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void foo(void)

{

  a = 1;

  smp_wmb(); 

  b = 1;

}

Recap: read and write barriers

void bar(void)

{

  while (b == 0)  

    continue;

  smp_rmb();

  assert(a == 1);

}



  

scheduler(void)

{ 

    for(;;) {

        acquire(&ptable.lock);

        for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)

        {

            if(p->state != RUNNABLE)

                continue;

            p->state = RUNNING;

            swtch(&cpu->scheduler, proc->context);

        } 

        release(&ptable.lock);        

    } 

}

Where is the barrier?



  

Scalable spinlocks



  

Exim collapse



  

Spinlock collapse

● We discussed two solutions: 
● Per-core hash-table
● Read copy update

● Is it possible to build scalable spinlocks? 



  

struct qnode {

        volatile void *next;

        volatile char locked;

};

typedef struct {

        struct qnode *v;

} mcslock_t;

arch_mcs_lock(mcslock_t *l, volatile struct qnode *mynode) {

        struct qnode *predecessor;

        mynode->next = NULL;

        predecessor = (struct qnode *)xchg((long *)&l->v, (long)mynode);

        if (predecessor) {

                mynode->locked = 1;

                barrier();

                predecessor->next = mynode;

                while (mynode->locked) ;

        }

}

MCS lock



  

arch_mcs_lock(mcslock_t *l, volatile struct qnode *mynode) {

        struct qnode *predecessor;

        mynode->next = NULL;

        predecessor = (struct qnode *)xchg((long *)&l->v, (long)mynode);

        if (predecessor) {

                mynode->locked = 1;

                barrier();

                predecessor->next = mynode;

                while (mynode->locked) ;

        }

}

arch_mcs_unlock(mcslock_t *l, volatile struct qnode *mynode) {

        if (!mynode->next) {

                if (cmpxchg((long *)&l->v, (long)mynode, 0) == (long)mynode)

                        return;

                while (!mynode->next) ;

        }

        ((struct qnode *)mynode->next)->locked = 0;

}

unlock



  

Why does this scale? 



  

Ticket spinlock

● How many cache messages are needed to 
acquire the lock? 



  

Ticket spinlock

● How many cache messages are needed to acquire the lock? 
● Proportional to the number of cores

● 1 message for atomic_inc()
● N messages from other cores which hold the lock and update 

current_ticket upon release



  

arch_mcs_lock(mcslock_t *l, volatile struct qnode *mynode) {

        struct qnode *predecessor;

        mynode->next = NULL;

        predecessor = (struct qnode *)xchg((long *)&l->v, (long)mynode);

        if (predecessor) {

                mynode->locked = 1;

                barrier();

                predecessor->next = mynode;

                while (mynode->locked) ;

        }

}

arch_mcs_unlock(mcslock_t *l, volatile struct qnode *mynode) {

        if (!mynode->next) {

                if (cmpxchg((long *)&l->v, (long)mynode, 0) == (long)mynode)

                        return;

                while (!mynode->next) ;

        }

        ((struct qnode *)mynode->next)->locked = 0;

}

Constant number of 
cache coherence 

messages



  

struct qnode {

        volatile void *next;

        volatile char locked;

        char __pad[0] __attribute__((aligned(64)));

};

typedef struct {

        struct qnode *v __attribute__((aligned(64)));

} mcslock_t;

Cache line isolation



  

Exim: MCS vs ticket lock



  

Hardware transactional memory



  

9  insert(int data)

10 {

11   struct list *l;

13   l = malloc(sizeof *l);

14   l->data = data;

15   l->next = list;

16   list = l;

     

17 }

Original list 
implementation



  

9  insert(int data)

10 {

11   struct list *l;

13   l = malloc(sizeof *l);

14   l->data = data;

     acquire(&listlock);

15   l->next = list;

16   list = l;

     release(&listlock);

17 }

We protected list 
with  locks



  

9  insert(int data)

10 {

11   struct list *l;

13   l = malloc(sizeof *l);

14   l->data = data;

15   l->next = list;

16   list = l;

     

17 }

Hardware 
transaction

Atomic 
transaction

Writes cached 
locally

CPU cache



  

Intel Transactional Synchronization 
Extensions (TSX)

● Two modes of execution
● Restricted transactional memory (RTM)
● Hardware lock elision (HLE)



  

_retry: xbegin _abort

        // critical section

        xend

_abort:

        // Fallback path, retry

        // transaction or acquire a lock 

Restricted transactional memory



  

Restricted transactional memory

● Some instructions and events may cause 
aborts
● Uncommon instructions, interrupts, faults

● Software must provide non-transactional path



  

Hardware lock elision

● Is it possible to use transactional memory 
without changing the code? 
● Hint: use existing locks as hints for transactions



  

       mov eax, 1

_try:  xacquire lock xchg lock, eax

       cmp eax, 0

       jz _success

_spin: pause

       cmp lock, 1

       jz _spin

       jmp _try

       // critical section

       xrelease mov lock, 0

Hardware lock elision



  

Hardware lock elision

● Try to execute lock code in the transactional 
manner

● In case of abort, do a transparent restart 
● Execute same software code without elision



  

Scalable commutativity rule



  

Thinking about scalability

● Scalability is typically viewed as a property of 
implementation

● Is it possible to detect scalability bottlenecks at 
the level of interfaces



  

Whenever interface operations commute, they 
can be implemented in a way that scales



  

Designing commutative interfaces

● Decompose compound operations
● fork() 

– Creates a new process and snapshots its entire memory, file 
descriptors, signal masks

– Fails to commute with memory writes, address space 
operations, and many file descriptor operations

● stat() 
– Retrieves many stats simultaneously
– Fails to commute with any operation that changes any attribute 

returned by stat, e.g., link, chmod, chown, write, and even read



  

Designing commutative interfaces (2)

● Embrace specification non-determinism
● Lowest available file-descriptor

● Permit weak ordering
● Local domain sockets

– send and receive operations do not commute
– Unnecessary in case of multiple readers and writers

● Release resources asynchronously
● munmap requires expensive TLB shootdowns before it 

can return



  

One more scalability technique:
sloppy counters



  

Reference counting

● Reference counting is used to keep track of 
object users
● Increment counter for every new user
● Decrement counter when users leave
● Deallocate object when counter is 0, e.g. there are 

no users



  

Atomic increment on 64 cores

Reference counting is 
a big problem 



  

Sloppy conters

● Observation: kernel rarely needs true value of a 
reference counter
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● Observation: kernel rarely needs true value of a 
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Sloppy conters

● Observation: kernel rarely needs true value of a 
reference counter



  

Exim: more scalability with sloppy counters



  

Conclusion



  

Thank you!
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