming languages has concentrated
on two problems: (1) efficiently mapping a pipeline onto many-
core hardware [5, 20, 27] and (2) online processing of massive
amounts of data that is infeasible to store offline [1, 2]. The
main goal for Weir, however, is delivering a set of programming
abstractions that support the rapid and script-like development of
systems performance-analysis algorithms. Weir is designed so that
analyses can be implemented simply, intuitively, conveniently, and
composably. Furthermore, Weir is aimed to become a part of the
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systems stack; its abstractions are designed to be familiar to systems
engineers.

The contributions of this paper are threefold. First, it argues that
a streaming programming language is a suitable and useful basis
for the development of performance analyses for modern systems
software stacks. Second, it presents Weir, a streaming language
for constructing performance-analysis algorithms. Weir allows an
analyst to implement new algorithms over multiple data sources
in a script-like manner, making it possible to define and execute
new analyses “on demand” as performance anomalies arise. Third,
this paper presents evidence that Weir can be practically useful. It
presents a case study in which we used Weir to debug performance
problems in a virtualized environment based on Xen.

2. Weir
Weir is an imperative, streaming programming language designed
to provide flexible, convenient, and intuitive mechanisms for con-
structing analysis pipelines. Weir’s syntax is aimed at both scripting
and command-line use.

Weir is a stream-based language because stream processing of-
fers several advantages for the development of performance analysis
algorithms. First, streaming involves the notion of repeatedly pro-
cessing discrete “events,” and events are a suitable and general
abstraction for representing performance data. General operators,
e.g., sorting, filtering, and caching, can be parametric and configured
to operate on any event irrespective of the information it carries and
the source it was collected from. Second, an event interface pro-
vides a flexible foundation for building analysis algorithms. Because
filters both consume and produce events, they can be composed
straightforwardly: the output of one filter becomes the input to an-
other. Third, performance data is naturally time-ordered. Typical
performance-analysis algorithms perform join operations on the
timestamps of events, e.g., what was the CPU utilization when the
queue reached saturation? Such operations are easily expressed and
efficiently implementable in streaming languages. This eliminates
the need for complex database technology, which might otherwise
be required to run join queries in an efficient manner.

A Weir program defines a pipeline: a directed graph of processing
nodes, called stages. A stage can have multiple incoming and
outgoing edges, and Weir’s runtime routes events from stage to
stage along these edges. Each stage has a filter, a function that is
invoked every time an event is delivered to the stage by the Weir
runtime. When invoked by Weir’s scheduler, a stage is responsible
for consuming newly delivered events and producing zero or more
output events. Each edge represents an unlimited queue of events,
which is managed by Weir’s runtime. Weir allows arbitrary pipeline
topologies, including loops.

Weir is implemented in two layers, one for pipelines and another
for filters. The pipeline layer is a domain-specific language for
defining analysis pipelines. The filter layer consists of the stream
operators that are the logic elements in a pipeline; these operators
are written in C and C++. This design choice is driven by the
observation that typical system-analysis problems are already solved
by combining two layers: basic programs that collect and/or process
data, and a scripting language that combines basic tools to achieve
larger goals. For Weir, we chose to implement filter functions in
C and C++ because these languages provide good integration with
system libraries that are often required for comprehending behavior
of the system: e.g., ELF and virtual-machine introspection (VMI)
libraries. (In addition, C and C++ are widespread in the systems
community, which is the target audience for Weir.) The purpose of
Weir’s domain-specific pipeline language is to allow users to quickly
find the answer to a specific performance problem; this goal is met
by allowing a user to “script” an appropriate assembly of stages to
solve the problem at hand. The syntax of Weir’s pipeline language

is simple because it is tailored to composing stages only; the work
of implementing the filter functions within stages is performed in C
and C++.

2.1 Events
Events in Weir are objects; they are instances of types that extend
a basic event type with domain-specific fields. The basic type
provides two methods that access an event’s type and timestamp,
both of which are set by an event’s source stage. By examining an
event’s type at run time, a filter can decide how the event should
be processed: e.g., passed through, dropped, or downcast to a more
specific event type so that domain-specific fields can be accessed.
Event timestamps are measured in nanoseconds relative to a global
clock. Source stages that read external inputs, such as log files, are
responsible for translating from an external input’s “local time” to
Weir’s global time.

