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Operating systems haven’t changed for decades
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 40 years old
Time-sharing
Expensive hardware
Overly general

Ken Thompson (sitting) and Dennis Ritchie working together at a PDP-11 (1972)



•17,000,000 LoC
• 40 subsystems
• 3,200 device drivers
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Modern kernels are vulnerable
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Motivation for SGX

• Security and isolation in 
commodity systems
• Privilege levels (rings) protect the 

kernel from user programs
• Page tables protect programs 

from each other

• Until one program (malware) 
attacks the kernel and then 
attacks any program in the 
system



TCB of a modern system

• Attack surface is giant
• OS kernel

• 17,000,000 lines of code

• 40 major subsystems

• 3,200 device drivers

• Virtual Machine Monitor
• Hypervisor

• QEMU emulator

• Device drivers

• Parts of host kernel 
(KVM)/Domain0 (Xen)



Enclaves

• Applications can protect their 
secrets

• TCB is small
• Intel CPU

• App code itself

• Protected from malicious
• BIOS

• SMM

• Hypervisor

• Kernel

• Familiar application environment



SGX enclaves

• Trusted execution environment embedded in the process



SGX enclaves

• Trusted execution environment embedded in the process
• It’s own code and data
• Controlled entry points
• Multi-threading

• Confidentiality

• Integrity



Performance



• Enters and exits are expensive

 EEXIT 3,330 cycles
 EENTER 3,800 cycles
 Intel SDK adds another 800 cycles

 Normal syscall is 250 cycles

• Memory is encrypted

• Limited physical memory

Performance

Orenbach, et al. "Eleos: ExitLess OS services for SGX enclaves." EuroSys’17.
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• Enters and exits are expensive

 EEXIT 3,330 cycles
 EENTER 3,800 cycles
 Intel SDK adds another 800 cycles

 Normal syscall is 250 cycles

• Memory is encrypted

• Limited physical memory

 128MB (in practice only 90MB available for your application)

 40,000 cycles per EPC fault (25K driver, 7K exit/entry, 8K indirect)

Performance

Orenbach, et al. "Eleos: ExitLess OS services for SGX enclaves." EuroSys’17.



• 4KB page

 256 byte DB record

 16 records per page

 Assume we just copy them
 50 cycles per record, 50x16 = 800 cycles per page
 Inside SGX this numuber is 40,000 + 800 cycles per page or 
51x slower

 Maybe we lookup record in a hash-table
 300 cycles per lookup, 300x16 = 4,800 cycles per page
 Inside SGX it’s 44,800 cycles or 9x slower

Perspective (40,000 cycles per EPC page-fault)

Orenbach, et al. "Eleos: ExitLess OS services for SGX enclaves." EuroSys’17.



• 10x-33x slowdown

 2MB

 9000 cycles (inside the 
enclave) vs 1000 
(outside) per-request 

Performance: KV store (parameter server)

Orenbach, et al. "Eleos: ExitLess OS services for SGX enclaves." EuroSys’17.



Security



Powerful adversary model 

• OS + VMM
• Controlled execution environment
• Control over page faults
• Suspending execution

• Single stepping

• Flushing caches





• Every architectural component of the CPU
• Branch target buffers

• S. Lee et al., “Inferring fine-grained control flow inside SGX enclaves with branch shadowing,” in USENIX Security, 2017

• G. Chen et al., “SgxPectre attacks: Stealing intel secrets from SGX enclaves via speculative execution,” arXiv preprint, 2018.                                                                      
                                                                                                                        

• Pattern-history table
• D. O'Keeffe et al., "Spectre attack against SGX enclave," 2018                                                                                                                            

• Caches
• Brasser et al.,  "Software  grand  exposure:  SGX  cache  attacks  are practical," in WOOT, 2017

• J. Gotzfried et al., "Cache attacks on Intel SGX," in EuroSec, 2017

• A. Moghimi et al., "Cachezoom: How SGX amplifies the power of cache attacks," in CHES, 2017

• M. Hahnel et al., "High-resolution side channels for untrusted operating systems," in USENIX ATC, 2017

• M.  Schwarz et al.,  "Malware  guard  extension:  Using  SGX  to conceal cache attacks," in DIMVA, 2017                                                                                                         
                                     

• DRAM row buffer
• W.  Wang et al.,  "Leaky  cauldron  on  the  dark  land: Understanding memory side-channel hazards in SGX," in CCS, 2017 

