

CS5460/6460: Operating Systems

Lecture 13: Memory barriers

Anton Burtsev
February, 2014

Recap from last time

● Two synchronization paradigm
● Critical sections

– Implemented as spinlocks
– Doesn't scale (atomic operations don't scale)

● Read Copy Update
– Lock-free
– Scales well for a large number of readers
– Updates must be infrequent

Cache coherence

CPU cache

CPU cache

● Effectively a hash
● Contains sequential blocks of memory

– Called “cache lines”, 16 – 256 bytes each
● Simple hashing function

– E.g. 16-set cache means, 16 buckets
● Limited chain length to resolve conflicts

– E.g. 2-way cache means chain of length 2

Cache hierarchy

● Hierarchy of caches: L1, L2, L3
● Grow in size but get slower
● Ivy Bridge-EP

● L1 cache 32 KB per core
● L2 cache 256 KB per core
● L3 cache 10 MB to 30 MB shared

Some latency numbers

● L1 cache reference 0.5 ns
● On a 2GHz CPU, 1 ns == 2 cycles

● L2 cache reference 7 ns
● L3 cache reference 15 ns
● Main memory reference 100 ns
● Send 1K bytes over 1 Gbps network 10,000 ns
● Read 4K randomly from SSD* 150,000 ns
● Round trip within same datacenter 500,000 ns
● Disk seek 10,000,000 ns

Example: 16 set, 2-way, 256 byte line

Example: 16 set, 2-way, 256 byte line

Cache coherency protocol

● MESI: 4 states:
● Modified
● Exclusive
● Shared
● Invalid

Protocol messages

● Read
● The physical address of the cache line to be read

● Read response
● The data requested by an earlier “read”
● Might be supplied either by memory or by one of

the caches
– If one of the caches has the desired data in “modified”

state, that cache must supply the “read response”
message.

Protocol messages (2)

● Invalidate
● The physical address of the cache line to be

invalidated

● Invalidate acknowledge
● A CPU receiving an “invalidate” message must

respond with an “invalidate acknowledge” message
after removing the specified data from its cache.

Protocol messages (3)

● Read Invalidate
● The physical address of the cache line to be read, while at the same time

directing other caches to remove the data
● A combination of a “read” and an “invalidate”
● Requires

– “read response” and
– a set of “invalidate acknowledge”

● Writeback
● The address and the data to be written back to memory
● And possibly other caches
● The way to eject lines in the “modified” state as needed to make room for

other data

Atomic increment next ticket

Example

● Invalid → modify
● An atomic read-modify-write operation on a data

item that was not present in its cache
● Transmits a “read invalidate”, receiving the data via

a “read response”
● The CPU can complete the transition once it has

also received a full set of “invalidate acknowledge”
responses

Read current ticket

Example

● Invalid → shared
● Load data that is not in the cache
● “Read” message, wait for “read response”

Update current ticket

Example

● Shared → exclusive
● This CPU realizes that it will soon need to write to some data item in

this cache line, and thus transmits an “invalidate” message.
● The CPU cannot complete the transition until it receives a full set of

“invalidate acknowledge” responses

● Exclusive → modified
● The CPU writes to the cache line that it already had exclusive access

to.
● This transition does not require any messages to be sent or received.

Re-read current-ticket

Example

● Modified → shared
● Some other CPU reads the cache line, and it is

supplied from this CPU’s cache, which retains a
read-only copy, possibly also writing it back to
memory.

● This transition is initiated by the reception of a
“read” message, and this CPU responds with a
“read response” message containing the requested
data.

Memory ordering

Writes become slow

Store buffers

● Idea:
● Record a store in a CPU buffer
● CPU can proceed immediately

● Complete store when invalidate message is
received
● Move a cache line from the store buffer to the

cache

Store buffers

1 void foo(void)

2 {

3 a = 1;

4 b = 1;

5 }

6

7 void bar(void)

8 {

9 while (b == 0) continue;

10 assert(a == 1);

11 }

Consistency
problem

● CPU0: foo()
● CPU1: bar()

● Can assert fail?

a = [invalid], b = 0 [owned]

a = 1;

// save a in store buffer

// send invalidate(a) message to

// finish write

b = 1;

// b = [owned], update it in cache

// receive read(b), b → [shared]

// send read_reply(b, 1)

a = 0 [shared], b = [invalid]

while (b == 0)

// read(b)

// receive read_reply (b, 1)

assert (a == 1) // fails

// receive invalidate(a)

a = [invalid], b = 0 [owned]

a = 1;