2.2 Pipeline Construction
The simplest program in Weir defines a one-stage pipeline that
invokes a filter. The example below instantiates a stage that invokes
the count() filter to count the number of events in an event stream:

count()

Weir provides operators for static and dynamic construction of
stream pipelines. The “|” (pipe) operator connects two stages with
an edge. An output of the stage on the left side of pipe will flow
into the input of the stage on the right. The example below uses a
pipe to connect three stages into a pipeline that counts the number
of hypercalls performed by a specific VM:

vm(id) | match(HYPERCALL) | count()

Two filters, vm() and match(), are combined to select events
that (1) happen on behalf of a specific VM and (2) are instances of
hypercall-invocation events.

Weir uses curly braces to introduce a scope. A scope is a
composite stage that is defined by one or more internal pipelines.
Individual pipelines within a scope are separated with a semicolon
and conceptually run in parallel. The first stage of each pipeline
is connected to the input-event point of the scope with a split
connection. Similarly, the last stage of each pipeline is connected
to the output-event point of the scope with a union connection. The
example below constructs a pipeline that counts the number of page
faults and hypervisor calls for a specific VM:

vm(id) | {
match(PAGEFAULT);
match(HYPERCALL);

} | count()

The outputs of both match() stages are combined to form the
input to the count() stage, which counts the number of events it sees.

The “+” (plus) operator is syntactic sugar for the above notation.
Plus creates a scope and connects all the stages in the plus expression
to the entry and exit points of the scope. Parentheses provide a
natural way to delineate parallel stages. Using the plus operator, the
example above can be written as:

vm(id) | (match(PAGEFAULT) + match(HYPERCALL)) | count()

The former notation provides a more readable representation
of the pipeline in large scripts, while the latter is suited to short
pipelines invoked from the command line.

In many cases, it is convenient to control the flow of events and
enable parts of a pipeline when a certain condition is met. Weir
provides a logical if() operator that routes events to one of two
pipeline branches depending on a Boolean test. The example below
computes how much time a particular virtual machine spends inside
the hypervisor when CPU utilization is greater than 30%:
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if (utilization() > 0.3) { vm(id) | time_in_hypervisor(); }

The operators that form the test expression are regular streaming
operators that can be used in any part of the pipeline, except that
they are required to return an event that represents a value that can
be used to form a proper logical expression.

To support analysis algorithms that require dynamic construction
of the pipeline depending on the content of the performance trace,
Weir provides a foreach() operator. foreach() creates a new pipeline
from a template, which is described by an associated scope, every
time it sees a previously unseen value returned by its selection
expression. The example below shows all of the VMs that were
running in a trace:

foreach (id = vm_id()) { take(1) | printf("VM id:%", id); }

In each of the scopes created by foreach(), the id variable is
bound to a unique value returned by vm_id(). The take() filter passes
one event “downstream” and drops all subsequent events; the printf()
filter implements formatted output.

2.3 Named Pipes
Complex analysis logic often requires a pipeline graph that is
impossible to construct with the plus and pipe operators. To enable
the construction of arbitrary graphs, Weir relies on the concept of
named pipes. A named pipe can appear at the beginning or end of a
pipeline and refers to a unique connection point that can be attached
to another part of the pipeline. The example below uses three named
pipes, s, s1, and s2, to compute the wait time on CPU 2 when the
utilization of CPU 1 is above 30%.

read("xentrace.dat") −> s;

s −> cpu(1) | s1;
s −> cpu(2) | s2;

s1 −> if (utilization() > 0.3) { emit(OPEN) | s2; }
else { emit(CLOSE) | s2; }

s2 −> gate(CLOSED) | wait_time();

By default, all pipelines in a scope are connected to the scope
entry point. The source operator (“->”) allows one to define a
specific source for a pipeline. Named pipes serve as sinks to source
connectors. For example, events that appear on the incoming edges
of s2 (i.e., when s2 appears at the end of a pipeline) are routed to
the outgoing edges of s2 in all places in which it serves as a source.

The above example also introduces gates. The gate() filter
implements a control point that can be either “open” or “closed.” An
open gate passes the events it receives; a closed gate drops them.
The state of a gate is changed by control events (Section 2.5).

