

CS5460/6460: Operating Systems

Lecture 5: Paging

Several slides in this lecture use slides
developed by Don Porter

Anton Burtsev
January, 2014

Address translation
(recap)

Descriptor table

Descriptor table

Programming model

● Segments for: code, data, stack, “extra”
● A program can have up to 6 total segments
● Segments identified by registers: cs, ds, ss, es, fs, gs

● Prefix all memory accesses with desired segment:
● mov eax, ds:0x80 (load offset 0x80 from data into eax)

● jmp cs:0xab8 (jump execution to code offset 0xab8)

● mov ss:0x40, ecx (move ecx to stack offset 0x40)

Segmented programming (not real)

static int x = 1;

int y; // stack

if (x) {

 y = 1;

 printf (“Boo”);

} else

 y = 0;

ds:x = 1; // data

ss:y; // stack

if (ds:x) {

 ss:y = 1;

 cs:printf(ds:“Boo”);

} else

 ss:y = 0;

Programming model, cont.

● This is cumbersome, so infer code, data
and stack segments by instruction type:
● Control-flow instructions use code segment

(jump, call)
● Stack management (push/pop) uses stack
● Most loads/stores use data segment

● Extra segments (es, fs, gs) must be used
explicitly

Paging

Paging idea

● Break up memory into 4096-byte chunks called pages
● Modern hardware supports 2MB, 4MB, and 1GB pages

● Independently control mapping for each page of linear
address space

● Compare with segmentation (single base + limit)
● many more degrees of freedom

Why do we need paging?

● Illusion of a private address space
● Identical copy of an address space in multiple

programs
– Remember fork()?

● Simplifies software architecture
– One program is not restricted by the memory layout of

the others

Why do we need paging?

● Illusion of a private address space
● Identical copy of an address space in multiple

programs
– Remember fork()?

● Simplifies software architecture
– One program is not restricted by the memory layout of

the others

● Emulate large virtual address space on a
smaller physical memory
● Swap rarely accessed pages to disk

Why do we need paging?

● Share a region of memory across multiple
programs
● Communication (shared buffer of messages)
● Shared libraries

● Isolate parts of the program
● Isolate programs from OS

Page translation

Page translation

Page directory entry (PDE)

● 20 bit address of the page table
● Pages 4KB each, we need 1M to cover 4GB

● R/W – writes allowed?
● To a 4MB region controlled by this entry

● U/S – user/supervisor
● If 0 – user-mode access is not allowed

● A – accessed

Page translation

Page table entry (PTE)

● 20 bit address of the 4KB page
● Pages 4KB each, we need 1M to cover 4GB

● R/W – writes allowed?
● To a 4KB page

● U/S – user/supervisor
● If 0 user-mode access is not allowed

● A – accessed
● D – dirty – software has written to this page

Page translation

Back of the envelope
● If a page is 4K and an entry is 4 bytes, how many

entries per page?

● 1k

● How large of an address space can 1 page represent?

● 1k entries * 1page/entry * 4K/page = 4MB

● How large can we get with a second level of translation?

● 1k tables/dir * 1k entries/table * 4k/page = 4 GB

● Nice that it works out that way!

TLB

● CPU caches results of page table walks
● In translation lookaside buffer (TLB)

● Walking page table is slow
● Each memory access is 200-300 cycles on modern

hardware
● L3 cache access is 70 cycles

Virt Phys

0xf0231000 0x1000

0x00b31000 0x1f000

0xb0002000 0xc1000

- -

cr3

TLB

● TLB is a cache (in CPU)
● It is not coherent with memory
● If page table entry is changes, TLB remains the

same and is out of sync

cr3 Virt Phys

0xf0231000 0x1000

0x00b31000 0x1f000

0xb0002000 0xc1000

- -

Same
Virt Addr.

No
Change!!!

Invalidating TLB

● After every page table update, OS needs to
manually invalidate cached values

● Modern CPUs have “tagged TLBs”,
● Each TLB entry has a “tag” – identifier of a process
● No need to flush TLBs on context switch

● On Intel this mechanism is called
● Process-Context Identifiers (PCIDs)

More paging tricks

● Determine a working set of a program?

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

● Iterative copy of a working set?
● Used for virtual machine migration

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

● Iterative copy of a working set?
● Used for virtual machine migration
● Use “dirty” bit

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

● Iterative copy of a working set?
● Used for virtual machine migration
● Use “dirty” bit

● Copy-on-write memory, e.g. lightweigh fork()?

More paging tricks

● Determine a working set of a program?
● Use “accessed” bit

● Iterative copy of a working set?
● Used for virtual machine migration
● Use “dirty” bit

● Copy-on-write memory, e.g. lightweight fork()?
● Map page as read/only

When would you disable paging?

When would you disable paging?

● Imagine you're running a memcached
● Key/value cache

● You serve 1024 byte values (typical) on
10Gbps connection
● 1024 byte packets can leave every 835ns, or 1670

cycles (2GHz machine)
● This is your target budget per packet

●

When would you disable paging?

● Now, to cover 32GB RAM with 4K pages
● You need 64MB space
● 64bit architecture, 3-level page tables

● Page tables do not fit in L3 cache
● Modern servers come with 32MB cache

● Every cache miss results in up to 3 cache misses
due to page walk (remember 3-level page tables)
● Each cache miss is 200 cycles

● Solution: 1GB pages

Page translation for 4MB pages

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

