

CS5460/6460: Operating Systems

Lecture 18: Midterm Discussion

Anton Burtsev
February, 2014

Question 1. Page tables

1.a. Flat page table

● 4K pages, 4GB address space
● You need 1M entries
● How big is each entry?

● Technically you need 20bits to address a page
● But lets say similar to x86 you use some space for

flags, so each entry is 32bits (4bytes)

● Page table size
● 4x1M = 4MB

1.a. 2-level x86 page table

● 4K pages, 4GB address space
● You need 1 page for PTD (4K)

● PTD has 1024 entries
● Each PTD points to another 4K page

● How big is the page table:
● 4K + 1024*4K = 4M + 4K

1.b. 1K pages

● You need to address individual bytes in each
1K page
● 10 bits for offset inside each page

1.b. 1K pages

● How many pages can be addressed by a page of a page
table?

● Pages are 1K aligned
● Each entry needs 22 bits
● Note, 2 bits more than x86
● 1K pages, not 4K

● Where do we take 2 extra bits?
● Take some unused flags

● Each entry is 32 bits

1.b. 1K pages

● Each entry is 32 bits
● 256 entries per page
● 8 bits to address them

● Final topology
● 6 + 8 + 8 + 10

1.b. 1K pages

● Can I do
● 8 + 6 + 8 + 10
● 8 + 8 + 6 + 10
● Yes!

1.b. Advantages

● Advantages
● Fine-grained memory management

● What does it mean?
●

1.b. Disadvantages

● Longer page walk
● 3 memory reads from page tables
● 1st level (1 page) – always cached
● 2nd level (64 pages or 64KB) – likely cached
● 3rd level (64x256 pages or 16MB) – likely a cache miss
● Remember 3 Level caches are up to 37.5MB (high-end IvyBridge server)

● Compare to 2-level paging
● 2nd level 1024x4K or 4MB

● Well, example is artificial, servers run 64bit systems, 32GB RAMS
● 64bit has 3-level page hierarchy anyway
● But with 1KB pages the problem will be even worse

1.b. Disadvantages (contd)

● TLB pressure
● To read 4K of RAM you need 4 TLB entries now
● Instead of 1 entry

● Example: TLBs on IvyBridge
● 2 level hierarchy:

– 64 entries first level + 512 second level
● Enough to cache 0.5MB of memory

Question 2. Synchronization

2834 // Allocate one 4096byte page of physical memory.

2835 // Returns a pointer that the kernel can use.

2836 // Returns 0 if the memory cannot be allocated.

2837 char*

2838 kalloc(void)

2839 {

2840 struct run *r;

2841

2842 if(kmem.use_lock)

2843 acquire(&kmem.lock);

2844 r = kmem.freelist;

2845 if(r)

2846 kmem.freelist = r->next;

2847 if(kmem.use_lock)

2848 release(&kmem.lock);

2849 return (char*)r;

2850 }

Performance goes up
for up to 4CPUs, but

then stops, why?

2.b. Does RCU make sense?

● Can we rewrite this code with RCU?
● No
● With RCU concurrent updaters still need use locks or some

other synchronization primitive to synchronize among
themselves

● RCU helps when there is a
● Large number of readers
● Small number of updaters

● Main advantage of RCU
● Readers don't need a lock

2834 // Allocate one 4096byte page of physical memory.

2835 // Returns a pointer that the kernel can use.

2836 // Returns 0 if the memory cannot be allocated.

2837 char*

2838 kalloc(void)

2839 {

2840 struct run *r;

2841

2842 retry:

2843 xbegin();

2844 r = kmem.freelist;

2845 if(r)

2846 kmem.freelist = r->next;

2848 xend(retry);

2849 return (char*)r;

2850 }

Hardware
transactions

2.c. Do hardware transactions help?

● Hardware transactions do not help in this case
● Multiple CPUs content on a single variable
● kmem.freelist

2842 retry:

2843 xbegin();

2844 r = kmem.freelist;

2845 if(r)

2846 kmem.freelist = r->next;

2848 xend(retry);

2.c. Hardware transactions

● Hardware transactions will conflict and abort
● Depending on implementation performance will

remain unchanged or will go down
● All conflicting transactions abort

– Performance goes down
– Livelock

● HTM chooses one winner
– Performance remains about the same

2.d. Making it fast

● Scalable spin-locks, aka MCS?
● Your experiment runs on 16 CPUs

● You are not limited by performance of the cache
coherence protocol (I think)

● Your bottleneck is the critical section
– MCS might help a bit, but not a lot

2.d. Making it fast

● You need to remove the bottleneck
● Per-CPU page pools

● Each CPU has a pool of pages
● Similar to sloppy counters
● Allocates and deallocates pages without contention
● If pool is empty takes more pages from the global pool

– Of course global pool is under a lock
● If pool grows too large, free pages to the global pool

Question 3. Segmentation

Why do you really need paging?

● Isolation?
● No, for isolation you just need a way to say that part of memory is

accessible/inaccessible
● Segments do work for this

● Paging
● Allows you to build address spaces with holes, due to

– Lazy allocation of memory, i.e. the address space can grow
– Swapping out pages to disk, i.e. the address space can shrink

● Other useful things
– Sharing with other address spaces, i.e. one physical page appears in multiple

address spaces (mmap(), shared libraries)
– Copy-on-write – sharing identical pages read only, until they are written (fork())
–

3.a. Address spaces with segments

● Each process has it's private segment for
● Stack, data, and code
● Segments map logical addresses to physical, e.g.

– Logical data 0 – 8MB can be mapped anywhere in the physical memory
– Segment base + segment limit

● Kernel needs access to every process
● Initialization, fork, copy in and out of system call arguments
● Kernel data segment spawns entire physical memory

3.a. Context switching

● Two ways
● Reload GDT (each process has a private GDT)

– Alternatively update segments in the GDT
● Reload LDT (each process has a private LDT)

– Similar to GDT

● Interrupt path
● IDTR and GDTR hold linear addresses of IDT and GDT

– Linear == physical (we don't have page tables)
– Everything just works
– Of course physical memory of IDT and GDT should not be mapped into

any process

3.b. sbrk()

● Sbrk grows heap of the process
● i.e., data segment

● Trivial if more physical memory is available right
after the data segment
● Just change the DS limit

● If no memory available need to relocate segments
● Note, you can move content of physical memory
● Then change segment base
●

3.c. Sharing a region of memory

● Sharing means two or more processes access
the same physical memory simultaneously
● Useful for communicating information, e.g. inter-

process communication mechanism
– Send messages from one process to another

● Create a segment and map (add to the GDT) of
all sharing processes
● Segment defines a region of physical memory that

is shared

3.d. Disadvantages

● Address spaces can grow up, but not down
● E.g. you can increase segment limit for the data segment
● But what about stack?

– Stack grown down
– Well, stacks can grow up too (there is a flag somewhere)

● No holes in address spaces
● Can't unmap and swap out a couple of rarely used pages
● Swapping is possible but only at granularity of segments

● No copy-on-write sharing, e.g. fork()
● Sharing schemes are much more restrictive

3.d. Advantages

● No overheads of page translation
● No TLB misses
● No cache misses due to page table walks
● No page walks at all (even in case of cache hits, page walk still

adds overhead, but small)

● Faster context switch
● No need to flush and reload TLB

– Remember on context switch page table is reloaded, TLB needs to be
flushed

● Wait what about tagged TLBs
– True, tagged TLBs avoid TLB flush, but increase TLB pressure

Conclusions

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

