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The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1P36
R2P34

Committed
Reg Map
R1P1
R2P2
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Managing Register Names

Logical
Registers
R1-R32

Physical
Registers
P1-P64

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34

At the start, R1-R32 can be found in P1-P32
Instructions stop entering the pipeline when P64 is assigned

What happens on commit?

Temporary values are stored in the register file and not the ROB
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The Commit Process

• On commit, no copy is required

• The register map table is updated – the “committed” value
  of R1 is now in P33 and not P1 – on an exception, P33 is
  copied to memory and not P1

• An instruction in the issue queue need not modify its
  input operand when the producer commits

• When instruction-1 commits, we no longer have any use
  for P1 – it is put in a free pool and a new instruction can
  now enter the pipeline  for every instr that commits, a
  new instr can enter the pipeline  number of in-flight 
  instrs is a constant = number of extra (rename) registers
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Additional Details

• When does the decode stage stall?  When we either run
   out of registers, or ROB entries, or issue queue entries

• Issue width: the number of instructions handled by each
  stage in a cycle.  High issue width  high peak ILP

• Window size: the number of in-flight instructions in the
   pipeline.  Large window size  high ILP

• No more WAR and WAW hazards because of rename
  registers – must only worry about RAW hazards
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Branch Mispredict Recovery

• On a branch mispredict, must roll back the processor state:
   throw away IFQ contents, ROB/IQ contents after branch

• Committed map table is correct and need not be fixed

• The speculative map table needs to go back to an earlier state

• To facilitate this spec-map-table rollback, it is checkpointed
   at every branch
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Waking Up a Dependent

• In an in-order pipeline, an instruction leaves the decode
  stage when it is known that the inputs can be correctly
  received, not when the inputs are computed

• Similarly, an instruction leaves the issue queue before its
  inputs are known, i.e., wakeup is speculative based on the
  expected latency of the producer instruction
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Out-of-Order Loads/Stores

Ld R1  [R2]

Ld

St

Ld

Ld

What if the issue queue also had load/store instructions? 
Can we continue executing instructions out-of-order?

R3  [R4]

R5  [R6]

R7  [R8]

R9[R10]
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Memory Dependence Checking

Ld 0x abcdef

Ld

St

Ld

Ld 0x abcdef

St 0x abcd00

Ld 0x abc000

Ld 0x abcd00

• The issue queue checks for
   register dependences and 
   executes instructions as soon
   as registers are ready

• Loads/stores access memory
   as well – must check for RAW,
   WAW, and WAR hazards for
   memory as well

• Hence, first check for register
   dependences to compute
   effective addresses; then check
   for memory dependences



13

Memory Dependence Checking

Ld 0x abcdef

Ld

St

Ld

Ld 0x abcdef

St 0x abcd00

Ld 0x abc000

Ld 0x abcd00

• Load and store addresses are
  maintained in program order in
  the Load/Store Queue (LSQ)

• Loads can issue if they are
  guaranteed to not have true
  dependences with earlier stores

• Stores can issue only if we are
  ready to modify memory (can not
  recover if an earlier instr raises
  an exception)
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The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

LD  R4  8[R3]
ST R4  8[R1]

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6
Instr 7

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

P37  8[P35]
P37  8[P36]

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

P37   [P35 + 8]
P37   [P36 + 8]

LSQ

ALU

D-Cache

Committed
Reg Map
R1P1
R2P2

Speculative
Reg Map
R1P36
R2P34
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Thread-Level Parallelism

• Motivation: 
 a single thread leaves a processor under-utilized 
    for most of the time
 by doubling processor area, single thread performance
    barely improves

• Strategies for thread-level parallelism:
 multiple threads share the same large processor 
    reduces under-utilization, efficient resource allocation
    Simultaneous Multi-Threading (SMT)
 each thread executes on its own mini processor 
    simple design, low interference between threads
    Chip Multi-Processing (CMP) or multi-core
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How are Resources Shared?

Each box represents an issue slot for a functional unit. Peak thruput is 4 IPC.

Cycles

• Superscalar processor has high under-utilization – not enough work every
  cycle, especially when there is a cache miss
• Fine-grained multithreading can only issue instructions from a single thread
  in a cycle – can not find max work every cycle, but cache misses can be tolerated
• Simultaneous multithreading can issue instructions from any thread every
  cycle – has the highest probability of finding work for every issue slot

Superscalar Fine-Grained
Multithreading

Simultaneous
Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Idle
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What Resources are Shared?

