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An Out-of-Order Processor Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
T2
T3
T4
T5
T6

Reorder Buffer (ROB)

T1  R1+R2
T2  T1+R3

BEQZ T2
T4  T1+T2
T5  T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File
R1-R32

Results written to
ROB and tags

broadcast to IQ
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Design Details - I

• Instructions enter the pipeline in order

• No need for branch delay slots if prediction happens in time

• Instructions leave the pipeline in order – all instructions
  that enter also get placed in the ROB – the process of an
  instruction leaving the ROB (in order) is called commit –
  an instruction commits only if it and all instructions before
  it have completed successfully (without an exception)

• To preserve precise exceptions, a result is written into the
  register file only when the instruction commits – until then,
  the result is saved in a temporary register in the ROB
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Design Details - II

• Instructions get renamed and placed in the issue queue –
  some operands are available (T1-T6; R1-R32), while 
  others are being produced by instructions in flight (T1-T6)

• As instructions finish, they write results into the ROB (T1-T6)
  and broadcast the operand tag (T1-T6) to the issue queue –
  instructions now know if their operands are ready

• When a ready instruction issues, it reads its operands from
  T1-T6 and R1-R32 and executes (out-of-order execution)

• Can you have WAW or WAR hazards? By using more
  names (T1-T6), name dependences can be avoided
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Design Details - III

• If instr-3 raises an exception, wait until it reaches the top
  of the ROB – at this point, R1-R32 contain results for all
  instructions up to instr-3 – save registers, save PC of instr-3,
  and service the exception

• If branch is a mispredict, flush all instructions after the
  branch and start on the correct path – mispredicted instrs
  will not have updated registers (the branch cannot commit
  until it has completed and the flush happens as soon as the
  branch completes)

• Potential problems: ?



6

Managing Register Names

Logical
Registers
R1-R32

Physical
Registers
P1-P64

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34

At the start, R1-R32 can be found in P1-P32
Instructions stop entering the pipeline when P64 is assigned

What happens on commit?

Temporary values are stored in the register file and not the ROB
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The Commit Process

• On commit, no copy is required

• The register map table is updated – the “committed” value
  of R1 is now in P33 and not P1 – on an exception, P33 is
  copied to memory and not P1

• An instruction in the issue queue need not modify its
  input operand when the producer commits

• When instruction-1 commits, we no longer have any use
  for P1 – it is put in a free pool and a new instruction can
  now enter the pipeline  for every instr that commits, a
  new instr can enter the pipeline  number of in-flight 
  instrs is a constant = number of extra (rename) registers
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The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1P36
R2P34

Committed
Reg Map
R1P1
R2P2
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The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1P36
R2P34

Committed
Reg Map
R1P1
R2P2
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Managing Register Names

Logical
Registers
R1-R32

Physical
Registers
P1-P64

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34

At the start, R1-R32 can be found in P1-P32
Instructions stop entering the pipeline when P64 is assigned

What happens on commit?

Temporary values are stored in the register file and not the ROB
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The Commit Process

• On commit, no copy is required

• The register map table is updated – the “committed” value
  of R1 is now in P33 and not P1 – on an exception, P33 is
  copied to memory and not P1

• An instruction in the issue queue need not modify its
  input operand when the producer commits

• When instruction-1 commits, we no longer have any use
  for P1 – it is put in a free pool and a new instruction can
  now enter the pipeline  for every instr that commits, a
  new instr can enter the pipeline  number of in-flight 
  instrs is a constant = number of extra (rename) registers
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Additional Details

• When does the decode stage stall?  When we either run
   out of registers, or ROB entries, or issue queue entries

• Issue width: the number of instructions handled by each
  stage in a cycle.  High issue width  high peak ILP

• Window size: the number of in-flight instructions in the
   pipeline.  Large window size  high ILP

• No more WAR and WAW hazards because of rename
  registers – must only worry about RAW hazards



13

The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1P36
R2P34

Committed
Reg Map
R1P1
R2P2
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Additional Details

