CS5460/6460: Operating Systems

Lecture 19: Memory management

Anton Burtsev
March, 2014

Physical memory

Physical memory

Pages (mem_map[])

Physical memory

NUMA

- Parts of memory can be faster than others

Uniform memory access (UMA)

Nonuniform memory access (NUMA)

Nodes

- Attempt to allocate memory from the current node
- Fall back to the next node in list
- If ran out of local memory

Node1 Node2 Node3
struct pglist_data

Nodes

Node1 Node2

Node3
struct pglist_data

Physical memory

Zones

Zones

struct pglist_data

Memory allocation

Boot memory allocator

- Bitmap of all pages
- Allocation searches for an unused page
- Multiple sub-page allocations can be served from the same page by advancing a pointer
- Works ok, but what is the problem?

Boot memory allocator

- Bitmap of all pages
- Allocation searches for an unused page
- Multiple sub-page allocations can be served from the same page by advancing a pointer
- Works ok, but what is the problem?
- Linear scan of the bitmap
- Too long

Buddy memory allocator

- Each zone has a buddy allocator

Buddy allocator

Per-CPU page caches

- Each memory zone defines a per-CPU page cache
- Actually two caches:
- Hot - pages likely accessed by CPU
- Cold - pages used for I/O operations
- This works for serving single-page allocations

Slab allocator

- Buddy allocator is ok for large allocations
- E.g. 1 page or more
- But what about small allocations?
- Buddy uses the whole page for a 4 bytes allocation
- Wasteful
- Buddy is still slow for short-lived objects

Slab

- A 2 page slab with 6 objects

Keeping track of free objects

- kmem_bufctl array is effectively a linked list

- First free object: 3
- Next free object: 1

A cache is formed out of slabs

Kmalloc(): variable size objects

- A table of caches
- Size: 32, 64, 128, etc.

Linux memory management

Linux memory management

Thank you!

