

Lecture 14: Virtualization

Anton Burtsev
November, 2021

Traditional operating system

Virtual machines

A bit of history
● Virtual machines were popular in 60s-70s

● Share resources of mainframe computers
[Goldberg 1974]

● Run multiple single-user operating systems
● Interest is lost by 80s-90s

● Development of multi-user OS
● Rapid drop in hardware cost

● Hardware support for virtualizaiton was lost

What is the
problem?

● Hardware is not
designed to be
multiplexed

● Loss of isolation

Virtual machine

Efficient duplicate
of a real machine
● Compatibility
● Performance
● Isolation

Trap and emulate

What needs to be emulated?

● CPU and memory
● Register state
● Memory state

● Memory management unit
● Page tables, segments

● Platform
● Interrupt controller, timer, buses

● BIOS
● Peripheral devices

● Disk, network interface, serial line

x86 is not virtualizable

● Some instructions (sensitive) read or update the
state of virtual machine and don't trap (non-
privileged)
● 17 sensitive, non-privileged instructions [Robin et al

2000]

x86 is not virtualizable (II)

● Examples
● popf doesn't update interrupt flag (IF)

– Impossible to detect when guest disables interrupts

● push %cs can read code segment selector (%cs)
and learn its CPL
– Guest gets confused

Solution space

● Parse the instruction stream and detect all sensitive
instructions dynamically
● Interpretation (BOCHS, JSLinux)
● Binary translation (VMWare, QEMU)

● Change the operating system
● Paravirtualization (Xen, L4, Denali, Hyper-V)

● Make all sensitive instructions privileged!
● Hardware supported virtualization (Xen, KVM, VMWare)

– Intel VT-x, AMD SVM

Basic blocks of a
virtual machine monitor:

QEMU example

Interpreted execution:
BOCHS, JSLinux

What does it mean to
run guest?

● Bochs internal
emulation loop

● Similar to non-
pipelined CPU like
8086

● How many cycles per
instruction?

Binary translation:
VMWare/QEMU

Interpreted execution revisited:
Bochs

Instruction trace cache

● How to make this loop
faster?

Instruction trace cache

● 50% of time in the main loop
● Fetch, decode, dispatch

● Trace cache (Bochs v2.3.6)
● Hardware idea (Pentium 4)
● Trace of up to 16 instructions

(32K entries)
● 20% speedup

Improve branch prediction

● 20 cycles
penalty on
Core 2 Duo

Improve branch prediction

● Split handlers to avoid conditional logic
● Decide the handler at decode time (15% speedup)

Resolve memory references
without misprediction

● Bochs v2.3.5 has 30 possible branch targets for
the effective address computation

● Effective Addr = (Base + Index*Scale + Displacement)
mod(2^AddrSize)

● e.g. Effective Addr = Base, Effective Addr = Displacement
● 100% chance of misprediction

● Two techniques to improve prediction:
● Reduce the number of targets: leave only 2 forms
● Replicate indirect branch point

● 40% speedup

Time to boot Windows

Cycle costs

Paravirtualization:
Xen

● Complete illusion of
physical hardware
● Trap _all_ sensitive

instructions
● Example: page table

update

Full virtualization

Virtualized OS

Hypervisor

 PTE update (mov)

● Complete illusion of
physical hardware
● Trap _all_ sensitive

instructions
● Example: page table

update

Full virtualization

Virtualized OS

Hypervisor

PTE update (mov)

Trap

● Complete illusion of
physical hardware
● Trap _all_ sensitive

instructions
● Example: page table

update

Full virtualization

Virtualized OS

Hypervisor

 PTE update (mov)

 if (safe) {
 update_pte();
 emulate_mov();
 }

 Next instruction

Trap

Performance problems

Virtualized OS

Hypervisor

 PTE update (mov)

 if (safe) {
 update_pte();
 emulate_mov();
 }

 Next instruction

Trap

● Traps are slow
● Binary translation is faster

● For some events

Paravirtualization

● No illusion of hardware
● Instead: paravirtualized interface

● Explicit hypervisor calls to update sensitive state
– Page tables, interrupt flag

