

CS5460/6460: Operating Systems

Lecture 14: Scalability techniques

Anton Burtsev
February, 2014

void foo(void)

{

 a = 1;

 smp_wmb();

 b = 1;

}

Recap: read and write barriers

void bar(void)

{

 while (b == 0)

 continue;

 smp_rmb();

 assert(a == 1);

}

scheduler(void)

{

 for(;;) {

 acquire(&ptable.lock);

 for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)

 {

 if(p->state != RUNNABLE)

 continue;

 p->state = RUNNING;

 swtch(&cpu->scheduler, proc->context);

 }

 release(&ptable.lock);

 }

}

Where is the barrier?

Scalable spinlocks

Exim collapse

Spinlock collapse

● We discussed two solutions:
● Per-core hash-table
● Read copy update

● Is it possible to build scalable spinlocks?

struct qnode {

 volatile void *next;

 volatile char locked;

};

typedef struct {

 struct qnode *v;

} mcslock_t;

arch_mcs_lock(mcslock_t *l, volatile struct qnode *mynode) {

 struct qnode *predecessor;

 mynode->next = NULL;

 predecessor = (struct qnode *)xchg((long *)&l->v, (long)mynode);

 if (predecessor) {

 mynode->locked = 1;

 barrier();

 predecessor->next = mynode;

 while (mynode->locked) ;

 }

}

MCS lock

arch_mcs_lock(mcslock_t *l, volatile struct qnode *mynode) {

 struct qnode *predecessor;

 mynode->next = NULL;

 predecessor = (struct qnode *)xchg((long *)&l->v, (long)mynode);

 if (predecessor) {

 mynode->locked = 1;

 barrier();

 predecessor->next = mynode;

 while (mynode->locked) ;

 }

}

arch_mcs_unlock(mcslock_t *l, volatile struct qnode *mynode) {

 if (!mynode->next) {

 if (cmpxchg((long *)&l->v, (long)mynode, 0) == (long)mynode)

 return;

 while (!mynode->next) ;

 }

 ((struct qnode *)mynode->next)->locked = 0;

}

unlock

Why does this scale?

Ticket spinlock

● How many cache messages are needed to
acquire the lock?

Ticket spinlock

● How many cache messages are needed to acquire the lock?
● Proportional to the number of cores

● 1 message for atomic_inc()
● N messages from other cores which hold the lock and update

current_ticket upon release

arch_mcs_lock(mcslock_t *l, volatile struct qnode *mynode) {

 struct qnode *predecessor;

 mynode->next = NULL;

 predecessor = (struct qnode *)xchg((long *)&l->v, (long)mynode);

 if (predecessor) {

 mynode->locked = 1;

 barrier();

 predecessor->next = mynode;

 while (mynode->locked) ;

 }

}

arch_mcs_unlock(mcslock_t *l, volatile struct qnode *mynode) {

 if (!mynode->next) {

 if (cmpxchg((long *)&l->v, (long)mynode, 0) == (long)mynode)

 return;

 while (!mynode->next) ;

 }

 ((struct qnode *)mynode->next)->locked = 0;

}

Constant number of
cache coherence

messages

struct qnode {

 volatile void *next;

 volatile char locked;

 char __pad[0] __attribute__((aligned(64)));

};

typedef struct {

 struct qnode *v __attribute__((aligned(64)));

} mcslock_t;

Cache line isolation

Exim: MCS vs ticket lock

Hardware transactional memory

9 insert(int data)

10 {

11 struct list *l;

13 l = malloc(sizeof *l);

14 l->data = data;

15 l->next = list;

16 list = l;

17 }

Original list
implementation

9 insert(int data)

10 {

11 struct list *l;

13 l = malloc(sizeof *l);

14 l->data = data;

 acquire(&listlock);

15 l->next = list;

16 list = l;

 release(&listlock);

17 }

We protected list
with locks

9 insert(int data)

10 {

11 struct list *l;

13 l = malloc(sizeof *l);

14 l->data = data;

15 l->next = list;

16 list = l;

17 }

Hardware
transaction

Atomic
transaction

Writes cached
locally

CPU cache

Intel Transactional Synchronization
Extensions (TSX)

● Two modes of execution
● Restricted transactional memory (RTM)
● Hardware lock elision (HLE)

_retry: xbegin _abort

 // critical section

 xend

_abort:

 // Fallback path, retry

 // transaction or acquire a lock

Restricted transactional memory

Restricted transactional memory

● Some instructions and events may cause
aborts
● Uncommon instructions, interrupts, faults

● Software must provide non-transactional path

Hardware lock elision

● Is it possible to use transactional memory
without changing the code?
● Hint: use existing locks as hints for transactions

 mov eax, 1

_try: xacquire lock xchg lock, eax

 cmp eax, 0

 jz _success

_spin: pause

 cmp lock, 1

 jz _spin

 jmp _try

 // critical section

 xrelease mov lock, 0

Hardware lock elision

Hardware lock elision

● Try to execute lock code in the transactional
manner

● In case of abort, do a transparent restart
● Execute same software code without elision

Scalable commutativity rule

Thinking about scalability

● Scalability is typically viewed as a property of
implementation

● Is it possible to detect scalability bottlenecks at
the level of interfaces

Whenever interface operations commute, they
can be implemented in a way that scales

Designing commutative interfaces

● Decompose compound operations
● fork()

– Creates a new process and snapshots its entire memory, file
descriptors, signal masks

– Fails to commute with memory writes, address space
operations, and many file descriptor operations

● stat()
– Retrieves many stats simultaneously
– Fails to commute with any operation that changes any attribute

returned by stat, e.g., link, chmod, chown, write, and even read

Designing commutative interfaces (2)

● Embrace specification non-determinism
● Lowest available file-descriptor

● Permit weak ordering
● Local domain sockets

– send and receive operations do not commute
– Unnecessary in case of multiple readers and writers

● Release resources asynchronously
● munmap requires expensive TLB shootdowns before it

can return

One more scalability technique:
sloppy counters

Reference counting

● Reference counting is used to keep track of
object users
● Increment counter for every new user
● Decrement counter when users leave
● Deallocate object when counter is 0, e.g. there are

no users

Atomic increment on 64 cores

Reference counting is
a big problem

Sloppy conters

● Observation: kernel rarely needs true value of a
reference counter

Sloppy conters

● Observation: kernel rarely needs true value of a
reference counter

Sloppy conters

● Observation: kernel rarely needs true value of a
reference counter

Sloppy conters

● Observation: kernel rarely needs true value of a
reference counter

Sloppy conters

● Observation: kernel rarely needs true value of a
reference counter

Sloppy conters

● Observation: kernel rarely needs true value of a
reference counter

Sloppy conters

● Observation: kernel rarely needs true value of a
reference counter

Sloppy conters

● Observation: kernel rarely needs true value of a
reference counter

Sloppy conters

● Observation: kernel rarely needs true value of a
reference counter

Sloppy conters

● Observation: kernel rarely needs true value of a
reference counter

Sloppy conters

● Observation: kernel rarely needs true value of a
reference counter

Sloppy conters

● Observation: kernel rarely needs true value of a
reference counter

Sloppy conters

● Observation: kernel rarely needs true value of a
reference counter

Sloppy conters

● Observation: kernel rarely needs true value of a
reference counter

Exim: more scalability with sloppy counters

Conclusion

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