• Page-tables
• W. Wang et al., “Leaky cauldron on the dark land: Understanding memory side-channel hazards in SGX,” in CCS, 2017

• J. Van Bulck et al., “Telling your secrets without page faults: stealthy page table-based attacks on enclaved execution,” in USENIX, 2017

• Page-fault exception handlers
• Y. Xu et al., “Controlled-channel attacks: Deterministic side channels for untrusted operating systems,” 2015

• S. Shinde and other, “Preventing page faults from telling your secrets,” in CCS, 2016

• Speculative execution
• J. V. Bulck et al., “Foreshadow: Extracting the keys to the Intel SGX kingdom with transient out-of-order execution,” in USENIX, 2018

Side channel attacks



• Controlled channel attacks

Page fault tracing attacks

Y. Xu et al., “Controlled-channel attacks: Deterministic side channels for untrusted operating systems,” 2015



• Page fault address depends on sensitive data

Page fault tracing attacks

Y. Xu et al., “Controlled-channel attacks: Deterministic side channels for untrusted operating systems,” 2015



• Insertions are 
deterministic
• Word order is known
• Observe sequence of 

page faults

• Lookup exhibits 
identical sequences

Example: recovering text via spell checker

Y. Xu et al., “Controlled-channel attacks: Deterministic side channels for untrusted operating systems,” 2015



• Wizard of Oz
• All words
• 96% accuracy

Example: recovering text via spell checker

Y. Xu et al., “Controlled-channel attacks: Deterministic side channels for untrusted operating systems,” 2015



• JPEG
• Process 8x8 blocks
• Function fits on one page

• Cannot reason about input-dependent page-
faults

• Can reason about number of 
pagefaults
• Optimizations in the code take shortcuts

Example: recovering JPEG images

Y. Xu et al., “Controlled-channel attacks: Deterministic side channels for untrusted operating systems,” 2015





Cache attacks: Prime + probe

Brasser et al.,  "Software  grand  exposure:  SGX  cache  attacks  are practical," in WOOT, 2017



• Isolated core

• Execute attack in L1
• Separate instruction and 

data caches
• No self-pollution

• SMT
• Uninterrupted execution

• Performance Monitoring 
Counters (PMC)
• Cache-misses

Controlled execution environment

Brasser et al.,  "Software  grand  exposure:  SGX  cache  attacks  are practical," in WOOT, 2017



• SGX does not clear branch history

Branch shadowing attack

S. Lee et al., “Inferring fine-grained control flow inside SGX enclaves with branch shadowing,” in USENIX Security, 2017



• SGX does not clear branch 
history

• Can we extract this 
information? 

• Last Branch Record (LBR)

• {from, to, predicted, timestamp}

Branch shadowing attack

S. Lee et al., “Inferring fine-grained control flow inside SGX enclaves with branch shadowing,” in USENIX Security, 2017



• 66% of 1024 RSA private key from a 
single run
• Full key from 10 runs

Branch shadowing attack

S. Lee et al., “Inferring fine-grained control flow inside SGX enclaves with branch shadowing,” in USENIX Security, 2017



Possible Defenses



Data-oblivious primitives

• Assignments and comparisons

Ohrimenko, Olga, et al. "Oblivious multi-party machine learning on trusted processors." USENIX Security, 2016.



Data-oblivious primitives

• Assignments and comparisons
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• Array access
• Scan entire array 
• AVX instructions

Data-oblivious primitives

Ohrimenko, Olga, et al. "Oblivious multi-party machine learning on trusted processors." USENIX Security, 2016.



• It’s possible to build an oblivious database
• Oblivious primitives for accessing records
• Oblivious sort for joins

• Parallel Bitonic sort

• N*(log(N))2

• For a 1M records log2(1,000,000) = 20
• 10M records log2(10,000,000) = 23

How does this apply to databases



What’s the future?



• Will be fixed
• Caches

• Partitioned caches

• Branch predictors and likely other microarchitectural components of the CPU
• Speculative Taint Tracking (STT)

• Yu, Jiyong, et al. "Speculative Taint Tracking (STT): A Comprehensive Protection for 
Speculatively Accessed Data." Micro, 2019

• Will not be fixed
• Paging attacks

• SGX inherently leaves page table under control of the OS

• Memory
• Enclave’s memory is observable by the OS and hardware attacks

• ORAM is 10x overhead

What will be fixed in hardware?
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