Weir also uses named pipes to implement a traditional (blocking)
join operator. By default, a scope connects the outputs of all its
interior pipelines with a union operator: that is, it merges their
outputs, and events that appear on any incoming edge of the union
flow into the joining node at the moment they become available.
To implement a blocking version of join, Weir relies on the join
operator and named pipes. Named pipes are used to identify the
incoming edges and pass them to the joining operator. The example
below computes the amount of time that a guest virtual machine
spends inside the hypervisor. The example uses two named pipes,
start and end, to identify the edges for the joining function time(),
which takes two events, one from each named pipe, as arguments:

{
match(EXIT_FROM_GUEST) | start;
match(EXIT_TO_GUEST) | end;

} join time(start, end) | sum()

The join operator blocks until events are available on each
incoming edge. The join operator invokes the join function, time(),
passing the events from the specified named pipes.

Combining named pipes and the assignment operator, Weir
provides a notion of a traditional scalar variables. The example
below uses named pipes counter and id as variables to report a
sorted histogram of all event types encountered in a trace:

foreach (id = event_id()) {
counter = count() | match(FLUSH) | cons(counter, id);

} join sort() | {
car() | ctr;
cdr() | event_descr() | str;

} join printf("% : %\n", ctr, str);

Inside foreach(), count() accumulates the number of events of the
type associated with a particular template instance (i.e., a particular
value of event_id()). The match() drops events from the pipeline
until the FLUSH event is generated at the end of the event stream.
At that point, cons() is used to create an event that is a pair of values:
counter and event id. The pair from each template instance reaches
sort(), which orders the pairs by their first (car) values.

The assign operator assigns a value returned by its right-hand-
side stage to its left-hand-side named pipe, and pushes the input
event down the pipeline. Effectively, the assign operator implements
the following construct:

{ rhs() | lhs; tmp; } join cons(lhs, tmp) | cdr()

2.4 Modules
Modules serve two purposes in Weir. First, modules allow the user to
extend the language with new filters. A typical module implements
a trace-reading filter, which converts a domain-specific trace of
performance data into an event-stream representation, and a set of
domain-specific filters. Second, a module provides a namespace for
event types and filters. Each module has a unique name. A tuple of
a module name and event-type name ensures that each event type
has a unique name. This allows Weir to work with performance
data from multiple sources and dispatch event streams based on
the name of the module that creates them (e.g., reads them from a
trace file). The example below uses two modules “xentrace” and
“oprofile” to read two trace files; this enables a combined analysis of
events produced by a hypervisor and the guest operating system it is
hosting. This example prints the events in time-sorted order to the
console:

xentrace::read("xentrace.dat") −> r1;
oprofile::read("oprofile.dat") −> r2;

(r1 + r2) −> merge_sort(r1, r2) | {
xentrace::match(_any) | xentrace::print();
oprofile::match(_any) | oprofile::print();

}

The “_any” construct provides a way to specify a set of events
created by a specific module. The merge_sort() filter merges two
streams of temporally ordered events. Multiple named pipes can
appear on the left-hand side of the arrow. The filter can reference
them by name; in this case, the named pipes are plumbed as separate
edges to the stage on the right-hand side. Alternatively, a stage can
receive a merged union stream as a single union edge.

2.5 Control Events
Control events provide a mechanism to send control messages across
the stages of a pipeline. Control events are frequently used to flush
window stages like caches, to open and close gates, to restart counter
stages, and so on. The example below uses CLOSE, FLUSH, and
OPEN control events from Weir’s std namespace. The analysis
algorithm prints 100 events around the time when CPU utilization
jumps to 30%, allowing the user to concentrate on behavior around
a specific time period of interest:
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use std; use xentrace;
cache_size = 100;
read("xentrace.dat") −> r;

r −> if (utilization() > 0.3) { emit(OPEN) | start_counter; }

(r + start_counter) −> gate(CLOSED) | every(cache_size/2) | {
emit(FLUSH) | flush_cache;
emit(CLOSE) | start_counter; }

(r + flush_cache) −> window_cache(cache_size) | print();

Two named pipes, flush_cache and start_counter, serve as
dedicated channels that deliver events to the window_cache() and
gate(). The emit() stages insert new control events of the specified
types into the pipeline. The window_cache() buffers the last N events
it has received, passing them downstream only when told to FLUSH.

