

CS5460/6460: Operating Systems

Lecture 17: File systems

Anton Burtsev
March, 2014

The role of file systems

The role of file systems

● Sharing
● Sharing of data across users and applications

● Persistence
● Data is available after reboot

Architecture

● On-disk and in-memory data structures
represent
● The tree of named files and directories
● Record identities of disk blocks which hold data for

each file
● Record which areas of the disk are free

Crash recovery

● File systems must support crash recovery
● A power loss may interrupt a sequence of updates
● Leave file system in inconsistent state

– E.g. a block both marked free and used

Multiple users

● Multiple users operate on a file system
concurrently
● File system must maintain invariants

Speed

● Access to a block device is several orders of
magnitude slower
● Memory: 200 cycles
● Disk: 20 000 000 cycles

● A file system must maintain a cache of disk
blocks in memory

Block layer

● Read and write data
● From a block device
● Into a buffer cache

● Synchronize across
multiple readers and
writers

Transactions

● Group multiple writes
into an atomic
transaction

Files

● Unnamed files
● An inode
● Sequence of blocks

holding file's data

Directories

● Special kind of inode
● Sequence of directory

entries
● Each contains name

and a pointer to an
unnamed inode

Pathnames

● Hierarchical path
names
● /usr/bin/sh
● Recursive lookup

System call

● Abstract UNIX
resources as files
● Files, sockets, devices,

pipes, etc.

● Unified programming
interface

File system layout on disk

● Block #0: Boot code
● Block #1: Metadata about the file system

● Size (number of blocks)
● Number of data blocks
● Number of inodes
● Number of blocks in log

File system layout on disk

● Block #2 (inode area)
● Bit map area: track which blocks are in use
● Data area: actual file data
● Log area: maintaining consistency in case of a

power outage or system crash

Buffer cache layer

Buffer cache layer

● Two goals:
● Synchronization:

– Only one copy of a data block exist in the kernel
– Only one writer updates this copy at a time

● Caching
– Frequently used copies are cached for efficient reads and

writes

Buffer cache layer: interface

● bread()
● bwrite() - obtain a copy for writing

● Owned until brelse()
● Other threads will be blocked on bwrite() until

brelse()

Logging layer

Logging layer

● Consistency
● File system operations involve multiple writes to

disk
● During the crash, subset of writes might leave the

file system in an inconsistent state
● E.g. file delete can crash leaving:

– Directory entry pointing to a free inode
– Allocated but unlinked inode

Logging

● Writes don't directly go to disk
● Instead they are logged in a journal
● Once all writes are logged, the system writes a

special commit record
– Indicating that log contains a complete operation

● At this point file system copies writes to the on-
disk data structures
● After copy completes, log record is erased

Recovery

● After reboot, copy the log
● For operations marked as complete

– Copy blocks to disk
● For operations partially complete

– Discard all writes
– Information might be lost (output consistency, e.g. can

launch the rocket twice)

Block allocator

● Bitmap of free blocks
● balloc()/bfree()

● Read the bitmap block by block
● Scan for a “free” bit

● Access to the bitmap is synchronized with
bread()/bwrite()/brelse() operations

Inode layer

Inodes

● Two meanings
● On disk

– File size + list of blocks with data
● In memory

– A copy of an on-disk inode + some additional kernel
information

●

● Inodes are kept as an array in the inode area
on disk

● In memory inodes
● Cached

Representing files on disk

Representing files on disk

What is the max
file size?

Representing files on disk

What is the max
file size?

128*512 + 12*512
 = 71680

Directory layer

Directory inodes

● A directory inode is a sequence of directory
entries and inode numbers
● Each name is max of 14 characters
● Has a special inode type T_DIR

● dirlookup() - searches for a directory with a
given name

● dirlink() - adds new file to a directory

Path names layer

● Series of directory lookups to resolve a path
● E.g. /usr/bin/sh

● Namei() - resolves a path into an inode
● If path starts with “/” evaluation starts at the root
● Otherwise current directory

File descriptor layer

System call layer

System calls

● sys_link()/sys_unlink() - edit directories
● Add/remove names of existing inodes

● Create() – creates a name for a new inode

Example: write system call

Write() syscall
5476 int
5477 sys_write(void)
5478 {
5479 struct file *f;
5480 int n;
5481 char *p;
5482
5483 if(argfd(0, 0, &f) < 0
 || argint(2, &n) < 0 || argptr(1, &p, n) < 0)
5484 return − 1;
5485 return filewrite(f, p, n);
5486 }

