
Lecture 13 - Intel SGX

Anton Burtsev
November, 2021

Motivation for SGX

• Security and isolation in
commodity systems
• Privilege levels (rings) protect the

kernel from user programs

Motivation for SGX

• Security and isolation in
commodity systems
• Privilege levels (rings) protect the

kernel from user programs
• Page tables protect programs

from each other

Motivation for SGX

• Security and isolation in
commodity systems
• Privilege levels (rings) protect the

kernel from user programs
• Page tables protect programs

from each other

Operating systems haven’t changed for decades

5

 40 years old
Time-sharing
Expensive hardware
Overly general

Ken Thompson (sitting) and Dennis Ritchie working together at a PDP-11 (1972)

•17,000,000 LoC
• 40 subsystems
• 3,200 device drivers

6

Modern kernels are vulnerable

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
0

50
100
150
200
250
300
350
400
450
500

Linux Kernel Vulnerabilities by Year

Motivation for SGX

• Security and isolation in
commodity systems
• Privilege levels (rings) protect the

kernel from user programs
• Page tables protect programs

from each other

• Until one program (malware)
attacks the kernel and then
attacks any program in the
system

TCB of a modern system

• Attack surface is giant
• OS kernel

• 17,000,000 lines of code

• 40 major subsystems

• 3,200 device drivers

• Virtual Machine Monitor
• Hypervisor

• QEMU emulator

• Device drivers

• Parts of host kernel
(KVM)/Domain0 (Xen)

Enclaves

• Applications can protect their
secrets

• TCB is small
• Intel CPU

• App code itself

• Protected from malicious
• BIOS

• SMM

• Hypervisor

• Kernel

• Familiar application environment

SGX enclaves

• Trusted execution environment embedded in the process

SGX enclaves

• Trusted execution environment embedded in the process
• It’s own code and data
• Controlled entry points
• Multi-threading

• Confidentiality

• Integrity

Performance

• Enters and exits are expensive

 EEXIT 3,330 cycles
 EENTER 3,800 cycles
 Intel SDK adds another 800 cycles

 Normal syscall is 250 cycles

• Memory is encrypted

• Limited physical memory

Performance

Orenbach, et al. "Eleos: ExitLess OS services for SGX enclaves." EuroSys’17.

• Enters and exits are expensive

 EEXIT 3,330 cycles
 EENTER 3,800 cycles
 Intel SDK adds another 800 cycles

 Normal syscall is 250 cycles

• Memory is encrypted

• Limited physical memory

Performance

Orenbach, et al. "Eleos: ExitLess OS services for SGX enclaves." EuroSys’17.

• Enters and exits are expensive

 EEXIT 3,330 cycles
 EENTER 3,800 cycles
 Intel SDK adds another 800 cycles

 Normal syscall is 250 cycles

• Memory is encrypted

• Limited physical memory

 128MB (in practice only 90MB available for your application)

 40,000 cycles per EPC fault (25K driver, 7K exit/entry, 8K indirect)

Performance

Orenbach, et al. "Eleos: ExitLess OS services for SGX enclaves." EuroSys’17.

• 4KB page

 256 byte DB record

 16 records per page

 Assume we just copy them
 50 cycles per record, 50x16 = 800 cycles per page
 Inside SGX this numuber is 40,000 + 800 cycles per page or
51x slower

 Maybe we lookup record in a hash-table
 300 cycles per lookup, 300x16 = 4,800 cycles per page
 Inside SGX it’s 44,800 cycles or 9x slower

Perspective (40,000 cycles per EPC page-fault)

Orenbach, et al. "Eleos: ExitLess OS services for SGX enclaves." EuroSys’17.

• 10x-33x slowdown

 2MB

 9000 cycles (inside the
enclave) vs 1000
(outside) per-request

Performance: KV store (parameter server)

Orenbach, et al. "Eleos: ExitLess OS services for SGX enclaves." EuroSys’17.

Security

Powerful adversary model

• OS + VMM
• Controlled execution environment
• Control over page faults
• Suspending execution

• Single stepping

• Flushing caches

• Every architectural component of the CPU
• Branch target buffers

• S. Lee et al., “Inferring fine-grained control flow inside SGX enclaves with branch shadowing,” in USENIX Security, 2017

• G. Chen et al., “SgxPectre attacks: Stealing intel secrets from SGX enclaves via speculative execution,” arXiv preprint, 2018.

