

250P: Computer Systems
Architecture

Lecture 9: Out-of-order execution

Anton Burtsev
April, 2021

2

An Out-of-Order Processor Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
T2
T3
T4
T5
T6

Reorder Buffer (ROB)

T1  R1+R2
T2  T1+R3

BEQZ T2
T4  T1+T2
T5  T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File
R1-R32

Results written to
ROB and tags

broadcast to IQ

3

Design Details - I

• Instructions enter the pipeline in order

• No need for branch delay slots if prediction happens in time

• Instructions leave the pipeline in order – all instructions
 that enter also get placed in the ROB – the process of an
 instruction leaving the ROB (in order) is called commit –
 an instruction commits only if it and all instructions before
 it have completed successfully (without an exception)

• To preserve precise exceptions, a result is written into the
 register file only when the instruction commits – until then,
 the result is saved in a temporary register in the ROB

4

Design Details - II

• Instructions get renamed and placed in the issue queue –
 some operands are available (T1-T6; R1-R32), while
 others are being produced by instructions in flight (T1-T6)

• As instructions finish, they write results into the ROB (T1-T6)
 and broadcast the operand tag (T1-T6) to the issue queue –
 instructions now know if their operands are ready

• When a ready instruction issues, it reads its operands from
 T1-T6 and R1-R32 and executes (out-of-order execution)

• Can you have WAW or WAR hazards? By using more
 names (T1-T6), name dependences can be avoided

5

Design Details - III

• If instr-3 raises an exception, wait until it reaches the top
 of the ROB – at this point, R1-R32 contain results for all
 instructions up to instr-3 – save registers, save PC of instr-3,
 and service the exception

• If branch is a mispredict, flush all instructions after the
 branch and start on the correct path – mispredicted instrs
 will not have updated registers (the branch cannot commit
 until it has completed and the flush happens as soon as the
 branch completes)

• Potential problems: ?

6

Managing Register Names

Logical
Registers
R1-R32

Physical
Registers
P1-P64

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34

At the start, R1-R32 can be found in P1-P32
Instructions stop entering the pipeline when P64 is assigned

What happens on commit?

Temporary values are stored in the register file and not the ROB

7

The Commit Process

• On commit, no copy is required

• The register map table is updated – the “committed” value
 of R1 is now in P33 and not P1 – on an exception, P33 is
 copied to memory and not P1

• An instruction in the issue queue need not modify its
 input operand when the producer commits

• When instruction-1 commits, we no longer have any use
 for P1 – it is put in a free pool and a new instruction can
 now enter the pipeline  for every instr that commits, a
 new instr can enter the pipeline  number of in-flight
 instrs is a constant = number of extra (rename) registers

8

The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1P36
R2P34

Committed
Reg Map
R1P1
R2P2

9

The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1P36
R2P34

Committed
Reg Map
R1P1
R2P2

10

Managing Register Names

Logical
Registers
R1-R32

Physical
Registers
P1-P64

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34

At the start, R1-R32 can be found in P1-P32
Instructions stop entering the pipeline when P64 is assigned

What happens on commit?

Temporary values are stored in the register file and not the ROB

11

The Commit Process

• On commit, no copy is required

• The register map table is updated – the “committed” value
 of R1 is now in P33 and not P1 – on an exception, P33 is
 copied to memory and not P1

• An instruction in the issue queue need not modify its
 input operand when the producer commits

• When instruction-1 commits, we no longer have any use
 for P1 – it is put in a free pool and a new instruction can
 now enter the pipeline  for every instr that commits, a
 new instr can enter the pipeline  number of in-flight
 instrs is a constant = number of extra (rename) registers

12

Additional Details

• When does the decode stage stall? When we either run
 out of registers, or ROB entries, or issue queue entries

• Issue width: the number of instructions handled by each
 stage in a cycle. High issue width  high peak ILP

• Window size: the number of in-flight instructions in the
 pipeline. Large window size  high ILP

