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Question 1. Page tables



  

1.a. Flat page table

● 4K pages, 4GB address space
● You need 1M entries
● How big is each entry?

● Technically you need 20bits to address a page
● But lets say similar to x86 you use some space for 

flags, so each entry is 32bits (4bytes)

● Page table size
● 4x1M = 4MB



  

1.a. 2-level x86 page table

● 4K pages, 4GB address space
● You need 1 page for PTD (4K)

● PTD has 1024 entries
● Each PTD points to another 4K page

● How big is the page table:
● 4K + 1024*4K = 4M + 4K



  

1.b. 1K pages

● You need to address individual bytes in each 
1K page
● 10 bits for offset inside each page



  

1.b. 1K pages

● How many pages can be addressed by a page of a page 
table?

● Pages are 1K aligned
● Each entry needs 22 bits
● Note, 2 bits more than x86
● 1K pages, not 4K

● Where do we take 2 extra bits? 
● Take some unused flags

● Each entry is 32 bits



  

1.b. 1K pages

● Each entry is 32 bits
● 256 entries per page
● 8 bits to address them

● Final topology
● 6 + 8 + 8 + 10



  

1.b. 1K pages

● Can I do
● 8 + 6 + 8 + 10
● 8 + 8 + 6 + 10
● Yes!



  

1.b. Advantages

● Advantages
● Fine-grained memory management

● What does it mean?
●



  

1.b. Disadvantages

● Longer page walk
● 3 memory reads from page tables
● 1st level (1 page) – always cached
● 2nd level (64 pages or 64KB) – likely cached
● 3rd level (64x256 pages or 16MB) – likely a cache miss
● Remember 3 Level caches are up to 37.5MB (high-end IvyBridge server)

● Compare to 2-level paging
● 2nd level 1024x4K or 4MB

● Well, example is artificial, servers run 64bit systems, 32GB RAMS
● 64bit has 3-level page hierarchy anyway
● But with 1KB pages the problem will be even worse



  

1.b. Disadvantages (contd)

● TLB pressure
● To read 4K of RAM you need 4 TLB entries now
● Instead of 1 entry

● Example: TLBs on IvyBridge
● 2 level hierarchy: 

– 64 entries first level + 512 second level
● Enough to cache 0.5MB of memory



  

Question 2. Synchronization



  

2834 // Allocate one 4096byte page of physical memory.

2835 // Returns a pointer that the kernel can use.

2836 // Returns 0 if the memory cannot be allocated.

2837 char*

2838 kalloc(void)

2839 {

2840   struct run *r;

2841

2842   if(kmem.use_lock)

2843     acquire(&kmem.lock);

2844   r = kmem.freelist;

2845   if(r)

2846     kmem.freelist = r->next;

2847   if(kmem.use_lock)

2848     release(&kmem.lock);

2849   return (char*)r;

2850 }

Performance goes up 
for up to 4CPUs, but 

then stops, why?



  

2.b. Does RCU make sense?

● Can we rewrite this code with RCU? 
● No
● With RCU concurrent updaters still need use locks or some 

other synchronization primitive to synchronize among 
themselves

● RCU helps when there is a 
● Large number of readers
● Small number of updaters

● Main advantage of RCU
● Readers don't need a lock



  

2834 // Allocate one 4096byte page of physical memory.

2835 // Returns a pointer that the kernel can use.

2836 // Returns 0 if the memory cannot be allocated.

2837 char*

2838 kalloc(void)

2839 {

2840   struct run *r;

2841

2842 retry:  

2843   xbegin();

2844   r = kmem.freelist;

2845   if(r)

2846     kmem.freelist = r->next;

2848   xend(retry);

2849   return (char*)r;

2850 }

Hardware 
transactions



  

2.c. Do hardware transactions help?

● Hardware transactions do not help in this case
● Multiple CPUs content on a single variable
● kmem.freelist

2842 retry:  

2843   xbegin();

2844   r = kmem.freelist;

2845   if(r)

2846     kmem.freelist = r->next;

2848   xend(retry);



  

2.c. Hardware transactions

● Hardware transactions will conflict and abort
● Depending on implementation performance will 

remain unchanged or will go down
● All conflicting transactions abort

– Performance goes down
– Livelock

● HTM chooses one winner
– Performance remains about the same



  

2.d. Making it fast

● Scalable spin-locks, aka MCS?
● Your experiment runs on 16 CPUs

● You are not limited by performance of the cache 
coherence protocol (I think)

● Your bottleneck is the critical section
– MCS might help a bit, but not a lot



  

2.d. Making it fast

● You need to remove the bottleneck
● Per-CPU page pools

● Each CPU has a pool of pages
● Similar to sloppy counters
● Allocates and deallocates pages without contention
● If pool is empty takes more pages from the global pool

– Of course global pool is under a lock
● If pool grows too large, free pages to the global pool



  

Question 3. Segmentation



  

Why do you really need paging?

● Isolation?
● No, for isolation you just need a way to say that part of memory is 

accessible/inaccessible
● Segments do work for this

● Paging
● Allows you to build address spaces with holes, due to

– Lazy allocation of memory, i.e. the address space can grow
– Swapping out pages to disk, i.e. the address space can shrink

● Other useful things
– Sharing with other address spaces, i.e. one physical page appears in multiple 

address spaces (mmap(), shared libraries)
– Copy-on-write – sharing identical pages read only, until they are written (fork())
–



  

3.a. Address spaces with segments

● Each process has it's private segment for
● Stack, data, and code
● Segments map logical addresses to physical, e.g.

– Logical data 0 – 8MB can be mapped anywhere in the physical memory
– Segment base + segment limit

● Kernel needs access to every process
● Initialization, fork, copy in and out of system call arguments
● Kernel data segment spawns entire physical memory



  

3.a. Context switching

● Two ways
● Reload GDT (each process has a private GDT)

– Alternatively update segments in the GDT
● Reload LDT (each process has a private LDT)

– Similar to GDT

● Interrupt path
● IDTR and GDTR hold linear addresses of IDT and GDT

– Linear == physical (we don't have page tables)
– Everything just works
– Of course physical memory of IDT and GDT should not be mapped into 

any process



  

3.b. sbrk()

● Sbrk grows heap of the process
● i.e., data segment

● Trivial if more physical memory is available right 
after the data segment
● Just change the DS limit

● If no memory available need to relocate segments
● Note, you can move content of physical memory
● Then change segment base
●



  

3.c. Sharing a region of memory

● Sharing means two or more processes access 
the same physical memory simultaneously
● Useful for communicating information, e.g. inter-

process communication mechanism
– Send messages from one process to another

● Create a segment and map (add to the GDT) of 
all sharing processes
● Segment defines a region of physical memory that 

is shared



  

3.d. Disadvantages

● Address spaces can grow up, but not down
● E.g. you can increase segment limit for the data segment
● But what about stack? 

– Stack grown down
– Well, stacks can grow up too (there is a flag somewhere)

● No holes in address spaces
● Can't unmap and swap out a couple of rarely used pages
● Swapping is possible but only at granularity of segments

● No copy-on-write sharing, e.g. fork()
● Sharing schemes are much more restrictive



  

3.d. Advantages

● No overheads of page translation
● No TLB misses
● No cache misses due to page table walks
● No page walks at all (even in case of cache hits, page walk still 

adds overhead, but small)

● Faster context switch
● No need to flush and reload TLB

– Remember on context switch page table is reloaded, TLB needs to be 
flushed

● Wait what about tagged TLBs
– True, tagged TLBs avoid TLB flush, but increase TLB pressure



  

Conclusions



  

Thank you!
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