

CS5460/6460: Operating Systems

Lecture 2: xv6

Anton Burtsev
January, 2014

Operating system interfaces

● Share hardware across multiple processes
● Illusion of private CPU, private memory

● Abstract hardware
● Hide details of specific hardware devices

● Provide services
● Serve as a library for applications

Typical UNIX OS

System calls
● Provide user to kernel communication

● Effectively an invocation of a kernel function

Interface for:
● Processes

● Creating, exiting, waiting, terminating

● Memory
● Allocation

● Files and folders
● Opening, reading, writing, closing

● Inter-process communication
● Pipe

Shell
● Normal process
● Interacts with the kernel through system calls

● Creates new processes

fork() -- create new process
int pid;

pid = fork();
if(pid > 0){
 printf("parent: child=%d\n", pid);
 pid = wait();
 printf("child %d is done\n", pid);
} else if(pid == 0){
 printf("child: exiting\n");
 exit();
} else {
 printf("fork error\n");
}

More process management
● exit() -- terminate current processss

● wait() -- wait for the child to exit

● exec() -- replace memory of a current process with a
memory image (of a program) loaded from a file

 char *argv[3];
 argv[0] = "echo";
 argv[1] = "hello";
 argv[2] = 0;
 exec("/bin/echo", argv);
 printf("exec error\n");

Xv6 demo

File descriptors
● An index into a table, i.e., just an integer
● The table maintains pointers to “file” objects

● Abstracts files, devices, pipes
● In UNIX everything is a pipe – all objects provide

file interface

● Process may obtain file descriptors through
● Opening a file, directory, device
● By creating a pipe
● Duplicating an existing descriptor

Standard file descriptors
● Just a convention

● 0 – standard input
● 1 – standard output
● 2 – standard error

● This convention is used by the shell to
implement I/O redirection and pipelines

File I/O

● read(fd, buf, n) – read n bytes from fd into
buf

● write(fd, buf, n) – write n bytes from buf
into fd

Example: cat

 char buf[512]; int n;
 for(;;) {
 n = read(0, buf, sizeof buf);
 if(n == 0)
 break;
 if(n < 0) {
 fprintf(2, "read error\n");
 exit(); }
 if(write(1, buf, n) != n) {
 fprintf(2, "write error\n");
 exit();
 }
 }

File I/O redirection

● close(fd) – closes file descriptor
● The next opened file descriptor will have the

lowest number

● fork replaces process memory, but
● leaves its file table (table of the file descriptors

untouched)

Example: cat < input.txt

 char *argv[2];
 argv[0] = "cat";
 argv[1] = 0;
 if(fork() == 0) {
 close(0);
 open("input.txt", O_RDONLY);
 exec("cat", argv);
 }

pipe - interprocess communication
● Pipe is a kernel buffer exposed as a pair of file

descriptors
● One for reading, one for writing

● Pipes allow processes to communicate
● Send messages to each other

wc on the
read end of
the pipe

int p[2];
char *argv[2]; argv[0] = "wc"; argv[1] = 0;
pipe(p);
if(fork() == 0) {
 close(0);
 dup(p[0]);
 close(p[0]);
 close(p[1]);
 exec("/bin/wc", argv);
} else {
 write(p[1], "hello world\n", 12);
 close(p[0]);
 close(p[1]);
}

Pipelines
● Shell implements pipelines with pipes, e.g.

 grep fork sh.c | wc -l
● Create a pipe and connect ends

Files
● Files

● Uninterpreted arrays of bytes

● Directories
● Named references to other files and directories

Creating files

● mkdir() – creates a directory

● open(O_CREATE) – creates a file

● mknod() – creates an empty files marked as
device
● Major and minor numbers uniquely identify the

device in the kernel

● fstat() – retrieve information about a file

● Named references to other files and directories

Fstat
● fstat() – retrieve information about a file

#define T_DIR 1 // Directory
#define T_FILE 2 // File
#define T_DEV 3 // Device
struct stat {
 short type; // Type of file
 int dev; // File system’ s disk device
 uint ino; // Inode number
 short nlink; // Number of links to file
 uint size; // Size of file in bytes
};

Links, inodes
● Same file can have multiple names – links

● But unique inode number

● link() – create a name

● unlink() – create a name

● Example, create a temporary file

 fd = open("/tmp/xyz", O_CREATE|O_RDWR);
 unlink("/tmp/xyz");

This is essentially all of UNIX, which you run
today.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

