
Performance model

Analysis interface

A Replay-based Approach to Performance Analysis

Anton Burtsev, Eric Eide, John Regehr
University of Utah, School of Computing

Idea

emulab

Big Picture

Complex systems
 - Multiple engineering optimizations
 - Composed of simple components that promptly evolve into
 complex artifacts
 - Emergent behavior

Performance is determined by
 - Availability of data - Delays of synchronization
 - Latencies of communication - Efficiency of scheduling

Analysis requires reasoning about
 - Dynamic state of multiple components, buffers, and caches
 - Control and data flow between them
 - Performance of individual requests (slow and fast paths)
 - Availability of resources for pipelined and parallel execution

Existing approaches are inherently limited
 - Strict requirement of low run-time overhead
 - Collect only minimal subset of the run-time state
 - No means to correlate collected data with actual system's state

Motivation

- Capture complete execution with deterministic replay
- Run analysis offline
 - An old idea (Balzer, AFIPS'69), which is enabled by recent
 advances in virtualization (Xu et al., MoBS'07)

NFS benchmark: IOZone, a filesystem benchmark, runs over an NFS-mounted
filesystem on a client machine. Processing of every filesystem write involves
two machines and multiple operating system components until it reaches the physical
disk. Request path is shown with a yellow line. Configuration of the NFS protocol,
number of NFS server threads, size of TCP/IP buffers, configuration of RAID and disk
write buffering, and many other factors affect performance of the system.

This material is based upon work supported by the National Science Foundation under Grants No. 0524096, 0709427.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation

B
u
ff

e
r

C
a
ch

e

IO
Z

o
n
e

N
FS

TC
P
/I
P

N
e
tw

o
rk

D
ri

v
e
r

N
e
tw

o
rk

D
ri

v
e
r

TC
P
/I
P

N
FS

R
A

ID

D
is

k
D

ri
v
e
r

D
is

k

Compute average
bandwidth

FS

Per-packet delay

Dynamic load of
socket buffers

Request timeline

Critical path analysis

Traditional CPU cycle profiling

IO
Z

o
n
e

id
le

N
FS

B
u
ff

e
r

C
a
ch

e

TC
P
/I
P

N
e
tw

o
rk

D
ri

v
e
r

N
e
tw

o
rk

D
ri

v
e
r

id
le

TC
P
/I
P

N
FS FS

R
A

ID

D
is

k
D

ri
v
e
r

C
P
U

 c
y
cl

e
s

Dynamic load of
the RAID buffer

Processing time

NFS Client NFS Server

Goal:
 - Realistic systems
 - Realistic workloads

Combine recording mecha-
nisms with a full-featured VMM

 - Low-overhead recording
 - Analysis of the entire soft-
 ware stack

Logging and replay infrastructure: four logging and replay components and
a high-bandwidth communication channel across them are designed to implement
lightweight recording of all nondeterministic events.

Execution replay

Re-execution approach to performance
 - Identical hardware
 - Recreate conditions of the original run

Performance counters
 - Export performance for analysis
 - Simple linear model
 - Need to record only time

Virtual performance counters: account for effects of replay mechanisms,
and translate performance between original and replay runs.

Analysis is driven by changes in run-time state of the system
 - "Big step" semantics

Binary rewriting to instrument execution (SystemTap)
 - Safe analysis language

 probe kernel.function(*@mm/*.c).call
 { called[probefunc()] <<< 1 }

We integrate it with deterministic replay mechanisms

Insight into analysis algorithms

Multiple replay sessions allow us to run different analyses and
collect various performance measurements in a consistent way.

Analysis framework: We turn performance, a dynamic property of a particular
execution, into a static property that can be analyzed separately from an actual
instance of a running system. An analysis framework is a low-level mechanism that
exports the behavior of a system to a higher level, at which analysis is formulated
in a platform-independent manner.

Several unique properties of our approach enable new ways of analyzing the
performance of complex systems. The determinism of analyses and the availability
of the global run-time state of the system and its execution history provide support
for analysis of transient performance anomalies, evaluating effects of multiple
interleaving bottlenecks, and correlating the performance behavior of a system
with its functional properties

- Automatic generation of the - Fine-grain performance
 request-processing path model

- Automatic search for transient - Combination with static
 performance anomalies analysis