3. Implementing the Language
The Weir runtime implements the abstractions required for construct-
ing and running pipelines: pipeline-construction operators, stages,
edges, scopes, modules, and variables. The Weir parser uses the
functions provided by the runtime to construct and run pipelines.

3.1 Filters
Filters—the functions that define the logic within stages—are
implemented by Weir modules and are registered with the language
runtime. A filter is required to implement a single entry point, which
is its invocation handler. The handler is invoked by the language
runtime every time a new event needs to be processed by the filter.
Optionally, each filter can implement and register an initializer and
a finalizer. The initializer is invoked when a stage is created by
the language runtime to use the filter; initializers provide a way to
allocate storage that is private to a stage, and a pointer to this private
storage is passed to the invocation handler every time it is invoked.
The finalizer is called only once, when the operator is destroyed,
and is typically used to compute and/or output aggregate statistics.

A filter’s invocation handler takes one or more edges as an input.
Two methods are provided by the runtime for the operators to
dequeue and queue events from an edge: pop() and push(). The
runtime uses reference counting as a primitive form of garbage
collection to manage the life cycle of events. If a filter wants to drop
an event, it dequeues it from the edge and releases its reference.

3.2 Scheduling
The Weir runtime allows a pluggable implementation of a scheduler.
The current implementation uses a depth-first, round-robin scheduler.
It tries to schedule the execution of all events on all outgoing edges
of the current node, and while running each, it will follow the edge
and will try to schedule the node at the end of the edge. This simple
scheduler has the nice property that the oldest events are scheduled
first, which results in a natural semantics for performance-analysis
algorithms—a time-ordered input is processed in order, and results
in time-ordered output. Source nodes, e.g., trace readers, do not
have incoming edges. The runtime schedules them in a round-robin
fashion when there are no runnable nodes left in the pipeline. A
source node is scheduled until it reaches the end of file, at which
time it becomes unrunnable.

4. Performance Analysis with Weir
We now present a case study to show how one can use Weir to
analyze a performance anomaly in a version of Xen [3] that we
enhanced for deterministic replay [6]. This example illustrates the
way we expect Weir to be used in practice: it requires collating
data from multiple sources in a complex, multi-layered environment,

use std; use xentrace;
read("xentrace.dat") −> time::skip(10) | time::take(1) | r;

r −> {
first;
event::skip(1) | second;

} join time(second, first) | time;

second −> xentrace::print() | str;
(str + time) −> join printf("%:%", time, str);

Listing 1. Print the trace with times between adjacent events.

and follows an exploratory path, with simple initial observations
pointing the way to more in-depth analysis. The performance issue
described in the study is one that we actually encountered before we
had implemented Weir. Diagnosing issues like the one in this study
was one of our main motivations for developing the language.

Our XenTT system [6] adds an interposition layer to Xen
that records all nondeterministic events flowing into a target VM.
This layer adds some overhead, but it can be very difficult to
find the specific causes of overhead from end-to-end observations
alone. In one particular case, we found that the Phoronix Apache
benchmark [17] suffered a much larger drop in performance than
we expected [6]: when run in XenTT with recording enabled, this
benchmark was able to serve only 69% of the requests that were
served when recording was disabled. We set out to find the reason.

4.1 Integrating with Xen
We use two sources of data for analyzing performance in our replay-
enabled version of Xen. The first is Xentrace, a data-collection
framework included with Xen. Xentrace uses compile-time instru-
mentation of the hypervisor code, a lightweight trace communica-
tion mechanism, and a user-level daemon to collect a variety of
hypervisor-level events. The second is the log created by XenTT’s
replay-interposition layer. The log stores a trace of all nondetermin-
istic events, e.g., interrupts, results of nondeterministic instructions,
reads from I/O ports, inputs from virtual device drivers, and so on.
Another powerful feature of the replay log is its integration with the
Branch Tracing Store (BTS) facility provided by Intel CPUs. BTS
allows one to configure the CPU to record all branches taken by
the system in a memory buffer. Our tracing infrastructure saves the
memory buffer in a trace and implements a symbol-resolution tool
that resolves machine addresses to human-readable function names
and source line numbers. To integrate Xentrace and our replay log
with Weir, we implemented a source reader for each facility that
converts a raw trace into a stream of Weir events.