• No more WAR and WAW hazards because of rename
 registers – must only worry about RAW hazards

13

The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1P36
R2P34

Committed
Reg Map
R1P1
R2P2

14

Additional Details

• When does the decode stage stall? When we either run
 out of registers, or ROB entries, or issue queue entries

• Issue width: the number of instructions handled by each
 stage in a cycle. High issue width  high peak ILP

• Window size: the number of in-flight instructions in the
 pipeline. Large window size  high ILP

• No more WAR and WAW hazards because of rename
 registers – must only worry about RAW hazards

15

The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1P36
R2P34

Committed
Reg Map
R1P1
R2P2

16

Branch Mispredict Recovery

• On a branch mispredict, must roll back the processor state:
 throw away IFQ contents, ROB/IQ contents after branch

• Committed map table is correct and need not be fixed

• The speculative map table needs to go back to an earlier state

• To facilitate this spec-map-table rollback, it is checkpointed
 at every branch

17

Waking Up a Dependent

• In an in-order pipeline, an instruction leaves the decode
 stage when it is known that the inputs can be correctly
 received, not when the inputs are computed

• Similarly, an instruction leaves the issue queue before its
 inputs are known, i.e., wakeup is speculative based on the
 expected latency of the producer instruction

18

Out-of-Order Loads/Stores

Ld R1  [R2]R2]

Ld

St

Ld

Ld

What if the issue queue also had load/store instructions?
Can we continue executing instructions out-of-order?

R3  [R2]R4]

R5  [R2]R6]

R7  [R2]R8]]

R9[R2]R10]

19

Memory Dependence Checking

Ld 0x abcdef

Ld

St

Ld

Ld 0x abcdef

St 0x abcd00

Ld 0x abc000

Ld 0x abcd00

• The issue queue checks for
 register dependences and
 executes instructions as soon
 as registers are ready

• Loads/stores access memory
 as well – must check for RAW,
 WAW, and WAR hazards for
 memory as well

• Hence, first check for register
 dependences to compute
 effective addresses; then check
 for memory dependences

20

Memory Dependence Checking

Ld 0x abcdef

Ld

St

Ld

Ld 0x abcdef

St 0x abcd00

Ld 0x abc000

Ld 0x abcd00

• Load and store addresses are
 maintained in program order in
 the Load/Store Queue (LSQ)

• Loads can issue if they are
 guaranteed to not have true
 dependences with earlier stores

• Stores can issue only if we are
 ready to modify memory (can not
 recover if an earlier instr raises
 an exception)

21

The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

LD R4  8][R2]R3]
ST R4  8][R2]R1]

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6
Instr 7

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

P37  [R2]P35 + 8]]
P37  [R2]P36 + 8]]

LSQ

ALU

D-Cache

Committed
Reg Map
R1P1
R2P2

Speculative
Reg Map
R1P36
R2P34

22

Thread-Level Parallelism

• Motivation:
 a single thread leaves a processor under-utilized
 for most of the time
 by doubling processor area, single thread performance
 barely improves

• Strategies for thread-level parallelism:
 multiple threads share the same large processor 
 reduces under-utilization, efficient resource allocation
 Simultaneous Multi-Threading (SMT)
 each thread executes on its own mini processor 
 simple design, low interference between threads
 Chip Multi-Processing (CMP) or multi-core

23

How are Resources Shared?

Each box represents an issue slot for a functional unit. Peak thruput is 4 IPC.

Cycles

• Superscalar processor has high under-utilization – not enough work every
 cycle, especially when there is a cache miss
• Fine-grained multithreading can only issue instructions from a single thread
 in a cycle – can not find max work every cycle, but cache misses can be tolerated
• Simultaneous multithreading can issue instructions from any thread every
 cycle – has the highest probability of finding work for every issue slot

Superscalar Fine-Grained
Multithreading

Simultaneous
Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Idle

24

What Resources are Shared?

