250P: Computer Systems Architecture

Lecture 4: Basics of pipelining

Anton Burtsev
October, 2021

View from 5,000 Feet

Building a Car

Time

Building a Car

Unpipelined

The Assembly Line

Performance Improvements?

Does it take longer to finish each individual job?

Does it take shorter to finish a series of jobs?

What assumptions were made while answering these questions?

Is a 10 -stage pipeline better than a 5 -stage pipeline?

Quantitative Effects

- As a result of pipelining:
- Time in ns per instruction goes up
- Each instruction takes more cycles to execute
- But... average CPI remains roughly the same
- Clock speed goes up
- Total execution time goes down, resulting in lower average time per instruction
- Under ideal conditions, speedup
$=$ ratio of elapsed times between successive instruction completions
= number of pipeline stages = increase in clock speed

Clocks and Latches

Clocks and Latches

Some Equations

- Unpipelined: time to execute one instruction = T + Tovh
- For an N -stage pipeline, time per stage $=\mathrm{T} / \mathrm{N}+$ Tovh
- Total time per instruction $=\mathrm{N}(\mathrm{T} / \mathrm{N}+\mathrm{Tovh})=\mathrm{T}+\mathrm{N}$ Tovh
- Clock cycle time $=$ T/N + Tovh
- Clock speed = 1 / (T/N + Tovh)
- Ideal speedup $=(T+T o v h) /(T / N+T o v h)$
- Cycles to complete one instruction $=\mathrm{N}$
- Average CPI (cycles per instr) $=1$

Thank you!

AM vs. GM

- GM of IPCs = $1 / \mathrm{GM}$ of CPIs
- AM of IPCs represents thruput for a workload where each program runs sequentially for 1 cycle each; but high-IPC programs contribute more to the AM
- GM of IPCs does not represent run-time for any real workload (what does it mean to multiply instructions?); but every program's IPC contributes equally to the final measure

Speedup Vs. Percentage

- "Speedup" is a ratio = old exec time / new exec time
- "Improvement", "Increase", "Decrease" usually refer to percentage relative to the baseline = (new perf - old perf) / old perf
- A program ran in 100 seconds on my old laptop and in 70 seconds on my new laptop
- What is the speedup?
- What is the percentage increase in performance?
- What is the reduction in execution time?

