
Benchmarks Can Make Sense
Anton Burtsev, Eric Eide, Mike Hibler, John Regehr

Flux Research Group, School of Computing

Goal
Benchmarks should make more sense
 - Verify benchmark setup
 - Aid perofmance analysis
 - Performance bottlenecks, verbose performance model

Idea

Status
Implemented a basic deterministic logging and replay
infrastructure
 - Can replay beginning of the Linux boot (650K instructions)
 - Replay mechanisms are designed to treat the state of a guest
 system as a set of memory pages
 - Right choice to support heterogenity of replay in the future

Support most non-deterministic events
 - Lack support for logging device driver communication

emulab

Big Picture

Implementation
Benchmarks are designed to compare systems
 - Return a single number (e.g. throughput, average delay,
 completion time, CPU utilization, transactions per second)

No way to identify performance bottlenecks
 - A simple configuration error can invalidate all results
 - Netfork file system (NFS) benchmark below:
 - No disk write buffering (50%) - No RAID buffering (50%)
 - Synchronous NFS mount (60%) - Bandwidth delay product (20%)
 - Dafault NFS request buffer (30%)

No way to debug the system

Motivation

Full-system deterministic replay
 - Lightweight non-intrusive way to record and replay execution

Replay is a mechanism allowing us to combine benchmarks
and performance analysis
 - Realistic execution
 - Sophisticated computation heavy analysis

Analysis runs off-line on a cloned copy of execution
 - Global comprehension
 - No irreproducibility and observability problems
 - No restrictions on complexity of analysis (no probe effect)
 - Embarrasingly parallel

Challenges
Efficient full-system replay

Faithful performance model
 - Replay may interfere with the execution of a system

Debugging and analysis interface
 - Non-intrusive probes
 - DTrace-like language interface to collect information about
 execution

 Xen virtual machine monitor
 - Full-featured virtualization
 platform
 - Support for production
 workloads

We extend it with a low-over-
head recording
 - Cooperative logging for
 network of machines
 - Versioning storage for
 deterministic disk
 communication

Develop tools for execution
comparison and automatic
detection of non-determinism

Performance model:
Do performance measures stay sound during replay?

 Hardware model during replay
 - Multiple exceptions (flushes
 CPU pipeline)
 - Keeps caches almost warm

 Analyze ILP during original
 and replay run

Analysis interface:
Additional research needed to understand which information
can actually help performance analysis
 - Performance metrics
 - Functional properties of the system

NFS benchmark: IOZone, a filesystem benchmark, runs over an NFS mounted
file system on a client machine. Processing of every file-system write involves
two machines and multiple operating system components until it reaches the
physical disk (request path is shown with a yellow line).

Multiple replay sessions allow us to run analysis multiple times. Constructing
new analyses, we can compute various properties of the original run on
demand.

Network
driver

TCP/IP

NFS

Disk
driver

RAID

FS

Network
driver

TCP/IP

NFS

NFS Client

Buffer
Cache

IOZone NFS Server

Disk

Recording layer

Network
driver

TCP/IP

NFS

Disk
driver

RAID

FS

Network
driver

TCP/IP

NFS

NFS Client

Buffer
Cache

IOZone NFS Server

B
u
ff

e
r

C
a
ch

e

IO
Z

o
n
e

N
FS

TC
P
/I
P

N
e
tw

o
rk

D
ri

v
e
r

N
e
tw

o
rk

D
ri

v
e
r

TC
P
/I
P

N
FS

R
A

ID

D
is

k
D

ri
v
e
r

D
is

k

Compute average
bandwidth

FS

Plot per-packet
delay

Plot load of TCP
socket buffers

Request timeline

Request-oriented delay model

Traditional CPU cycle profiling

IO
Z

o
n
e

id
le

N
FS

B
u
ff

e
r

C
a
ch

e

TC
P
/I
P

N
e
tw

o
rk

D
ri

v
e
r

N
e
tw

o
rk

D
ri

v
e
r

id
le

TC
P
/I
P

N
FS FS

R
A

ID

D
is

k
D

ri
v
e
r

C
P
U

 c
y
cl

e
sReplay

Record

Replay

1) Set branch counters to
 overflow (cause exception)

2) Iterate in a single-step
 CPU mode to a target IP

3) Inject external event

dom0
(Linux)

guest
(Linux)

Lo
g

g
in

g
d

a
e
m

o
n

R
e
p

la
y

d
a
e
m

o
n

Event interposition

Xen

Full-system replay:

This material is based upon work supported by the National Science Foundation under Grant No. 0524096. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation

Plot load of a
RAID buffer

Delay time

NFS Client NFS Server