• Multiple threads are simultaneously active (in other words,
 a new thread can start without a context switch)

• For correctness, each thread needs its own PC, IFQ,
 logical regs (and its own mappings from logical to phys regs)

• For performance, each thread could have its own ROB/LSQ
 (so that a stall in one thread does not stall commit in other
 threads), I-cache, branch predictor, D-cache, etc. (for low
 interference), although note that more sharing  better
 utilization of resources

• Each additional thread costs a PC, IFQ, rename tables,
 and ROB – cheap!

25

Front
End

Front
End

Front
End

Front
End

Execution Engine

Rename ROB

I-Cache Bpred

Regs IQ

FUsDCache

Private/
Shared

Front-end

Private
Front-end

Shared
Exec Engine

Pipeline Structure

26

Resource Sharing

R1  R1 + R2
R3  R1 + R4
R5  R1 + R3

R2  R1 + R2
R5  R1 + R2
R3  R5 + R3

P65 P1 + P2
P66  P65 + P4
P67  P65 + P66

P76  P33 + P34
P77  P33 + P76
P78]  P77 + P35

P65 P1 + P2
P66  P65 + P4
P67  P65 + P66
P76  P33 + P34
P77  P33 + P76
P78]  P77 + P35

FU FU FU FU

Instr Fetch

Instr Fetch

Instr Rename

Instr Rename Issue Queue

Register File

Thread-1

Thread-2

27

Performance Implications of SMT

• Single thread performance is likely to go down (caches,
 branch predictors, registers, etc. are shared) – this effect
 can be mitigated by trying to prioritize one thread

• While fetching instructions, thread priority can dramatically
 influence total throughput – a widely accepted heuristic
 (ICOUNT): fetch such that each thread has an equal share
 of processor resources

• With eight threads in a processor with many resources,
 SMT yields throughput improvements of roughly 2-4

28

Pentium4 Hyper-Threading

• Two threads – the Linux operating system operates as if it
 is executing on a two-processor system

• When there is only one available thread, it behaves like a
 regular single-threaded superscalar processor

• Statically divided resources: ROB, LSQ, issueq -- a
 slow thread will not cripple throughput (might not scale)

• Dynamically shared: trace cache and decode
 (fine-grained multi-threaded, round-robin), FUs,
 data cache, bpred

29

Multi-Programmed Speedup

• sixtrack and eon do not degrade
 their partners (small working sets?)

• swim and art degrade their
 partners (cache contention?)

• Best combination: swim & sixtrack
 worst combination: swim & art

• Static partitioning ensures low
 interference – worst slowdown
 is 0.9

30

Problem 2

• Show the renamed version of the following code:
 Assume that you have 36 physical registers and 32
 architected registers

R1  R2+R3
R3  R4+R5
BEQZ R1
R1  R1 + R3
R1  R1 + R3
R3  R1 + R3
R4  R3 + R1

31

Problem 2

• Show the renamed version of the following code:
 Assume that you have 36 physical registers and 32
 architected registers

R1  R2+R3 P33  P2+P3
R3  R4+R5 P34  P4+P5
BEQZ R1 BEQZ P33
R1  R1 + R3 P35  P33+P34
R1  R1 + R3 P36  P35+P34
R3  R1 + R3 P1  P36+P34
R4  R3 + R1 P3  P1+P36

32

Problem 3

• Show the renamed version of the following code:
 Assume that you have 36 physical registers and 32
 architected registers. When does each instr leave the IQ?

R1  R2+R3
R1  R1+R5
BEQZ R1
R1  R4 + R5
R4  R1 + R7
R1  R6 + R8]
R4  R3 + R1
R1  R5 + R9

33

Problem 3

• Show the renamed version of the following code:
 Assume that you have 36 physical registers and 32
 architected registers. When does each instr leave the IQ?

