

250P: Computer Systems
Architecture

Lecture 13: Cache-Coherence

Anton Burtsev
February, 2019

2

SMP/UMA/Centralized Memory Multiprocessor

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

3

SMPs

• Centralized main memory and many caches many
 copies of the same data

• A system is cache coherent if a read returns the most
 recently written value for that word

Time Event Value of X in Cache-A Cache-B Memory
 0 - - 1
 1 CPU-A reads X 1 - 1
 2 CPU-B reads X 1 1 1
 3 CPU-A stores 0 in X 0 1 0

4

Cache Coherence

A memory system is coherent if:

• Write propagation: P1 writes to X, sufficient time elapses,
 P2 reads X and gets the value written by P1

• Write serialization: Two writes to the same location by two
 processors are seen in the same order by all processors

• The memory consistency model defines “time elapsed”
 before the effect of a processor is seen by others and the
 ordering with R/W to other locations (loosely speaking
 – more later)

5

Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
 of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
 status of that block – all cache controllers monitor the
 shared bus so they can update the sharing status of the
 block, if necessary

 Write-invalidate: a processor gains exclusive access of
 a block before writing by invalidating all other copies
 Write-update: when a processor writes, it updates other
 shared copies of that block

6

SMPs or Centralized Shared-Memory

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

7

Design Issues

• Invalidate
• Find data
• Writeback / writethrough

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

• Cache block states
• Contention for tags
• Enforcing write serialization

8

SMP Example

Processor
A

Caches

Processor
B

Caches

Processor
C

Caches

Processor
D

Caches

Main Memory I/O System

A: Rd X
B: Rd X
C: Rd X
A: Wr X
A: Wr X
C: Wr X
B: Rd X
A: Rd X
A: Rd Y
B: Wr X
B: Rd Y
B: Wr X
B: Wr Y

9

SMP Example

A: Rd X
B: Rd X
C: Rd X
A: Wr X
A: Wr X
C: Wr X
B: Rd X
A: Rd X
A: Rd Y
B: Wr X
B: Rd Y
B: Wr X
B: Wr Y

 A B C

10

Example Protocol
Request Source Block state Action

Read hit Proc Shared/excl Read data in cache

Read miss Proc Invalid Place read miss on bus

Read miss Proc Shared Conflict miss: place read miss on bus

Read miss Proc Exclusive Conflict miss: write back block, place read
miss on bus

Write hit Proc Exclusive Write data in cache

Write hit Proc Shared Place write miss on bus

Write miss Proc Invalid Place write miss on bus

Write miss Proc Shared Conflict miss: place write miss on bus

Write miss Proc Exclusive Conflict miss: write back, place write miss on
bus

Read miss Bus Shared No action; allow memory to respond

Read miss Bus Exclusive Place block on bus; change to shared

Write miss Bus Shared Invalidate block

Write miss Bus Exclusive Write back block; change to invalid

11

Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
 of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
 status of that block – all cache controllers monitor the
 shared bus so they can update the sharing status of the
 block, if necessary

 Write-invalidate: a processor gains exclusive access of
 a block before writing by invalidating all other copies
 Write-update: when a processor writes, it updates other
 shared copies of that block

12

Directory-Based Cache Coherence

• The physical memory is distributed among all processors

• The directory is also distributed along with the
 corresponding memory

• The physical address is enough to determine the location
 of memory

• The (many) processing nodes are connected with a
 scalable interconnect (not a bus) – hence, messages
 are no longer broadcast, but routed from sender to
 receiver – since the processing nodes can no longer
 snoop, the directory keeps track of sharing state

13

Distributed Memory Multiprocessors

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network

Directory Directory Directory Directory

14

Directory Example

A: Rd X
B: Rd X
C: Rd X
A: Wr X
A: Wr X
C: Wr X
B: Rd X
A: Rd X
A: Rd Y
B: Wr X
B: Rd Y
B: Wr X
B: Wr Y

 A B C Dir Comments

15

Cache Block States

• What are the different states a block of memory can have
 within the directory?

• Note that we need information for each cache so that
 invalidate messages can be sent

• The block state is also stored in the cache for efficiency

• The directory now serves as the arbitrator: if multiple
 write attempts happen simultaneously, the directory
 determines the ordering

16

Directory Actions

• If block is in uncached state:
 Read miss: send data, make block shared
 Write miss: send data, make block exclusive

• If block is in shared state:
 Read miss: send data, add node to sharers list
 Write miss: send data, invalidate sharers, make excl

• If block is in exclusive state:
 Read miss: ask owner for data, write to memory, send
 data, make shared, add node to sharers list
 Data write back: write to memory, make uncached
 Write miss: ask owner for data, write to memory, send
 data, update identity of new owner, remain exclusive

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

