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Recap from last time

● Two synchronization paradigm
● Critical sections

– Implemented as spinlocks 
– Doesn't scale (atomic operations don't scale)

● Read Copy Update
– Lock-free
– Scales well for a large number of readers
– Updates must be infrequent



  

Cache coherence



  

CPU cache



  

CPU cache

● Effectively a hash
● Contains sequential blocks of memory

– Called “cache lines”, 16 – 256 bytes each
● Simple hashing function

– E.g. 16-set cache means, 16 buckets
● Limited chain length to resolve conflicts

– E.g. 2-way cache means chain of length 2



  

Cache hierarchy

● Hierarchy of caches: L1, L2, L3
● Grow in size but get slower
● Ivy Bridge-EP

● L1 cache 32 KB per core
● L2 cache 256 KB per core
● L3 cache 10 MB to 30 MB shared



  

Some latency numbers

● L1 cache reference                                          0.5 ns
● On a 2GHz CPU, 1 ns == 2 cycles

● L2 cache reference                                           7   ns
● L3 cache reference                                         15   ns
● Main memory reference                                100   ns
● Send 1K bytes over 1 Gbps network        10,000   ns
● Read 4K randomly from SSD*                150,000   ns
● Round trip within same datacenter         500,000   ns
● Disk seek                                           10,000,000   ns



  

Example: 16 set, 2-way, 256 byte line



  

Example: 16 set, 2-way, 256 byte line



  

Cache coherency protocol

● MESI: 4 states:
● Modified
● Exclusive
● Shared
● Invalid



  

Protocol messages

● Read
● The physical address of the cache line to be read

● Read response
● The data requested by an earlier “read”
● Might be supplied either by memory or by one of 

the caches
– If one of the caches has the desired data in “modified” 

state, that cache must supply the “read response” 
message.



  

Protocol messages (2)

● Invalidate
● The physical address of the cache line to be 

invalidated

● Invalidate acknowledge
● A CPU receiving an “invalidate” message must 

respond with an “invalidate acknowledge” message 
after removing the specified data from its cache.



  

Protocol messages (3)

● Read Invalidate
● The physical address of the cache line to be read, while at the same time 

directing other caches to remove the data
● A combination of a “read” and an “invalidate”
● Requires

– “read response” and 
– a set of “invalidate acknowledge”

● Writeback
● The address and the data to be written back to memory
● And possibly other caches
● The way to eject lines in the “modified” state as needed to make room for 

other data



  

Atomic increment next ticket



  

Example

● Invalid → modify
● An atomic read-modify-write operation on a data 

item that was not present in its cache
● Transmits a “read invalidate”, receiving the data via 

a “read response”
● The CPU can complete the transition once it has 

also received a full set of “invalidate acknowledge” 
responses



  

Read current ticket



  

Example

● Invalid → shared
● Load data that is not in the cache
● “Read” message, wait for “read response”



  

Update current ticket



  

Example

● Shared → exclusive
● This CPU realizes that it will soon need to write to some data item in 

this cache line, and thus transmits an “invalidate” message. 
● The CPU cannot complete the transition until it receives a full set of 

“invalidate acknowledge” responses

● Exclusive → modified
● The CPU writes to the cache line that it already had exclusive access 

to. 
● This transition does not require any messages to be sent or received.



  

Re-read current-ticket



  

Example

● Modified → shared
● Some other CPU reads the cache line, and it is 

supplied from this CPU’s cache, which retains a 
read-only copy, possibly also writing it back to 
memory. 

● This transition is initiated by the reception of a 
“read” message, and this CPU responds with a 
“read response” message containing the requested 
data.



  

Memory ordering



  

Writes become slow



  

Store buffers

● Idea:
● Record a store in a CPU buffer
● CPU can proceed immediately

● Complete store when invalidate message is 
received
● Move a cache line from the store buffer to the 

cache



  

Store buffers



  

1 void foo(void)

2 {

3   a = 1;

4   b = 1;

5 }

6

7 void bar(void)

8 {

9   while (b == 0) continue;

10  assert(a == 1);

11 }

Consistency 
problem

● CPU0: foo()
● CPU1: bar()

● Can assert fail?



