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The role of file systems



  

The role of file systems

● Sharing
● Sharing of data across users and applications

● Persistence
● Data is available after reboot



  

Architecture

● On-disk and in-memory data structures  
represent 
● The tree of named files and directories
● Record identities of disk blocks which hold data for 

each file
● Record which areas of the disk are free



  

Crash recovery

● File systems must support crash recovery
● A power loss may interrupt a sequence of updates
● Leave file system in inconsistent state

– E.g. a block both marked free and used



  

Multiple users

● Multiple users operate on a file system 
concurrently
● File system must maintain invariants



  

Speed

● Access to a block device is several orders of 
magnitude slower
● Memory: 200 cycles
● Disk: 20 000 000 cycles

● A file system must maintain a cache of disk 
blocks in memory



  

Block layer

● Read and write data
● From a block device
● Into a buffer cache

● Synchronize across 
multiple readers and 
writers



  

Transactions

● Group multiple writes 
into an atomic 
transaction



  

Files

● Unnamed files
● An inode
● Sequence of blocks 

holding file's data



  

Directories

● Special kind of inode
● Sequence of directory 

entries
● Each contains name 

and a pointer to an 
unnamed inode



  

Pathnames

● Hierarchical path 
names
● /usr/bin/sh
● Recursive lookup



  

System call

● Abstract UNIX 
resources as files
● Files, sockets, devices, 

pipes, etc.

● Unified programming 
interface



  

File system layout on disk

● Block #0: Boot code
● Block #1: Metadata about the file system

● Size (number of blocks)
● Number of data blocks
● Number of inodes
● Number of blocks in log



  

File system layout on disk

● Block #2 (inode area)
● Bit map area: track which blocks are in use
● Data area: actual file data
● Log area: maintaining consistency in case of a 

power outage or system crash



  

Buffer cache layer



  

Buffer cache layer

● Two goals:
● Synchronization: 

– Only one copy of a data block exist in the kernel
– Only one writer updates this copy at a time

● Caching
– Frequently used copies are cached for efficient reads and 

writes



  

Buffer cache layer: interface

● bread()
● bwrite() - obtain a copy for writing

● Owned until brelse()
● Other threads will be blocked on bwrite() until 

brelse()



  

Logging layer



  

Logging layer

● Consistency
● File system operations involve multiple writes to 

disk
● During the crash, subset of writes might leave the 

file system in an inconsistent state
● E.g. file delete can crash leaving:

– Directory entry pointing to a free inode
– Allocated but unlinked inode



  

Logging

● Writes don't directly go to disk
● Instead they are logged in a journal
● Once all writes are logged, the system writes a 

special commit record
– Indicating that log contains a complete operation

● At this point file system copies writes to the on-
disk data structures
● After copy completes, log record is erased



  

Recovery

● After reboot, copy the log
● For operations marked as complete

– Copy blocks to disk
● For operations partially complete

– Discard all writes
– Information might be lost (output consistency, e.g. can 

launch the rocket twice)



  

Block allocator

● Bitmap of free blocks
● balloc()/bfree()

● Read the bitmap block by block
● Scan for a “free” bit

● Access to the bitmap is synchronized with 
bread()/bwrite()/brelse() operations



  

Inode layer



  

Inodes

● Two meanings
● On disk

– File size + list of blocks with data
● In memory

– A copy of an on-disk inode + some additional kernel 
information

●



  

● Inodes are kept as an array in the inode area 
on disk

● In memory inodes 
● Cached



  

Representing files on disk



  

Representing files on disk

What is the max 
file size?



  

Representing files on disk

What is the max 
file size?

128*512 + 12*512 
      = 71680



  

Directory layer



  

Directory inodes

● A directory inode is a sequence of directory 
entries and inode numbers
● Each name is max of 14 characters
● Has a special inode type T_DIR

● dirlookup() - searches for a directory with a 
given name

● dirlink() - adds new file to a directory



  

Path names layer

● Series of directory lookups to resolve a path
● E.g. /usr/bin/sh

● Namei() - resolves a path into an inode
● If path starts with “/” evaluation starts at the root
● Otherwise current directory



  

File descriptor layer



  



  

System call layer



  

System calls

● sys_link()/sys_unlink() - edit directories
● Add/remove names of existing inodes

● Create() – creates a name for a new inode



  

Example: write system call



  

Write() syscall
5476 int
5477 sys_write(void)
5478 {
5479   struct file *f;
5480   int n;
5481   char *p;
5482 
5483   if(argfd(0, 0, &f) < 0 
       || argint(2, &n) < 0 || argptr(1, &p, n) < 0)
5484     return − 1;
5485   return filewrite(f, p, n);
5486 }



  