• When does the decode stage stall?  When we either run
   out of registers, or ROB entries, or issue queue entries

• Issue width: the number of instructions handled by each
  stage in a cycle.  High issue width  high peak ILP

• Window size: the number of in-flight instructions in the
   pipeline.  Large window size  high ILP

• No more WAR and WAW hazards because of rename
  registers – must only worry about RAW hazards
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The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1P36
R2P34

Committed
Reg Map
R1P1
R2P2
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Branch Mispredict Recovery

• On a branch mispredict, must roll back the processor state:
   throw away IFQ contents, ROB/IQ contents after branch

• Committed map table is correct and need not be fixed

• The speculative map table needs to go back to an earlier state

• To facilitate this spec-map-table rollback, it is checkpointed
   at every branch
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Waking Up a Dependent

• In an in-order pipeline, an instruction leaves the decode
  stage when it is known that the inputs can be correctly
  received, not when the inputs are computed

• Similarly, an instruction leaves the issue queue before its
  inputs are known, i.e., wakeup is speculative based on the
  expected latency of the producer instruction
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Out-of-Order Loads/Stores

Ld R1  [R2]R2]

Ld

St

Ld

Ld

What if the issue queue also had load/store instructions? 
Can we continue executing instructions out-of-order?

R3  [R2]R4]

R5  [R2]R6]

R7  [R2]R8]]

R9[R2]R10]
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Memory Dependence Checking

Ld 0x abcdef

Ld

St

Ld

Ld 0x abcdef

St 0x abcd00

Ld 0x abc000

Ld 0x abcd00

• The issue queue checks for
   register dependences and 
   executes instructions as soon
   as registers are ready

• Loads/stores access memory
   as well – must check for RAW,
   WAW, and WAR hazards for
   memory as well

• Hence, first check for register
   dependences to compute
   effective addresses; then check
   for memory dependences
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Memory Dependence Checking

Ld 0x abcdef

Ld

St

Ld

Ld 0x abcdef

St 0x abcd00

Ld 0x abc000

Ld 0x abcd00

• Load and store addresses are
  maintained in program order in
  the Load/Store Queue (LSQ)

• Loads can issue if they are
  guaranteed to not have true
  dependences with earlier stores

• Stores can issue only if we are
  ready to modify memory (can not
  recover if an earlier instr raises
  an exception)
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The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

LD  R4  8][R2]R3]
ST R4  8][R2]R1]

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6
Instr 7

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

P37   [R2]P35 + 8]]
P37   [R2]P36 + 8]]

LSQ

ALU

D-Cache

Committed
Reg Map
R1P1
R2P2

Speculative
Reg Map
R1P36
R2P34
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Thread-Level Parallelism

• Motivation: 
 a single thread leaves a processor under-utilized 
    for most of the time
 by doubling processor area, single thread performance
    barely improves

• Strategies for thread-level parallelism:
 multiple threads share the same large processor 
    reduces under-utilization, efficient resource allocation
    Simultaneous Multi-Threading (SMT)
 each thread executes on its own mini processor 
    simple design, low interference between threads
    Chip Multi-Processing (CMP) or multi-core
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How are Resources Shared?

Each box represents an issue slot for a functional unit. Peak thruput is 4 IPC.

Cycles

• Superscalar processor has high under-utilization – not enough work every
  cycle, especially when there is a cache miss
• Fine-grained multithreading can only issue instructions from a single thread
  in a cycle – can not find max work every cycle, but cache misses can be tolerated
• Simultaneous multithreading can issue instructions from any thread every
  cycle – has the highest probability of finding work for every issue slot

Superscalar Fine-Grained
Multithreading

Simultaneous
Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Idle
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What Resources are Shared?

