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Traditional operating system



  

Virtual machines



  

A bit of history
● Virtual machines were popular in 60s-70s

● Share resources of mainframe computers 
[Goldberg 1974]

● Run multiple single-user operating systems
● Interest is lost by 80s-90s

● Development of multi-user OS
● Rapid drop in hardware cost

● Hardware support for virtualizaiton was lost



  

What is the 
problem? 

● Hardware is not 
designed to be 
multiplexed

● Loss of isolation



  

Virtual machine

Efficient duplicate 
of a real machine
● Compatibility
● Performance
● Isolation



  

Trap and emulate



  

What needs to be emulated?

● CPU and memory
● Register state
● Memory state

● Memory management unit
● Page tables, segments

● Platform
● Interrupt controller, timer, buses

● BIOS
● Peripheral devices

● Disk, network interface, serial line



  

x86 is not virtualizable

● Some instructions (sensitive) read or update the 
state of virtual machine and don't trap (non-
privileged)
● 17 sensitive, non-privileged instructions [Robin et al 

2000]



  

x86 is not virtualizable (II)

● Examples
● popf doesn't update interrupt flag (IF)

– Impossible to detect when guest disables interrupts

● push %cs can read code segment selector (%cs) 
and learn its CPL
– Guest gets confused



  

Solution space

● Parse the instruction stream and detect all sensitive 
instructions dynamically
● Interpretation (BOCHS, JSLinux)
● Binary translation (VMWare, QEMU)

● Change the operating system
● Paravirtualization (Xen, L4, Denali, Hyper-V)

● Make all sensitive instructions privileged!
● Hardware supported virtualization (Xen, KVM, VMWare)

– Intel VT-x, AMD SVM



  

Basic blocks of a 
virtual machine monitor:

QEMU example



  



  

Interpreted execution:
BOCHS, JSLinux



  

What does it mean to 
run guest?

● Bochs internal 
emulation loop

● Similar to non-
pipelined CPU like 
8086

● How many cycles per 
instruction?



  

Binary translation:
VMWare/QEMU



  



  



  



  

Interpreted execution revisited:
Bochs



  

Instruction trace cache

● How to make this loop 
faster?



  

Instruction trace cache

● 50% of time in the main loop
● Fetch, decode, dispatch

● Trace cache (Bochs v2.3.6)
● Hardware idea (Pentium 4)
● Trace of up to 16 instructions 

(32K entries)
● 20% speedup



  

Improve branch prediction

● 20 cycles 
penalty on 
Core 2 Duo



  

Improve branch prediction

● Split handlers to avoid conditional logic
● Decide the handler at decode time (15% speedup)



  

Resolve memory references 
without misprediction

● Bochs v2.3.5 has 30 possible branch targets for 
the effective address computation

● Effective Addr = (Base + Index*Scale + Displacement) 
mod(2^AddrSize)

● e.g. Effective Addr = Base, Effective Addr = Displacement
● 100% chance of misprediction

● Two techniques to improve prediction: 
● Reduce the number of targets: leave only 2 forms 
● Replicate indirect branch point

● 40% speedup



  

Time to boot Windows



  

Cycle costs



  

Paravirtualization:
Xen



  

● Complete illusion of 
physical hardware
● Trap _all_ sensitive 

instructions
● Example: page table 

update

Full virtualization

Virtualized OS

Hypervisor

 PTE update (mov)
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Hypervisor
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● Complete illusion of 
physical hardware
● Trap _all_ sensitive 

instructions
● Example: page table 

update

Full virtualization

Virtualized OS 

Hypervisor

 PTE update (mov)

  if (safe) {
     update_pte();
     emulate_mov();
  }

 Next instruction

Trap



  

Performance problems

Virtualized OS 

Hypervisor

 PTE update (mov)

  if (safe) {
     update_pte();
     emulate_mov();
  }

 Next instruction

Trap

● Traps are slow
● Binary translation is faster

● For some events



  