• Multiple threads are simultaneously active (in other words,
  a new thread can start without a context switch)

• For correctness, each thread needs its own PC, IFQ, 
  logical regs (and its own mappings from logical to phys regs)

• For performance, each thread could have its own ROB/LSQ
  (so that a stall in one thread does not stall commit in other
  threads), I-cache, branch predictor, D-cache, etc. (for low
  interference), although note that more sharing  better
  utilization of resources

• Each additional thread costs a PC, IFQ, rename tables,
  and ROB  – cheap!
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Front
End

Front
End

Front
End

Front
End

Execution Engine

Rename ROB

I-Cache Bpred

Regs IQ

FUsDCache

Private/
Shared

Front-end

Private
Front-end

Shared
Exec Engine

Pipeline Structure
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Resource Sharing

R1  R1 + R2
R3  R1 + R4
R5  R1 + R3

R2  R1 + R2
R5  R1 + R2
R3  R5 + R3

P65 P1 + P2
P66  P65 + P4
P67  P65 + P66

P76  P33 + P34
P77  P33 + P76
P78  P77 + P35

P65 P1 + P2
P66  P65 + P4
P67  P65 + P66
P76  P33 + P34
P77  P33 + P76
P78  P77 + P35

FU FU FU FU

Instr Fetch

Instr Fetch

Instr Rename

Instr Rename Issue Queue

Register File

Thread-1

Thread-2
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Performance Implications of SMT

• Single thread performance is likely to go down (caches,
  branch predictors, registers, etc. are shared) – this effect
  can be mitigated by trying to prioritize one thread

• While fetching instructions, thread priority can dramatically
  influence total throughput – a widely accepted heuristic
  (ICOUNT): fetch such that each thread has an equal share
  of processor resources

• With eight threads in a processor with many resources,
  SMT yields throughput improvements of roughly 2-4
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Pentium4 Hyper-Threading

• Two threads – the Linux operating system operates as if it
   is executing on a two-processor system

• When there is only one available thread, it behaves like a
   regular single-threaded superscalar processor

• Statically divided resources: ROB, LSQ, issueq -- a
  slow thread will not cripple thruput (might not scale)

• Dynamically shared: trace cache and decode
  (fine-grained multi-threaded, round-robin), FUs,
  data cache, bpred
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Multi-Programmed Speedup

• sixtrack and eon do not degrade
  their partners (small working sets?)

• swim and art degrade their
  partners (cache contention?)

• Best combination: swim & sixtrack
  worst combination: swim & art

• Static partitioning ensures low
  interference – worst slowdown
  is 0.9



23

Problem 2

• Show the renamed version of the following code:
  Assume that you have 36 physical registers and 32
  architected registers

R1  R2+R3
R3  R4+R5
BEQZ  R1
R1  R1 + R3
R1  R1 + R3
R3  R1 + R3
R4  R3 + R1
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Problem 2

• Show the renamed version of the following code:
  Assume that you have 36 physical registers and 32
  architected registers

R1  R2+R3                   P33  P2+P3
R3  R4+R5                   P34  P4+P5
BEQZ  R1                        BEQZ P33
R1  R1 + R3                 P35  P33+P34
R1  R1 + R3                 P36  P35+P34
R3  R1 + R3                 P1    P36+P34
R4  R3 + R1                 P3    P1+P36
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Problem 3

• Show the renamed version of the following code:
  Assume that you have 36 physical registers and 32
  architected registers.  When does each instr leave the IQ?

R1  R2+R3
R1  R1+R5
BEQZ  R1
R1  R4 + R5
R4  R1 + R7
R1  R6 + R8
R4  R3 + R1
R1  R5 + R9
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Problem 3

• Show the renamed version of the following code:
  Assume that you have 36 physical registers and 32
  architected registers.  When does each instr leave the IQ?

R1  R2+R3             P33  P2+P3            
R1  R1+R5             P34  P33+P5                
BEQZ  R1                  BEQZ P34                       
R1  R4 + R5           P35  P4+P5                     
R4  R1 + R7           P36  P35+P7                 
R1  R6 + R8           P1    P6+P8                     
R4  R3 + R1           P33  P3+P1                   
R1  R5 + R9           P34  P5+P9                   
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Problem 3

• Show the renamed version of the following code:
  Assume that you have 36 physical registers and 32
  architected registers.  When does each instr leave the IQ?

R1  R2+R3             P33  P2+P3            cycle i
R1  R1+R5             P34  P33+P5                i+1
BEQZ  R1                  BEQZ P34                        i+2
R1  R4 + R5           P35  P4+P5                     i
R4  R1 + R7           P36  P35+P7                 i+1
R1  R6 + R8           P1    P6+P8                     j
R4  R3 + R1           P33  P3+P1                   j+1
R1  R5 + R9           P34  P5+P9                   j+2
Width is assumed to be 4.
j depends on the #stages between issue and commit.



  

Thank you!
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