Write several 
blocks at a time

5352 filewrite(struct file *f, char *addr, int n)
5353 {
...
5360   if(f− >type == FD_INODE){
5367     int max = ((LOGSIZE− 1− 1− 2) / 2) * 512;
5368     int i = 0;
5369     while(i < n){
5370       int n1 = n −  i;
5371       if(n1 > max)
5372         n1 = max;
5373 
5374       begin_trans();
5375       ilock(f− >ip);
5376       if ((r = writei(f− >ip, addr + i, f− >off, n1)) > 0)
5377         f− >off += r;
5378       iunlock(f− >ip);
5379       commit_trans();
5386   }
5390 }



  

Start a 
transaction

4277 begin_trans(void)
4278 {
4279   acquire(&log.lock);
4280   while (log.busy) {
4281     sleep(&log, &log.lock);
4282   }
4283   log.busy = 1;
4284   release(&log.lock);
4285 }



  

Write an inode

4952 writei(struct inode *ip, char *src, uint off, uint n)
4953 {

4965   if(off + n > MAXFILE*BSIZE)
4966     return − 1;
4967 
4968   for(tot=0; tot<n; tot+=m, off+=m, src+=m){
4969     bp = bread(ip− >dev, bmap(ip, off/BSIZE));
4970     m = min(n −  tot, BSIZE −  off%BSIZE);
4971     memmove(bp− >data + off%BSIZE, src, m);
4972     log_write(bp);
4973     brelse(bp);
4974   }
4975 
4976   if(n > 0 && off > ip− >size){
4977     ip− >size = off;
4978     iupdate(ip);
4979   }
4980   return n;
4981 }



  

Find a block on 
disk

4810 bmap(struct inode *ip, uint bn) {

4815   if(bn < NDIRECT){
4816     if((addr = ip− >addrs[bn]) == 0)
4817       ip− >addrs[bn] = addr = balloc(ip− >dev);
4818     return addr;
4819   }

4820   bn − = NDIRECT;
4822   if(bn < NINDIRECT){
4824     if((addr = ip− >addrs[NDIRECT]) == 0)
4825       ip− >addrs[NDIRECT] = addr = balloc(ip− >dev);
4826     bp = bread(ip− >dev, addr);
4827     a = (uint*)bp− >data;
4828     if((addr = a[bn]) == 0){
4829       a[bn] = addr = balloc(ip− >dev);
4830       log_write(bp);
4831     }
4832     brelse(bp);
4833     return addr;
4834   }
4837 }



  

Write to a log
4324 void
4325 log_write(struct buf *b)
4326 {
4327   int i;
4334   for (i = 0; i < log.lh.n; i++) {
4335     if (log.lh.sector[i] == b− >sector) // log absorbtion?
4336       break;
4337   }
4338   log.lh.sector[i] = b− >sector;
4339   struct buf *lbuf = bread(b− >dev, log.start+i+1);
4340   memmove(lbuf− >data, b− >data, BSIZE);
4341   bwrite(lbuf);
4342   brelse(lbuf);
4343   if (i == log.lh.n)
4344     log.lh.n++;
4345   b− >flags |= B_DIRTY; // XXX prevent eviction
4346 }



  

Commit each 
writei

5352 filewrite(struct file *f, char *addr, int n)
5353 {
...
5360   if(f− >type == FD_INODE){
5367     int max = ((LOGSIZE− 1− 1− 2) / 2) * 512;
5368     int i = 0;
5369     while(i < n){
5370       int n1 = n −  i;
5371       if(n1 > max)
5372         n1 = max;
5373 
5374       begin_trans();
5375       ilock(f− >ip);
5376       if ((r = writei(f− >ip, addr + i, f− >off, n1)) > 0)
5377         f− >off += r;
5378       iunlock(f− >ip);
5379       commit_trans();
5386   }
5390 }



  

Commit

4301 commit_trans(void)
4302 {
4303   if (log.lh.n > 0) {
4304     write_head(); // Write header to disk − −  the real commit
4305     install_trans(); // Now install writes to home locations
4306     log.lh.n = 0;
4307     write_head(); // Erase the transaction from the log
4308   }
4309 
4310   acquire(&log.lock);
4311   log.busy = 0;
4312   wakeup(&log);
4313   release(&log.lock);
4314 }



  

Write committed 
blocks to disk

4221 install_trans(void)
4222 {
4223   int tail;
4224 
4225   for (tail = 0; tail < log.lh.n; tail++) {
         // read log block
4226     struct buf *lbuf = bread(log.dev, log.start+tail+1);
         // read dst 
4227     struct buf *dbuf = bread(log.dev, log.lh.sector[tail]); 
4228     memmove(dbuf− >data, lbuf− >data, BSIZE); // copy block to dst
4229     bwrite(dbuf); // write dst to disk
4230     brelse(lbuf);
4231     brelse(dbuf);
4232   }
4233 }



  

Recover after 
reboot

4267 static void
4268 recover_from_log(void)
4269 {
4270   read_head();
4271   install_trans(); 
4272   log.lh.n = 0;
4273   write_head(); // clear the log
4274 }  



  

Conclusion



  

Thank you!
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