// save a in store buffer

// send invalidate(a) message to

// finish write

b = 1;

// b = [owned], update it in cache

// DO NOT UPDATE CACHE UNTILL STORE

// BUFFER IS DRAINED

// receive read(b), b → [shared]

// send read_reply(b, 1)

a = 0 [shared], b = [invalid]

while (b == 0)

// read(b)

// receive read_reply (b, 1)

assert (a == 1) // fails

// receive invalidate(a)

Write memory barrier

● Memory barrier smp_wmb()
● Cause the CPU to flush its store buffer before

applying subsequent stores to their cache lines
● The CPU could either simply stall until the store

buffer was empty before proceeding,
● Or it could use the store buffer to hold subsequent

stores until all of the prior entries in the store buffer
had been applied

1 void foo(void)

2 {

3 a = 1;

 smp_wmb();

4 b = 1;

5 }

6

7 void bar(void)

8 {

9 while (b == 0) continue;

10 assert(a == 1);

11 }

Consistency fixed

a = [invalid], b = 0 [owned]

a = 1;

// save a in store buffer

// send invalidate(a) message

smp_wmb()

// mark store buffer

b = 1;

// b = [owned], but there are marked

// entries in the store buffer

// put b = 1 on the store buffer, but

// do not update cache

// receive read(b), b → [shared]

// send read_reply(b, 0)

// receive invalidate(a)

// flush the store buffer

a = 0 [shared], b = [invalid]

while (b == 0)

// read(b)

// receive read_reply (b, 0)

// loop

while (b == 0)

// b is [invalid], read(b) again

assert (a == 1) // succeed

// receive invalidate(a)

Invalidate queues

● Invalidate messages can be slow
● Caches can be overloaded

● While waiting for invalidate acknowledgements
● Run out of space in the store buffer

● Idea: Why wait for cache?
● Store invalidate request in a queue
● Acknowledge it right away
● Apply later

Invalidate queues

a = [invalid], b = 0 [owned]

a = 1;

// save a in store buffer

// send invalidate(a) message

smp_wmb()

// mark store buffer

// receive invalidate(a)

// flush the store buffer

b = 1;

// b = [owned], update cache

// receive read(b), b → [shared]

// send read_reply(b, 1)

a = 0 [shared], b = [invalid]

while (b == 0)

// read(b)

// receive invalidate(a), queue it and

// reply right away

// receive read_reply (b, 1)

assert (a == 1) // fail

// receive invalidate(a)

a = [invalid], b = 0 [owned]

a = 1;

// save a in store buffer

// send invalidate(a) message

smp_wmb()

// mark store buffer

// receive invalidate(a)

// flush the store buffer

b = 1;

// b = [owned], update cache

// receive read(b), b → [shared]

// send read_reply(b, 1)

a = 0 [shared], b = [invalid]

while (b == 0)

// read(b)

// receive invalidate(a), queue it and

// reply right away

// receive read_reply (b, 1)

// MAKE SURE INVALIDATE QUEUE IS DRAINED

assert (a == 1) // fail

// receive invalidate(a)

Read memory barrier

● Read barrier smp_rmb()
● Marks all the entries currently in its invalidate

queue, and forces any subsequent load to wait until
all marked entries have been applied to the CPU’s
cache.

1 void foo(void)

2 {

3 a = 1;

 smp_wmb();

4 b = 1;

5 }

6

7 void bar(void)

8 {

9 while (b == 0) continue;

 smp_rmb();

10 assert(a == 1);

11 }

Consistency fixed

Trying to execute

 while (b == 0)
● CPU 1 sends read (b) message, receives the cache line containing “b”

and installs it in its cache
● CPU 1 can now finish executing while(b==0) continue, and since it

finds that the value of “b” is 1, it proceeds to the next statement, which
is now a memory barrier

● CPU 1 must now stall until it processes all preexisting messages in its
invalidation queue

● CPU 1 now processes the queued “invalidate” message, and
invalidates the cache line containing “a” from its own cache

● CPU 1 executes the assert(a==1), and, since the cache line containing
“a” is no longer in CPU 1’s cache, it transmits a “read” message

● CPU 0 responds to this “read” message with the cache line containing
the new value of “a”

● CPU 1 receives this cache line, which contains a value of 1 for “a”, so
that the assertion does not trigger

Conclusion

● Memory barriers are required to ensure correct
order of cross-CPU memory updates
● E.g. update two memory locations a, and b

● Two memory barriers are common
● Write
● Read

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