• Multiple threads are simultaneously active (in other words,
  a new thread can start without a context switch)

• For correctness, each thread needs its own PC, IFQ, 
  logical regs (and its own mappings from logical to phys regs)

• For performance, each thread could have its own ROB/LSQ
  (so that a stall in one thread does not stall commit in other
  threads), I-cache, branch predictor, D-cache, etc. (for low
  interference), although note that more sharing  better
  utilization of resources

• Each additional thread costs a PC, IFQ, rename tables,
  and ROB  – cheap!
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Front
End

Front
End

Front
End

Front
End

Execution Engine

Rename ROB

I-Cache Bpred

Regs IQ

FUsDCache

Private/
Shared

Front-end

Private
Front-end

Shared
Exec Engine

Pipeline Structure
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Resource Sharing

R1  R1 + R2
R3  R1 + R4
R5  R1 + R3

R2  R1 + R2
R5  R1 + R2
R3  R5 + R3

P65 P1 + P2
P66  P65 + P4
P67  P65 + P66

P76  P33 + P34
P77  P33 + P76
P78]  P77 + P35

P65 P1 + P2
P66  P65 + P4
P67  P65 + P66
P76  P33 + P34
P77  P33 + P76
P78]  P77 + P35

FU FU FU FU

Instr Fetch

Instr Fetch

Instr Rename

Instr Rename Issue Queue

Register File

Thread-1

Thread-2
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Performance Implications of SMT

• Single thread performance is likely to go down (caches,
  branch predictors, registers, etc. are shared) – this effect
  can be mitigated by trying to prioritize one thread

• While fetching instructions, thread priority can dramatically
  influence total throughput – a widely accepted heuristic
  (ICOUNT): fetch such that each thread has an equal share
  of processor resources

• With eight threads in a processor with many resources,
  SMT yields throughput improvements of roughly 2-4
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Pentium4 Hyper-Threading

• Two threads – the Linux operating system operates as if it
   is executing on a two-processor system

• When there is only one available thread, it behaves like a
   regular single-threaded superscalar processor

• Statically divided resources: ROB, LSQ, issueq -- a
  slow thread will not cripple throughput (might not scale)

• Dynamically shared: trace cache and decode
  (fine-grained multi-threaded, round-robin), FUs,
  data cache, bpred
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Multi-Programmed Speedup

• sixtrack and eon do not degrade
  their partners (small working sets?)

• swim and art degrade their
  partners (cache contention?)

• Best combination: swim & sixtrack
  worst combination: swim & art

• Static partitioning ensures low
  interference – worst slowdown
  is 0.9
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Problem 2

• Show the renamed version of the following code:
  Assume that you have 36 physical registers and 32
  architected registers

R1  R2+R3
R3  R4+R5
BEQZ  R1
R1  R1 + R3
R1  R1 + R3
R3  R1 + R3
R4  R3 + R1
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Problem 2

• Show the renamed version of the following code:
  Assume that you have 36 physical registers and 32
  architected registers

R1  R2+R3                   P33  P2+P3
R3  R4+R5                   P34  P4+P5
BEQZ  R1                        BEQZ P33
R1  R1 + R3                 P35  P33+P34
R1  R1 + R3                 P36  P35+P34
R3  R1 + R3                 P1    P36+P34
R4  R3 + R1                 P3    P1+P36
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Problem 3

• Show the renamed version of the following code:
  Assume that you have 36 physical registers and 32
  architected registers.  When does each instr leave the IQ?

R1  R2+R3
R1  R1+R5
BEQZ  R1
R1  R4 + R5
R4  R1 + R7
R1  R6 + R8]
R4  R3 + R1
R1  R5 + R9
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Problem 3

• Show the renamed version of the following code:
  Assume that you have 36 physical registers and 32
  architected registers.  When does each instr leave the IQ?

R1  R2+R3             P33  P2+P3            
R1  R1+R5             P34  P33+P5                
BEQZ  R1                  BEQZ P34                       
R1  R4 + R5           P35  P4+P5                     
R4  R1 + R7           P36  P35+P7                 
R1  R6 + R8]           P1    P6+P8]                     
R4  R3 + R1           P33  P3+P1                   
R1  R5 + R9           P34  P5+P9                   
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Problem 3

• Show the renamed version of the following code:
  Assume that you have 36 physical registers and 32
  architected registers.  When does each instr leave the IQ?