4.2 Analyzing Apache Performance
We start our analysis by implementing a Weir script that computes a
sorted histogram of events in the trace collected by Xentrace. The
script is similar to the third example in Section 2.3. Upon running
the script, we find a clear anomaly in the output: the trace contains
a high number of guest enter events in comparison to guest exits
(10,301 versus 1,169), but one would expect those numbers to be
the same. To verify our understanding of the trace, we implement
another script that prints the trace of events while attributing each
event with the time passed since the previous event was recorded
(Listing 1). The script uses read() from the xentrace module to read
the log collected by Xentrace. The skip() and take() filters select one
second of execution starting ten seconds into the trace.

The script from Listing 1 confirms that Xentrace records several
consecutive enters into the guest with no exits. This leads us to
conclude that Xentrace instrumentation is incomplete. For some
unknown event, it fails to record an exit from the guest system.
We verify this conclusion by running a similar script against a log
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1 use std; use xentrace;
2 read("xentrace.dat") −> xentrace;
3
4 xentrace −> cpu(2) | vm(1) | time::skip(10) | time::take(1) | r;
5
6 r −> match(FLUSH) | eof;
7
8 (expect_exit_guest + r) −> gate(OPEN) | {
9 match(EXIT_GUEST) | {

10 potential_start_pattern;
11 emit(CLOSE) | expect_exit_guest;
12 emit(OPEN) | expect_rdtsc;
13 }; }
14
15 (expect_rdtsc + r) −> gate(CLOSED) | {
16 match(RDTSC) | {
17 emit(CLOSE) | expect_rdtsc;
18 emit(OPEN) | expect_enter_guest;
19 };
20 match(ENTER_GUEST) | {
21 emit(CLOSE) | expect_rdtsc;
22 emit(OPEN) | expect_exit_guest;
23 }; }
24
25 (expect_enter_guest + r) −> gate(CLOSED) | {
26 match(ENTER_GUEST) | {
27 emit(FLUSH) | potential_start_pattern;
28 end_pattern;
29 emit(CLOSE) | expect_enter_guest;
30 emit(OPEN) | expect_exit_guest;
31 }; }
32
33 potential_start_pattern −> window_cache(1) | start_pattern;
34
35 (start_pattern + end_pattern) −>
36 join time(end_pattern, start_pattern) | sum;
37
38 (sum + eof) −>
39 sum() | time_in_hypervisor;
40
41 r −> {
42 event::take(1) | first;
43 window_cache(1) | last;
44 } join time(last, first) | total_time;
45
46 (time_in_hypervisor + total_time) −>
47 join printf("Total time %, time in hypervisor %\n",
48 total_time, time_in_hypervisor);

Listing 2. Compute the amount of time spent in the hypervisor due
to TSC accesses.

collected by the deterministic replay infrastructure. We find that the
deterministic log is correct: it contains an identical number of enter
and exit events, and it reveals that the events that cause lost exits are
accesses to the timestamp counter (TSC) register via the rdtsc
instruction. Normal Xen guests may directly invoke the rdtsc
instruction, which provides them with a high-precision source of
time. Our deterministic replay layer, however, must interpose on
every TSC access, to record the value that is returned to guest.

We extend the Xentrace tracing layer to record exits from the
guest system that are caused by a trapped instruction, which requires
emulation by the hypervisor. We then create the script in Listing 2,
which computes the total time that our guest system spends in Xen
due to the emulation of rdtsc instructions. The script implements a
state machine, illustrated in Figure 1, that recognizes a sequence of
three events: guest exit, read TSC, and guest enter. Any number of
other events can appear between the events of the triple.

The three pipelines at lines 8–13, 15–23, and 25–31 cooperate
to implement the state machine. The current state is determined by

expect_exit_guest 

expect_enter_guest

expect_rdtsc

match(EXIT_GUEST)
save potential start_pattern

match(RDTSC)

match(ENTER_GUEST)
commit to start_pattern
signal end_pattern

m
at
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(E

N
T
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_G

U
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T
) @ line 8

@ line 15

@ line 25

Figure 1. State machine implemented by the script in Listing 2.

which one of pipelines is unblocked, i.e., processing events rather
than discarding them. The first pipeline, at lines 8–13, is the initial
state and starts unblocked. When it sees an EXIT_GUEST event,
it forwards the event—a potential start of an event triple—to the
window_cache() at line 33, which buffers the event. The pipeline
then triggers a state change by blocking further events to itself
(line 11) and unblocking events to the second pipeline (line 12).