● But Guest OS needs porting
● Applications run natively in Ring 3

Paravirtualization
Paravirtualized OS

Hypervisor

PTE update

Batch updates
update 1
update 2

Invoke hypervisor

if (safe)
 update

Xen

Hardware support for virtualization:
KVM

Basic idea

Host instruction stream

Guest instruction stream

VM Entry VM Exit

Host State

Guest State

VMCS

New mode of operation:VMX root

● VMX root operation
● 4 privilege levels

● VMX non-root operation
● 4 privilege levels as well, but unable to invoke

VMX root instructions
● Guest runs until it performs exception causing it

to exit
● Rich set of exit events
● Guest state and exit reason are stored in VMCS

Virtual machine control structure
(VMCS)

● Guest State
● Loaded on entries
● Saved on exits

● Host State
● Saved on entries
● Loaded on exits

● Control fields
● Execution control, exits control, entries control

Guest state

● Register state
● Non-register state

● Activity state:
– active
– inactive (HLT, Shutdown, wait for Startup IPI

interprocessor interrupt))
● Interruptibility state

Host state

● Only register state
● ALU registers,

● also:
● Base page table address (CR3)
● Segment selectors
● Global descriptors table
● Interrupt descriptors table

VM-execution controls
(asynchronous events control)

Reserved

Bit 31 Bit 0

External interrupts (maskable or IRQs) cause
exits(yes/no)
If not, then they delivered through guest
IDT

NMI cause exits (yes/no)
If not, then they are delivered normally through
guest IDT (descriptor 2)

VM-execution controls
(synchronous events control, not all reasons are shown)

Reserved

Bit 31 Bit 0PA
US
E

MO
NI
TO
R

A
ct

iv
at

e
I/

O
 b

it
m

ap
s

U
nc

on
di

ti
on

al
 I

/O

HL
T

IN
VL
PG

Exception bitmap
(one for each of 32 IA-32 exceptions)

Bit 31 Bit 0

● IA-32 defines 32 exception vectors (interrupts
0-31)

● Each of them is configured to cause or not
VM-exit

14 – page fault

KVM

Nested page tables

hPT gPT Host Physical

gPT

VMM Host Virtual

Guest Physical

Guest Virtual
gCR3

hCR3

0

0

0

PT

CR3 used by VMM

Translation can be cached in TLB

paged by CR3

paged by hCR3

paged by gCR3

Page table lookup
● 4-level page table

Nested page table lookup

Efficient I/O

Where is the bottleneck
● What is the bottleneck in case of

virtualization?
● CPU?

– CPU bound workloads execute natively on the real
CPU

– Sometimes JIT compilation (binary translation makes
them even faster [Dynamo]

● Everything what is inside VM is fast!
● What is the most frequent operation

disturbing execution of VM?
● Device I/O!

● Disk, Network, Graphics

Virtual devices in Xen

51

Virtual devices in Xen

52

Virtual devices in Xen

53

Virtual devices in Xen

54

Virtual devices in Xen

55

How to make the I/O fast?
● Take into account specifics of the device-

driver communication
● Bulk

– Large packets (512B – 4K)
● Session oriented

– Connection is established once (during boot)
– No short IPCs, like function calls
– Costs of establishing an IPC channel are irrelevant

● Throughput oriented
– Devices have high delays anyway

● Asynchronous
– Again, no function calls, devices are already

asynchronous

Shared rings and events

Shared rings

Shared rings

Shared rings

Shared rings

Where is a performance bottleneck
here?

Eliminate cache thrashing

GPUs
● Sending frames from the framebuffer

● No hardware acceleration
● Too slow

● OpenGL/DirectX level virtualization
● Send high-level OpenGL commands over rings
● OpenGL operations will be executed on the real

GPU

Devices supporting virtualization

References

● A Comparison of Software and Hardware
Techniques for x86 Virtualization. Keith Adams, Ole
Agesen, ASPLOS'06

● Bringing Virtualization to the x86 Architecture with
the Original VMware Workstation. Edouard Bugnion,
Scott Devine, Mendel Rosenblum, Jeremy
Sugerman, Edward Y. Wang, ACM TCS'12.

● Virtualization Without Direct Execution or Jitting:
Designing a Portable Virtual Machine Infrastructure.
Darek Mihocka, Stanislav Shwartsman, ISCA-35.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Virtual devices in Xen
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	How to make the I/O fast?
	Shared rings and events
	Shared rings
	Slide 59
	Slide 60
	Slide 61
	Where is a performance bug here?
	Eliminate cache thrashing
	GPUs
	Devices supporting virtualization
	Slide 66

