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Class details

● Mixed undergraduate and graduate
● 125 people (waiting list: 8 students)

● Instructor: Anton Burtsev
● 4 TAs

● Saurav Singh, Sriraam Appusamy Subramanian
● Scotty Bauer, Sarah Spall

● Web page
● http://www.cs.utah.edu/~aburtsev/cs5460

http://www.cs.utah.edu/~aburtsev/cs5460


  

This course

● Based on 
● MIT 6.828: Operating System Engineering 

http://pdos.csail.mit.edu/6.828/2012/overview.html

● We will use xv6
● Relatively simple (9K lines of code)
● Reasonably complete UNIX kernel
● http://pdos.csail.mit.edu/6.828/2012/xv6/xv6-rev7.pdf

● xv6 comes with a book
● http://pdos.csail.mit.edu/6.828/2012/xv6/book-rev7.pdf

http://pdos.csail.mit.edu/6.828/2012/overview.html
http://pdos.csail.mit.edu/6.828/2012/xv6/xv6-rev7.pdf
http://pdos.csail.mit.edu/6.828/2012/xv6/book-rev7.pdf


  

Course organization

● Lectures
● High level concepts and abstractions

● Reading
● Xv6 book + source code

● Labs
● Coding real parts of the xv6 kernel

● Design riddles
● Understanding tradeoffs, explaining parts of xv6



  

Prerequisites 

● Solid C coding skills
● Xv6 is written in C
● You need to read, code and debug
● All labs are in C
● Many questions about explaining xv6 code

● Be able to code in Linux
● Some assembly skills



  

What is an operating system?



  

● Want to run your code on a piece of hardware

● GCC + some linking 
magic
● Crashes....

● Read manual
● Code a tiny boot layer

● Initialize CPU, memory
● Jump to your code

● This is your OS!



  

● Want to print out a string
● On the screen or serial line



  

● Implement a general function!
● First device driver



  

Device drivers

● Abstract hardware
● Provide high-level interface
● Hide minor differences
● Implement some optimizations

– Batch requests

● Examples
● Console, disk, network interface
● ...virtually any hardware you know



  

● Want to run two programs

● What does it mean?
● Only one CPU

● Run one, then run 
another one



  

● Want to run two programs

● Exit into the kernel 
periodically

● Context switch
● Save and restore 

context
● Essentially registers



  

● What! Two programs in one memory? 

● Am I cheating with 
the linker?



  

Virtual address spaces

● Illusion of a private memory for each application
● Keep a description of an address space
● In one of the registers

● All normal program addresses are inside the 
address space

● OS maintains description of address spaces
● Switches between them



  

● What if one program fails to release the CPU?
● It run forever. Need a way to preempt it. How? 



  

Scheduling

● Pick which application to run next
● And for how long

● Illusion of a private CPU for each task
● Frequent context switching



  

● What if one program corrupts the kernel? Or 
other programs? 



  

Isolation

● Today is done with address spaces in hardware
● Many issues, e.g. shared device drivers, files, etc.

● Can it be done in software? 



  

● What about communication? 
● Can we invoke a function in a kernel? 



  

● What if you want to save some data? 
● Permanent storage

● E.g., disks

● But disks are just arrays of blocks
● wrtie(block_number, block_data)

● Files
● High level abstraction for saving data
● fd = open(“contacts.txt”);
● fpritnf(fd, “Name:%s\n”, name);



  

● What if you want to send data over the 
network? 

● Network interfaces
● Send/receive Ethernet packets (Level 2)
● Two low level

● Sockets
● High level abstraction for sending data



  

● Linux/Windows/Mac 



  

Multiple levels of abstraction
● Multiple programs

● Each has illusion of a private memory and CPU
● Context switching, scheduling, isolation, 

communication

● File systems
● Multiple files, concurrent I/O requests
● Consistency, caching

● Network protocols
● Multiple virtual network connections

● Memory management



  

● Want to run a Windows application on Linux? 



  

What is the 
problem? 

● Hardware is not 
designed to be 
multiplexed

● Loss of isolation



  

Virtual machine

Efficient duplicate 
of a real machine
● Compatibility
● Performance
● Isolation



  

Virtual machine

Efficient duplicate 
of a real machine
● Compatibility
● Performance
● Isolation



  

Trap and emulate



  

What hardware do we have today? 
● 8 cores (2 Ghz) 

● Each runs two threads

● 64 Gig of RAM
● 20MB Level 3 cache

● 10 Gbps network controllers



  

Intel supports 80 millions of packets per second 
● L3 forwarding of 64 byte packets

Lets do the math: 
● How many cycles per packet?

● 1/80 000 000 = 1.25e-80 seconds per packet on 1 core

● Or in nanoseconds: 
● 12.5 nanoseconds per packet

● Or in cycles (remember 2Ghz, or 2 cycles per 
nanosecond)
● 25 cycles per packet

● But we have 8 cores, so
● 25*8 = 200 cycles per packet



  

Can you allow an OS on the critical path?
● Layer 2 → IP → TCP → Sockets → User-level? 
● No! You want to run bare metal!



  

Ok, so what is an operating system?



  

References

● Impressive Packet Processing Performance 
Enables Greater Workload Consolidation. Intel. 
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/communications-packet-processing-brief.pdf

● Intel Data Plane Development Kit (Intel DPDK)

http://www.intel.com/content/dam/www/public/us/en/documents/presentation/dpdk-packet-processing-ia-overview-presentation.pdf

http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/communications-packet-processing-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/dpdk-packet-processing-ia-overview-presentation.pdf
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