• Pattern-history table
• D. O'Keeffe et al., "Spectre attack against SGX enclave," 2018

• Caches
• Brasser et al., "Software grand exposure: SGX cache attacks are practical," in WOOT, 2017

• J. Gotzfried et al., "Cache attacks on Intel SGX," in EuroSec, 2017

• A. Moghimi et al., "Cachezoom: How SGX amplifies the power of cache attacks," in CHES, 2017

• M. Hahnel et al., "High-resolution side channels for untrusted operating systems," in USENIX ATC, 2017

• M. Schwarz et al., "Malware guard extension: Using SGX to conceal cache attacks," in DIMVA, 2017

• DRAM row buffer
• W. Wang et al., "Leaky cauldron on the dark land: Understanding memory side-channel hazards in SGX," in CCS, 2017

• Page-tables
• W. Wang et al., “Leaky cauldron on the dark land: Understanding memory side-channel hazards in SGX,” in CCS, 2017

• J. Van Bulck et al., “Telling your secrets without page faults: stealthy page table-based attacks on enclaved execution,” in USENIX, 2017

• Page-fault exception handlers
• Y. Xu et al., “Controlled-channel attacks: Deterministic side channels for untrusted operating systems,” 2015

• S. Shinde and other, “Preventing page faults from telling your secrets,” in CCS, 2016

• Speculative execution
• J. V. Bulck et al., “Foreshadow: Extracting the keys to the Intel SGX kingdom with transient out-of-order execution,” in USENIX, 2018

Side channel attacks

• Controlled channel attacks

Page fault tracing attacks

Y. Xu et al., “Controlled-channel attacks: Deterministic side channels for untrusted operating systems,” 2015

• Page fault address depends on sensitive data

Page fault tracing attacks

Y. Xu et al., “Controlled-channel attacks: Deterministic side channels for untrusted operating systems,” 2015

• Insertions are
deterministic
• Word order is known
• Observe sequence of

page faults

• Lookup exhibits
identical sequences

Example: recovering text via spell checker

Y. Xu et al., “Controlled-channel attacks: Deterministic side channels for untrusted operating systems,” 2015

• Wizard of Oz
• All words
• 96% accuracy

Example: recovering text via spell checker

Y. Xu et al., “Controlled-channel attacks: Deterministic side channels for untrusted operating systems,” 2015

• JPEG
• Process 8x8 blocks
• Function fits on one page

• Cannot reason about input-dependent page-
faults

• Can reason about number of
pagefaults
• Optimizations in the code take shortcuts

Example: recovering JPEG images

Y. Xu et al., “Controlled-channel attacks: Deterministic side channels for untrusted operating systems,” 2015

Cache attacks: Prime + probe

Brasser et al., "Software grand exposure: SGX cache attacks are practical," in WOOT, 2017

• Isolated core

• Execute attack in L1
• Separate instruction and

data caches
• No self-pollution

• SMT
• Uninterrupted execution

• Performance Monitoring
Counters (PMC)
• Cache-misses

Controlled execution environment

Brasser et al., "Software grand exposure: SGX cache attacks are practical," in WOOT, 2017

• SGX does not clear branch history

Branch shadowing attack

S. Lee et al., “Inferring fine-grained control flow inside SGX enclaves with branch shadowing,” in USENIX Security, 2017

• SGX does not clear branch
history

• Can we extract this
information?

• Last Branch Record (LBR)

• {from, to, predicted, timestamp}

Branch shadowing attack

S. Lee et al., “Inferring fine-grained control flow inside SGX enclaves with branch shadowing,” in USENIX Security, 2017

• 66% of 1024 RSA private key from a
single run
• Full key from 10 runs

Branch shadowing attack

S. Lee et al., “Inferring fine-grained control flow inside SGX enclaves with branch shadowing,” in USENIX Security, 2017

Possible Defenses

Data-oblivious primitives

• Assignments and comparisons

Ohrimenko, Olga, et al. "Oblivious multi-party machine learning on trusted processors." USENIX Security, 2016.

Data-oblivious primitives

• Assignments and comparisons

Ohrimenko, Olga, et al. "Oblivious multi-party machine learning on trusted processors." USENIX Security, 2016.

• Array access
• Scan entire array
• AVX instructions

Data-oblivious primitives

Ohrimenko, Olga, et al. "Oblivious multi-party machine learning on trusted processors." USENIX Security, 2016.

• It’s possible to build an oblivious database
• Oblivious primitives for accessing records
• Oblivious sort for joins

• Parallel Bitonic sort

• N*(log(N))2

• For a 1M records log2(1,000,000) = 20
• 10M records log2(10,000,000) = 23

How does this apply to databases

What’s the future?

• Will be fixed
• Caches

• Partitioned caches

• Branch predictors and likely other microarchitectural components of the CPU
• Speculative Taint Tracking (STT)

• Yu, Jiyong, et al. "Speculative Taint Tracking (STT): A Comprehensive Protection for
Speculatively Accessed Data." Micro, 2019

• Will not be fixed
• Paging attacks

• SGX inherently leaves page table under control of the OS

• Memory
• Enclave’s memory is observable by the OS and hardware attacks

• ORAM is 10x overhead

What will be fixed in hardware?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