  

a = [invalid], b = 0 [owned]

a = 1; 

// save a in store buffer 

// send invalidate(a) message to 

// finish write

b = 1;

// b = [owned], update it in cache

// receive read(b), b → [shared]

// send read_reply(b, 1)

 

a = 0 [shared], b = [invalid]

while (b == 0) 

// read(b)

 

// receive read_reply (b, 1)

assert (a == 1) // fails

// receive invalidate(a)



  

a = [invalid], b = 0 [owned]

a = 1; 

// save a in store buffer 

// send invalidate(a) message to 

// finish write

b = 1;

// b = [owned], update it in cache

// DO NOT UPDATE CACHE UNTILL STORE 

// BUFFER IS DRAINED

// receive read(b), b → [shared]

// send read_reply(b, 1)

 

a = 0 [shared], b = [invalid]

while (b == 0) 

// read(b)

 

// receive read_reply (b, 1)

assert (a == 1) // fails

// receive invalidate(a)



  

Write memory barrier

● Memory barrier smp_wmb() 
● Cause the CPU to flush its store buffer before 

applying subsequent stores to their cache lines
● The CPU could either simply stall until the store 

buffer was empty before proceeding, 
● Or it could use the store buffer to hold subsequent 

stores until all of the prior entries in the store buffer 
had been applied



  

1 void foo(void)

2 {

3   a = 1;

    smp_wmb(); 

4   b = 1;

5 }

6

7 void bar(void)

8 {

9   while (b == 0) continue;

10  assert(a == 1);

11 }

Consistency fixed



  

a = [invalid], b = 0 [owned]

a = 1; 

// save a in store buffer 

// send invalidate(a) message 

smp_wmb()

// mark store buffer

b = 1;

// b = [owned], but there are marked 

// entries in the store buffer

// put b = 1 on the store buffer, but 

// do not update cache

// receive read(b), b → [shared]

// send read_reply(b, 0)

// receive invalidate(a)

// flush the store buffer

 

a = 0 [shared], b = [invalid]

while (b == 0) 

// read(b)

 

// receive read_reply (b, 0)

// loop

while (b == 0) 

// b is [invalid], read(b) again

assert (a == 1) // succeed

// receive invalidate(a)



  

Invalidate queues

● Invalidate messages can be slow
● Caches can be overloaded

● While waiting for invalidate acknowledgements
● Run out of space in the store buffer

● Idea: Why wait for cache? 
● Store invalidate request in a queue
● Acknowledge it right away
● Apply later



  

Invalidate queues



  

a = [invalid], b = 0 [owned]

a = 1; 

// save a in store buffer 

// send invalidate(a) message 

smp_wmb()

// mark store buffer

// receive invalidate(a)

// flush the store buffer

b = 1;

// b = [owned], update cache

// receive read(b), b → [shared]

// send read_reply(b, 1)

 

a = 0 [shared], b = [invalid]

while (b == 0) 

// read(b)

// receive invalidate(a), queue it and 

// reply right away

 

// receive read_reply (b, 1)

assert (a == 1) // fail

// receive invalidate(a)



  

a = [invalid], b = 0 [owned]

a = 1; 

// save a in store buffer 

// send invalidate(a) message 

smp_wmb()

// mark store buffer

// receive invalidate(a)

// flush the store buffer

b = 1;

// b = [owned], update cache

// receive read(b), b → [shared]

// send read_reply(b, 1)

 

a = 0 [shared], b = [invalid]

while (b == 0) 

// read(b)

// receive invalidate(a), queue it and 

// reply right away

 

// receive read_reply (b, 1)

// MAKE SURE INVALIDATE QUEUE IS DRAINED

assert (a == 1) // fail

// receive invalidate(a)



  

Read memory barrier

● Read barrier smp_rmb() 
● Marks all the entries currently in its invalidate 

queue, and forces any subsequent load to wait until 
all marked entries have been applied to the CPU’s 
cache.



  

1 void foo(void)

2 {

3   a = 1;

    smp_wmb(); 

4   b = 1;

5 }

6

7 void bar(void)

8 {

9   while (b == 0) continue;

    smp_rmb();

10  assert(a == 1);

11 }

Consistency fixed



  

Trying to execute

   while (b == 0) 
● CPU 1 sends read (b) message, receives the cache line containing “b” 

and installs it in its cache
● CPU 1 can now finish executing while(b==0) continue, and since it 

finds that the value of “b” is 1, it proceeds to the next statement, which 
is now a memory barrier

● CPU 1 must now stall until it processes all preexisting messages in its 
invalidation queue

● CPU 1 now processes the queued “invalidate” message, and 
invalidates the cache line containing “a” from its own cache

● CPU 1 executes the assert(a==1), and, since the cache line containing 
“a” is no longer in CPU 1’s cache, it transmits a “read” message

● CPU 0 responds to this “read” message with the cache line containing 
the new value of “a”

● CPU 1 receives this cache line, which contains a value of 1 for “a”, so 
that the assertion does not trigger



  

Conclusion

● Memory barriers are required to ensure correct 
order of cross-CPU memory updates
● E.g. update two memory locations a, and b

● Two memory barriers are common
● Write
● Read 



  

Thank you!
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