When the second pipeline detects an RDTSC event, it enables the
third pipeline, which looks for an ENTER_GUEST event. When that
event is found, the third pipeline signals that an exit-rdtsc-enter triple
has been found. It “commits” the previously found EXIT_GUEST
event by flushing the window_cache(), where it was previously held.
The cache forwards its event downstream to the start_pattern named
pipe. At the same time, the ENTER_GUEST event is forwarded to
the end_pattern named pipe (line 28). In addition, the state machine
returns to the initial state to find more exit-rdtsc-enter triples.

The output of the script’s state machine is thus contained in the
start_pattern and end_pattern named pipes, and the remainder of
the script computes and prints the total time spent in the hypervisor
due to TSC accesses. The join operator at line 36 takes paired
start and end events and computes the time elapsed between them.
The elapsed times are summed at line 39; when sum() receives a
FLUSH on the eof named pipe, it outputs a single event containing
the accumulated total time. The pipeline at lines 41–44 computes
the elapsed time over all events in the trace, and the final pipeline
produces the script’s output.

The last step of the investigation relies on the BTS information
from the deterministic log and clarifies the reason that the rdtsc
instruction is invoked. A simple Weir script that prints several BTS
events immediately preceding the TSC access reveals that the rdtsc
instruction is invoked as part of the network packet-receive function
(netif_receive_skb()) in the Linux kernel.

Using Weir, we were able to start with a high-level observation
of poor performance and trace its cause to the frequent use of a
specific x86 instruction in the Linux kernel.

5. Related Work
The concept of a streaming language takes roots in multiple applica-
tion and research domains [24]. One side of this spectrum, digital
signal processing, emphasizes the ability of a streaming language to
express multiple forms of parallelism and efficiently map computa-
tion onto multi-node hardware [5, 20, 27]. Another side, database
and event-processing systems, views streaming languages as a mech-
anism to express a computation over an infinite stream of data [1, 2].
Despite the central commonality—the computation is performed on
streams of data—the diverging goals of each application domain
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drive the design of each domain’s languages in its own direction. A
variety of streaming language “dialects” exist, including frameworks
and libraries that provide streaming constructs [21, 28], extensions
to existing languages [5, 11, 26], imperative streaming languages
that provide visual or textual primitives for constructing stream
pipelines [1, 27], functional reactive programming [8], and declar-
ative extensions to relational SQL and logical languages [2, 12].
None of these existing dialects exactly fits the goals of Weir.

Closest to Weir, imperative streaming languages like StreamIt [27]
implement only static scheduling of the stream: i.e., the rate at which
operators produce events is fixed at compile time. Static scheduling
enables a variety of performance-critical optimizations but harms
the ability of a language to express many stream-processing tasks
outside of the small set of domains in which the computation is
inherently static, e.g., graphics algorithms and signal processing.
Weir seeks to provide a simple, predictable programming model and
full flexibility of programming over streams. Dynamic scheduling,
the ability to construct arbitrary pipelines, and convenient syntax
with explicit streams are critical for representing algorithms from
the performance-analysis domain. Being dynamically scheduled,
Weir pays a performance price. Recent research, however, argues
that a general intermediate representation for dynamic streaming
languages can enable many optimizations, which traditionally were
possible only for statically scheduled streaming languages [25].

6. Conclusion
The principal barrier to understanding the performance of a modern
systems software stack is often not a lack of data. Rather, it is
the difficulty of reasoning over multiple sources of data within a
single analysis framework. Weir is a new stream-based programming
language that supports whole-system analyses by providing an
environment for script-like implementations of analysis algorithms
over multiple data sources. Weir is evolving, and its authors intend to
expand the breadth and depth of the analyses that can be expressed
in Weir. In particular, they plan to apply Weir to multi-data-source
analyses within the A3 adaptive security environment [15].
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