R1  R2+R3             P33  P2+P3            cycle i
R1  R1+R5             P34  P33+P5                i+1
BEQZ  R1                  BEQZ P34                        i+2
R1  R4 + R5           P35  P4+P5                     i
R4  R1 + R7           P36  P35+P7                 i+1
R1  R6 + R8]           P1    P6+P8]                     j
R4  R3 + R1           P33  P3+P1                   j+1
R1  R5 + R9           P34  P5+P9                   j+2
Width is assumed to be 4.
j depends on the #stages between issue and commit.
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OOO Example

•  Assume there are 36 physical registers and 32 logical
   registers, and width is 4

•  Estimate the issue time, completion time, and commit time
    for the sample code

IQ
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Assumptions

•  Perfect branch prediction, instruction fetch, caches

 ADD -> dep has no stall;  LD  → dep has one stall

•  An instr is placed in the IQ at the end of its 5th stage,
   an instr takes 5 more stages after leaving the IQ
   (ld/st instrs take 6 more stages after leaving the IQ)

IQ
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OOO Example

      Original code                         Renamed code
ADD   R1, R2, R3
LD      R2, 8(R1)
ADD   R2, R2, 8
ST      R1, (R3)
SUB   R1, R1, R5
LD      R1, 8(R2)      
ADD   R1, R1, R2

IQ
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OOO Example

      Original code                         Renamed code
ADD   R1, R2, R3                       ADD  P33, P2, P3
LD      R2, 8(R1)                         LD     P34, 8(P33)
ADD   R2, R2, 8                         ADD  P35, P34, 8
ST      R1, (R3)                           ST      P33, (P3)
SUB   R1, R1, R5                       SUB   P36, P33, P5
LD      R1, 8(R2)      Must wait
ADD   R1, R1, R2

IQ
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OOO Example

      Original code         Renamed code         InQ  Iss  Comp Comm
ADD   R1, R2, R3      ADD  P33, P2, P3
LD      R2, 8(R1)        LD     P34, 8(P33)
ADD   R2, R2, 8        ADD  P35, P34, 8
ST      R1, (R3)          ST      P33, (P3)
SUB   R1, R1, R5      SUB   P36, P33, P5
LD      R1, 8(R2)                                            
ADD   R1, R1, R2                                          

IQ
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OOO Example

      Original code         Renamed code      InQ  Iss  Comp Comm
ADD   R1, R2, R3      ADD  P33, P2, P3          i    i+1   i+6      i+6
LD      R2, 8(R1)        LD     P34, 8(P33)          i    i+2   i+8      i+8
ADD   R2, R2, 8        ADD  P35, P34, 8          i    i+4   i+9      i+9
ST      R1, (R3)          ST      P33, (P3)              i    i+2   i+8      i+9
SUB   R1, R1, R5      SUB   P36, P33, P5     i+1  i+2   i+7      i+9
LD      R1, 8(R2)                                            
ADD   R1, R1, R2                                          

IQ



41

OOO Example

      Original code         Renamed code      InQ  Iss  Comp Comm
ADD   R1, R2, R3      ADD  P33, P2, P3          i    i+1   i+6      i+6
LD      R2, 8(R1)        LD     P34, 8(P33)          i    i+2   i+8      i+8
ADD   R2, R2, 8        ADD  P35, P34, 8          i    i+4   i+9      i+9
ST      R1, (R3)          ST      P33, (P3)              i    i+2   i+8      i+9
SUB   R1, R1, R5      SUB   P36, P33, P5     i+1  i+2   i+7      i+9
LD      R1, 8(R2)        LD      P1, 8(P35)        i+7  i+8   i+14    i+14
ADD   R1, R1, R2      ADD   P2, P1, P35     i+9  i+10  i+15    i+15

IQ



  

Thank you!
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