R1  R2+R3 P33  P2+P3
R1  R1+R5 P34  P33+P5
BEQZ R1 BEQZ P34
R1  R4 + R5 P35  P4+P5
R4  R1 + R7 P36  P35+P7
R1  R6 + R8] P1  P6+P8]
R4  R3 + R1 P33  P3+P1
R1  R5 + R9 P34  P5+P9

34

Problem 3

• Show the renamed version of the following code:
 Assume that you have 36 physical registers and 32
 architected registers. When does each instr leave the IQ?

R1  R2+R3 P33  P2+P3 cycle i
R1  R1+R5 P34  P33+P5 i+1
BEQZ R1 BEQZ P34 i+2
R1  R4 + R5 P35  P4+P5 i
R4  R1 + R7 P36  P35+P7 i+1
R1  R6 + R8] P1  P6+P8] j
R4  R3 + R1 P33  P3+P1 j+1
R1  R5 + R9 P34  P5+P9 j+2
Width is assumed to be 4.
j depends on the #stages between issue and commit.

35

OOO Example

• Assume there are 36 physical registers and 32 logical
 registers, and width is 4

• Estimate the issue time, completion time, and commit time
 for the sample code

IQ

36

Assumptions

• Perfect branch prediction, instruction fetch, caches

 ADD -> dep has no stall; LD → dep has one stall

• An instr is placed in the IQ at the end of its 5th stage,
 an instr takes 5 more stages after leaving the IQ
 (ld/st instrs take 6 more stages after leaving the IQ)

IQ

37

OOO Example

 Original code Renamed code
ADD R1, R2, R3
LD R2, 8(R1)
ADD R2, R2, 8
ST R1, (R3)
SUB R1, R1, R5
LD R1, 8(R2)
ADD R1, R1, R2

IQ

38

OOO Example

 Original code Renamed code
ADD R1, R2, R3 ADD P33, P2, P3
LD R2, 8(R1) LD P34, 8(P33)
ADD R2, R2, 8 ADD P35, P34, 8
ST R1, (R3) ST P33, (P3)
SUB R1, R1, R5 SUB P36, P33, P5
LD R1, 8(R2) Must wait
ADD R1, R1, R2

IQ

39

OOO Example

 Original code Renamed code InQ Iss Comp Comm
ADD R1, R2, R3 ADD P33, P2, P3
LD R2, 8(R1) LD P34, 8(P33)
ADD R2, R2, 8 ADD P35, P34, 8
ST R1, (R3) ST P33, (P3)
SUB R1, R1, R5 SUB P36, P33, P5
LD R1, 8(R2)
ADD R1, R1, R2

IQ

40

OOO Example

 Original code Renamed code InQ Iss Comp Comm
ADD R1, R2, R3 ADD P33, P2, P3 i i+1 i+6 i+6
LD R2, 8(R1) LD P34, 8(P33) i i+2 i+8 i+8
ADD R2, R2, 8 ADD P35, P34, 8 i i+4 i+9 i+9
ST R1, (R3) ST P33, (P3) i i+2 i+8 i+9
SUB R1, R1, R5 SUB P36, P33, P5 i+1 i+2 i+7 i+9
LD R1, 8(R2)
ADD R1, R1, R2

IQ

41

OOO Example

 Original code Renamed code InQ Iss Comp Comm
ADD R1, R2, R3 ADD P33, P2, P3 i i+1 i+6 i+6
LD R2, 8(R1) LD P34, 8(P33) i i+2 i+8 i+8
ADD R2, R2, 8 ADD P35, P34, 8 i i+4 i+9 i+9
ST R1, (R3) ST P33, (P3) i i+2 i+8 i+9
SUB R1, R1, R5 SUB P36, P33, P5 i+1 i+2 i+7 i+9
LD R1, 8(R2) LD P1, 8(P35) i+7 i+8 i+14 i+14
ADD R1, R1, R2 ADD P2, P1, P35 i+9 i+10 i+15 i+15

IQ

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

