CS5460/6460: Operating Systems

Lecture 19: Memory management

Anton Burtsev March, 2014

Physical memory

Physical memory

Pages (mem_map[])

Physical memory

NUMA

• Parts of memory can be faster than others

Uniform memory access (UMA)

Nonuniform memory access (NUMA)

Nodes

- Attempt to allocate memory from the current node
 - Fall back to the next node in list
 - If ran out of local memory

Nodes

Physical memory

Zones

Zones

Memory allocation

Boot memory allocator

- Bitmap of all pages
- Allocation searches for an unused page
 - Multiple sub-page allocations can be served from the same page by advancing a pointer

Works ok, but what is the problem?

Boot memory allocator

- Bitmap of all pages
- Allocation searches for an unused page
 - Multiple sub-page allocations can be served from the same page by advancing a pointer
- Works ok, but what is the problem?
 - Linear scan of the bitmap
 - Too long

Buddy memory allocator

Each zone has a buddy allocator

Buddy allocator

Per-CPU page caches

- Each memory zone defines a per-CPU page cache
 - Actually two caches:
 - Hot pages likely accessed by CPU
 - Cold pages used for I/O operations
- This works for serving single-page allocations

Slab allocator

- Buddy allocator is ok for large allocations
 - E.g. 1 page or more
- But what about small allocations?
 - Buddy uses the whole page for a 4 bytes allocation
 - Wasteful
 - Buddy is still slow for short-lived objects

Slab

A 2 page slab with 6 objects

Keeping track of free objects

 kmem_bufctl array is effectively a linked list

First free object: 3

Next free object: 1

A cache is formed out of slabs

Kmalloc(): variable size objects

- A table of caches
 - Size: 32, 64, 128, etc.

Linux memory management

Linux memory management

Thank you!