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Address translation
(recap)



  



  



  



  

Descriptor table



  

Descriptor table



  

Programming model

● Segments for: code, data, stack, “extra”
● A program can have up to 6 total segments
● Segments identified by registers: cs, ds, ss, es, fs, gs

● Prefix all memory accesses with desired segment:
● mov eax, ds:0x80    (load offset 0x80 from data into eax)

● jmp cs:0xab8          (jump execution to code offset 0xab8)

● mov ss:0x40, ecx    (move ecx to stack offset 0x40)



  

Segmented programming (not real)

static int x = 1;

int y; // stack

if (x) {

    y = 1;

    printf (“Boo”);

} else

    y = 0;

ds:x = 1; // data

ss:y;     // stack

if (ds:x) {

   ss:y = 1;

   cs:printf(ds:“Boo”);

} else

   ss:y = 0;



  

Programming model, cont.

● This is cumbersome, so infer code, data 
and stack segments by instruction type:
● Control-flow instructions use code segment 

(jump, call)
● Stack management (push/pop) uses stack
● Most loads/stores use data segment

● Extra segments (es, fs, gs) must be used 
explicitly



  



  



  



  

Paging



  

Paging idea

● Break up memory into 4096-byte chunks called pages
● Modern hardware supports 2MB, 4MB, and 1GB pages

● Independently control mapping for each page of linear 
address space

● Compare with segmentation (single base + limit)
● many more degrees of freedom



  

Why do we need paging?

● Illusion of a private address space
● Identical copy of an address space in multiple 

programs
– Remember fork()?

● Simplifies software architecture
– One program is not restricted by the memory layout of 

the others



  

Why do we need paging?

● Illusion of a private address space
● Identical copy of an address space in multiple 

programs
– Remember fork()?

● Simplifies software architecture
– One program is not restricted by the memory layout of 

the others

● Emulate large virtual address space on a 
smaller physical memory
● Swap rarely accessed pages to disk



  

Why do we need paging?

● Share a region of memory across multiple 
programs
● Communication (shared buffer of messages)
● Shared libraries

● Isolate parts of the program
● Isolate programs from OS
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Page translation



  

Page directory entry (PDE)

● 20 bit address of the page table
● Pages 4KB each, we need 1M to cover 4GB

● R/W – writes allowed? 
● To a 4MB region controlled by this entry

● U/S – user/supervisor
● If 0 – user-mode access is not allowed

● A – accessed



  

Page translation



  

Page table entry (PTE)

● 20 bit address of the 4KB page
● Pages 4KB each, we need 1M to cover 4GB

● R/W – writes allowed? 
● To a 4KB page

● U/S – user/supervisor
● If 0 user-mode access is not allowed

● A – accessed
● D – dirty – software has written to this page



  

Page translation



  

Back of the envelope
● If a page is 4K and an entry is 4 bytes, how many 

entries per page?

● 1k

● How large of an address space can 1 page represent?

● 1k entries * 1page/entry * 4K/page = 4MB

● How large can we get with a second level of translation?

● 1k tables/dir * 1k entries/table * 4k/page = 4 GB

● Nice that it works out that way!



  

TLB

● CPU caches results of page table walks
● In translation lookaside buffer (TLB)

● Walking page table is slow
● Each memory access is 200-300 cycles on modern 

hardware
● L3 cache access is 70 cycles

Virt Phys

0xf0231000 0x1000

0x00b31000 0x1f000

0xb0002000 0xc1000

- -

cr3



  

TLB

● TLB is a cache (in CPU)
● It is not coherent with memory
● If page table entry is changes, TLB remains the 

same and is out of sync

cr3 Virt Phys

0xf0231000 0x1000

0x00b31000 0x1f000

0xb0002000 0xc1000

- -

Same
Virt Addr.

No 
Change!!!



  

Invalidating TLB

● After every page table update, OS needs to 
manually invalidate cached values

● Modern CPUs have “tagged TLBs”, 
● Each TLB entry has a “tag” – identifier of a process
● No need to flush TLBs on context switch

● On Intel this mechanism is called
● Process-Context Identifiers (PCIDs)



  

More paging tricks

● Determine a working set of a program?
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More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

● Iterative copy of a working set?
● Used for virtual machine migration
● Use “dirty” bit

● Copy-on-write memory, e.g. lightweight fork()?
● Map page as read/only



  

When would you disable paging?



  

When would you disable paging?

● Imagine you're running a memcached
● Key/value cache

● You serve 1024 byte values (typical) on 
10Gbps connection
● 1024 byte packets can leave every 835ns, or 1670 

cycles (2GHz machine)
● This is your target budget per packet

●



  

When would you disable paging?

● Now, to cover 32GB RAM with 4K pages
● You need 64MB space
● 64bit architecture, 3-level page tables

● Page tables do not fit in L3 cache
● Modern servers come with 32MB cache

● Every cache miss results in up to 3 cache misses 
due to page walk (remember 3-level page tables)
● Each cache miss is 200 cycles

● Solution: 1GB pages



  

Page translation for 4MB pages
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