Write several
blocks at a time

5352 filewrite(struct file *f, char *addr, int n)
5353 {
...
5360 if(f− >type == FD_INODE){
5367 int max = ((LOGSIZE− 1− 1− 2) / 2) * 512;
5368 int i = 0;
5369 while(i < n){
5370 int n1 = n − i;
5371 if(n1 > max)
5372 n1 = max;
5373
5374 begin_trans();
5375 ilock(f− >ip);
5376 if ((r = writei(f− >ip, addr + i, f− >off, n1)) > 0)
5377 f− >off += r;
5378 iunlock(f− >ip);
5379 commit_trans();
5386 }
5390 }

Start a
transaction

4277 begin_trans(void)
4278 {
4279 acquire(&log.lock);
4280 while (log.busy) {
4281 sleep(&log, &log.lock);
4282 }
4283 log.busy = 1;
4284 release(&log.lock);
4285 }

Write an inode

4952 writei(struct inode *ip, char *src, uint off, uint n)
4953 {

4965 if(off + n > MAXFILE*BSIZE)
4966 return − 1;
4967
4968 for(tot=0; tot<n; tot+=m, off+=m, src+=m){
4969 bp = bread(ip− >dev, bmap(ip, off/BSIZE));
4970 m = min(n − tot, BSIZE − off%BSIZE);
4971 memmove(bp− >data + off%BSIZE, src, m);
4972 log_write(bp);
4973 brelse(bp);
4974 }
4975
4976 if(n > 0 && off > ip− >size){
4977 ip− >size = off;
4978 iupdate(ip);
4979 }
4980 return n;
4981 }

Find a block on
disk

4810 bmap(struct inode *ip, uint bn) {

4815 if(bn < NDIRECT){
4816 if((addr = ip− >addrs[bn]) == 0)
4817 ip− >addrs[bn] = addr = balloc(ip− >dev);
4818 return addr;
4819 }

4820 bn − = NDIRECT;
4822 if(bn < NINDIRECT){
4824 if((addr = ip− >addrs[NDIRECT]) == 0)
4825 ip− >addrs[NDIRECT] = addr = balloc(ip− >dev);
4826 bp = bread(ip− >dev, addr);
4827 a = (uint*)bp− >data;
4828 if((addr = a[bn]) == 0){
4829 a[bn] = addr = balloc(ip− >dev);
4830 log_write(bp);
4831 }
4832 brelse(bp);
4833 return addr;
4834 }
4837 }

Write to a log
4324 void
4325 log_write(struct buf *b)
4326 {
4327 int i;
4334 for (i = 0; i < log.lh.n; i++) {
4335 if (log.lh.sector[i] == b− >sector) // log absorbtion?
4336 break;
4337 }
4338 log.lh.sector[i] = b− >sector;
4339 struct buf *lbuf = bread(b− >dev, log.start+i+1);
4340 memmove(lbuf− >data, b− >data, BSIZE);
4341 bwrite(lbuf);
4342 brelse(lbuf);
4343 if (i == log.lh.n)
4344 log.lh.n++;
4345 b− >flags |= B_DIRTY; // XXX prevent eviction
4346 }

Commit each
writei

5352 filewrite(struct file *f, char *addr, int n)
5353 {
...
5360 if(f− >type == FD_INODE){
5367 int max = ((LOGSIZE− 1− 1− 2) / 2) * 512;
5368 int i = 0;
5369 while(i < n){
5370 int n1 = n − i;
5371 if(n1 > max)
5372 n1 = max;
5373
5374 begin_trans();
5375 ilock(f− >ip);
5376 if ((r = writei(f− >ip, addr + i, f− >off, n1)) > 0)
5377 f− >off += r;
5378 iunlock(f− >ip);
5379 commit_trans();
5386 }
5390 }

Commit

4301 commit_trans(void)
4302 {
4303 if (log.lh.n > 0) {
4304 write_head(); // Write header to disk − − the real commit
4305 install_trans(); // Now install writes to home locations
4306 log.lh.n = 0;
4307 write_head(); // Erase the transaction from the log
4308 }
4309
4310 acquire(&log.lock);
4311 log.busy = 0;
4312 wakeup(&log);
4313 release(&log.lock);
4314 }

Write committed
blocks to disk

4221 install_trans(void)
4222 {
4223 int tail;
4224
4225 for (tail = 0; tail < log.lh.n; tail++) {
 // read log block
4226 struct buf *lbuf = bread(log.dev, log.start+tail+1);
 // read dst
4227 struct buf *dbuf = bread(log.dev, log.lh.sector[tail]);
4228 memmove(dbuf− >data, lbuf− >data, BSIZE); // copy block to dst
4229 bwrite(dbuf); // write dst to disk
4230 brelse(lbuf);
4231 brelse(dbuf);
4232 }
4233 }

Recover after
reboot

4267 static void
4268 recover_from_log(void)
4269 {
4270 read_head();
4271 install_trans();
4272 log.lh.n = 0;
4273 write_head(); // clear the log
4274 }

Conclusion

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

