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Goal
Benchmarks should make more sense
   - Verify benchmark setup
   - Aid perofmance analysis 
      - Performance bottlenecks, verbose performance model

Idea

Status
Implemented a basic deterministic logging and replay 
infrastructure
   - Can replay beginning of the Linux boot (650K instructions)
   - Replay mechanisms are designed to treat the state of a guest 
     system as a set of memory pages
   - Right choice to support heterogenity of replay in the future
 

Support most non-deterministic events
   - Lack support for logging device driver communication

emulab

Big Picture

Implementation
Benchmarks are designed to compare systems
  - Return a single number (e.g. throughput, average delay, 
    completion time, CPU utilization, transactions per second)
  

No way to identify performance bottlenecks
  - A simple configuration error can invalidate all results
  - Netfork file system (NFS) benchmark below: 
      - No disk write buffering       (50%)        - No RAID buffering            (50%)
      - Synchronous NFS mount    (60%)        - Bandwidth delay product (20%)
      - Dafault NFS request buffer (30%) 
 

No way to debug the system

Motivation

Full-system deterministic replay
   - Lightweight non-intrusive way to record and replay execution
 

Replay is a mechanism allowing us to combine benchmarks 
and performance analysis
   - Realistic execution
   - Sophisticated computation heavy analysis
 

Analysis runs off-line on a cloned copy of execution
   - Global comprehension
        - No irreproducibility and observability problems
   - No restrictions on complexity of analysis (no probe effect)
   - Embarrasingly parallel

Challenges
Efficient full-system replay
 

Faithful performance model
   - Replay may interfere with the execution of a system
 

Debugging and analysis interface
   - Non-intrusive probes
   - DTrace-like language interface to collect information about 
     execution

 Xen virtual machine monitor
  - Full-featured virtualization
    platform
  - Support for production 
    workloads
 

We extend it with a low-over-
head recording
  - Cooperative logging for 
    network of machines
  - Versioning storage for 
    deterministic disk 
    communication
 

Develop tools for execution 
comparison and automatic 
detection of non-determinism

Performance model:
Do performance measures stay sound during replay? 

                                                      Hardware model during replay
                                                        - Multiple exceptions (flushes 
                                                          CPU pipeline)
                                                        - Keeps caches almost warm

                                                      Analyze ILP during original 
                                                      and replay run

 

Analysis interface:
Additional research needed to understand which information
can actually help performance analysis
   - Performance metrics
   - Functional properties of the system

NFS benchmark: IOZone, a filesystem benchmark, runs over an NFS mounted
file system on a client machine. Processing of every file-system write involves 
two machines and multiple operating system components until it reaches the 
physical disk (request path is shown with a yellow line). 

Multiple replay sessions allow us to run analysis multiple times. Constructing 
new analyses, we can compute various properties of the original run on 
demand.
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Plot per-packet
delay

Plot load of TCP 
socket buffers

Request timeline

Request-oriented delay model

Traditional CPU cycle profiling
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Record

Replay
 

1) Set branch counters to 
    overflow (cause exception)
 

2) Iterate in a single-step  
    CPU mode to a target IP
 

3) Inject external event
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Event interposition

Xen

Full-system replay:
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