Paravirtualization

● No illusion of hardware
● Instead: paravirtualized interface

● Explicit hypervisor calls to update sensitive state
– Page tables, interrupt flag

● But Guest OS needs porting
● Applications run natively in Ring 3



  

Paravirtualization
Paravirtualized OS 

Hypervisor

PTE update

Batch updates
update 1
update 2

Invoke hypervisor

if (safe)
     update



  

Xen



  

Hardware support for virtualization:
KVM



  

Basic idea

Host instruction stream

Guest instruction stream

VM Entry VM Exit

Host State

Guest State

VMCS



  

New mode of operation:VMX root

● VMX root operation
● 4 privilege levels

● VMX non-root operation
● 4 privilege levels as well, but unable to invoke 

VMX root instructions
● Guest runs until it performs exception causing it 

to exit
● Rich set of exit events
● Guest state and exit reason are stored in VMCS



  

Virtual machine control structure 
(VMCS)

● Guest State
● Loaded on entries
● Saved on exits

● Host State
● Saved on entries
● Loaded on exits

● Control fields
● Execution control, exits control, entries control



  

Guest state

● Register state
● Non-register state

● Activity state: 
– active
– inactive (HLT, Shutdown, wait for Startup IPI 

interprocessor interrupt))
● Interruptibility state



  

Host state

● Only register state
● ALU registers, 

● also:
● Base page table address (CR3)
● Segment selectors
● Global descriptors table 
● Interrupt descriptors table



  

VM-execution controls
(asynchronous events control)

Reserved

Bit 31 Bit 0

External interrupts (maskable or IRQs) cause 
exits(yes/no)
If not, then they delivered through guest
IDT

NMI cause exits (yes/no)
If not, then they are delivered normally through 
guest IDT (descriptor 2)



  

VM-execution controls
(synchronous events control, not all reasons are shown)

Reserved

Bit 31 Bit 0PA
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Exception bitmap
(one for each of 32 IA-32 exceptions)

Bit 31 Bit 0

● IA-32 defines 32 exception vectors (interrupts 
0-31)

● Each of them is configured to cause or not 
VM-exit

14 – page fault



  

KVM



  

Nested page tables

hPT gPT Host Physical

gPT

VMM Host Virtual

Guest Physical

Guest Virtual
gCR3

hCR3

0

0

0

PT

CR3 used by VMM

Translation can be cached in TLB

paged by CR3

paged by hCR3

paged by gCR3



  

Page table lookup 
● 4-level page table



  

Nested page table lookup



  

Efficient I/O



Where is the bottleneck
● What is the bottleneck in case of 

virtualization?
● CPU? 

– CPU bound workloads execute natively on the real 
CPU 

– Sometimes JIT compilation (binary translation makes 
them even faster [Dynamo]

● Everything what is inside VM is fast!
● What is the most frequent operation 

disturbing execution of VM? 
● Device I/O!

● Disk, Network, Graphics



Virtual devices in Xen

51



Virtual devices in Xen
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Virtual devices in Xen
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Virtual devices in Xen

54



Virtual devices in Xen

55



How to make the I/O fast?
● Take into account specifics of the device-

driver communication
● Bulk

– Large packets (512B – 4K)
● Session oriented 

– Connection is established once (during boot)
– No short IPCs, like function calls
– Costs of establishing an IPC channel are irrelevant

● Throughput oriented
– Devices have high delays anyway

● Asynchronous
– Again, no function calls, devices are already 

asynchronous



Shared rings and events



Shared rings



Shared rings



Shared rings



Shared rings



Where is a performance bottleneck 
here?



Eliminate cache thrashing



GPUs
● Sending frames from the framebuffer

● No hardware acceleration
● Too slow

● OpenGL/DirectX level virtualization
● Send high-level OpenGL commands over rings
● OpenGL operations will be executed on the real 

GPU  



Devices supporting virtualization
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