

CS5460/6460: Operating Systems

Lecture 1: Introduction

Anton Burtsev
January, 2014

Class details

● Mixed undergraduate and graduate
● 125 people (waiting list: 8 students)

● Instructor: Anton Burtsev
● 4 TAs

● Saurav Singh, Sriraam Appusamy Subramanian
● Scotty Bauer, Sarah Spall

● Web page
● http://www.cs.utah.edu/~aburtsev/cs5460

http://www.cs.utah.edu/~aburtsev/cs5460

This course

● Based on
● MIT 6.828: Operating System Engineering

http://pdos.csail.mit.edu/6.828/2012/overview.html

● We will use xv6
● Relatively simple (9K lines of code)
● Reasonably complete UNIX kernel
● http://pdos.csail.mit.edu/6.828/2012/xv6/xv6-rev7.pdf

● xv6 comes with a book
● http://pdos.csail.mit.edu/6.828/2012/xv6/book-rev7.pdf

http://pdos.csail.mit.edu/6.828/2012/overview.html
http://pdos.csail.mit.edu/6.828/2012/xv6/xv6-rev7.pdf
http://pdos.csail.mit.edu/6.828/2012/xv6/book-rev7.pdf

Course organization

● Lectures
● High level concepts and abstractions

● Reading
● Xv6 book + source code

● Labs
● Coding real parts of the xv6 kernel

● Design riddles
● Understanding tradeoffs, explaining parts of xv6

Prerequisites

● Solid C coding skills
● Xv6 is written in C
● You need to read, code and debug
● All labs are in C
● Many questions about explaining xv6 code

● Be able to code in Linux
● Some assembly skills

What is an operating system?

● Want to run your code on a piece of hardware

● GCC + some linking
magic
● Crashes....

● Read manual
● Code a tiny boot layer

● Initialize CPU, memory
● Jump to your code

● This is your OS!

● Want to print out a string
● On the screen or serial line

● Implement a general function!
● First device driver

Device drivers

● Abstract hardware
● Provide high-level interface
● Hide minor differences
● Implement some optimizations

– Batch requests

● Examples
● Console, disk, network interface
● ...virtually any hardware you know

● Want to run two programs

● What does it mean?
● Only one CPU

● Run one, then run
another one

● Want to run two programs

● Exit into the kernel
periodically

● Context switch
● Save and restore

context
● Essentially registers

● What! Two programs in one memory?

● Am I cheating with
the linker?

Virtual address spaces

● Illusion of a private memory for each application
● Keep a description of an address space
● In one of the registers

● All normal program addresses are inside the
address space

● OS maintains description of address spaces
● Switches between them

● What if one program fails to release the CPU?
● It run forever. Need a way to preempt it. How?

Scheduling

● Pick which application to run next
● And for how long

● Illusion of a private CPU for each task
● Frequent context switching

● What if one program corrupts the kernel? Or
other programs?

Isolation

● Today is done with address spaces in hardware
● Many issues, e.g. shared device drivers, files, etc.

● Can it be done in software?

● What about communication?
● Can we invoke a function in a kernel?

● What if you want to save some data?
● Permanent storage

● E.g., disks

● But disks are just arrays of blocks
● wrtie(block_number, block_data)

● Files
● High level abstraction for saving data
● fd = open(“contacts.txt”);
● fpritnf(fd, “Name:%s\n”, name);

● What if you want to send data over the
network?

● Network interfaces
● Send/receive Ethernet packets (Level 2)
● Two low level

● Sockets
● High level abstraction for sending data

● Linux/Windows/Mac

Multiple levels of abstraction
● Multiple programs

● Each has illusion of a private memory and CPU
● Context switching, scheduling, isolation,

communication

● File systems
● Multiple files, concurrent I/O requests
● Consistency, caching

● Network protocols
● Multiple virtual network connections

● Memory management

● Want to run a Windows application on Linux?

What is the
problem?

● Hardware is not
designed to be
multiplexed

● Loss of isolation

Virtual machine

Efficient duplicate
of a real machine
● Compatibility
● Performance
● Isolation

Virtual machine

Efficient duplicate
of a real machine
● Compatibility
● Performance
● Isolation

Trap and emulate

What hardware do we have today?
● 8 cores (2 Ghz)

● Each runs two threads

● 64 Gig of RAM
● 20MB Level 3 cache

● 10 Gbps network controllers

Intel supports 80 millions of packets per second
● L3 forwarding of 64 byte packets

Lets do the math:
● How many cycles per packet?

● 1/80 000 000 = 1.25e-80 seconds per packet on 1 core

● Or in nanoseconds:
● 12.5 nanoseconds per packet

● Or in cycles (remember 2Ghz, or 2 cycles per
nanosecond)
● 25 cycles per packet

● But we have 8 cores, so
● 25*8 = 200 cycles per packet

Can you allow an OS on the critical path?
● Layer 2 → IP → TCP → Sockets → User-level?
● No! You want to run bare metal!

Ok, so what is an operating system?

References

● Impressive Packet Processing Performance
Enables Greater Workload Consolidation. Intel.
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/communications-packet-processing-brief.pdf

● Intel Data Plane Development Kit (Intel DPDK)

http://www.intel.com/content/dam/www/public/us/en/documents/presentation/dpdk-packet-processing-ia-overview-presentation.pdf

http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/communications-packet-processing-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/dpdk-packet-processing-ia-overview-presentation.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

