

250P: Computer Systems
Architecture

Lecture 9: Out-of-order execution
(continued)

Anton Burtsev
February, 2019

2

The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1 R1+R2
R2 R1+R3

BEQZ R2
R3 R1+R2
R1 R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33 P1+P2
P34 P33+P3

BEQZ P34
P35 P33+P34
P36 P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1P36
R2P34

Committed
Reg Map
R1P1
R2P2

3

Managing Register Names

Logical
Registers
R1-R32

Physical
Registers
P1-P64

R1 R1+R2
R2 R1+R3

BEQZ R2
R3 R1+R2

P33 P1+P2
P34 P33+P3

BEQZ P34
P35 P33+P34

At the start, R1-R32 can be found in P1-P32
Instructions stop entering the pipeline when P64 is assigned

What happens on commit?

Temporary values are stored in the register file and not the ROB

4

The Commit Process

• On commit, no copy is required

• The register map table is updated – the “committed” value
 of R1 is now in P33 and not P1 – on an exception, P33 is
 copied to memory and not P1

• An instruction in the issue queue need not modify its
 input operand when the producer commits

• When instruction-1 commits, we no longer have any use
 for P1 – it is put in a free pool and a new instruction can
 now enter the pipeline for every instr that commits, a
 new instr can enter the pipeline number of in-flight
 instrs is a constant = number of extra (rename) registers

5

Additional Details

• When does the decode stage stall? When we either run
 out of registers, or ROB entries, or issue queue entries

• Issue width: the number of instructions handled by each
 stage in a cycle. High issue width high peak ILP

• Window size: the number of in-flight instructions in the
 pipeline. Large window size high ILP

• No more WAR and WAW hazards because of rename
 registers – must only worry about RAW hazards

6

The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1 R1+R2
R2 R1+R3

BEQZ R2
R3 R1+R2
R1 R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33 P1+P2
P34 P33+P3

BEQZ P34
P35 P33+P34
P36 P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1P36
R2P34

Committed
Reg Map
R1P1
R2P2

7

Additional Details

• When does the decode stage stall? When we either run
 out of registers, or ROB entries, or issue queue entries

• Issue width: the number of instructions handled by each
 stage in a cycle. High issue width high peak ILP

• Window size: the number of in-flight instructions in the
 pipeline. Large window size high ILP

• No more WAR and WAW hazards because of rename
 registers – must only worry about RAW hazards

8

The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1 R1+R2
R2 R1+R3

BEQZ R2
R3 R1+R2
R1 R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33 P1+P2
P34 P33+P3

BEQZ P34
P35 P33+P34
P36 P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1P36
R2P34

Committed
Reg Map
R1P1
R2P2

9

Branch Mispredict Recovery

• On a branch mispredict, must roll back the processor state:
 throw away IFQ contents, ROB/IQ contents after branch

• Committed map table is correct and need not be fixed

• The speculative map table needs to go back to an earlier state

• To facilitate this spec-map-table rollback, it is checkpointed
 at every branch

10

Waking Up a Dependent

• In an in-order pipeline, an instruction leaves the decode
 stage when it is known that the inputs can be correctly
 received, not when the inputs are computed

• Similarly, an instruction leaves the issue queue before its
 inputs are known, i.e., wakeup is speculative based on the
 expected latency of the producer instruction

11

Out-of-Order Loads/Stores

Ld R1 [R2]

Ld

St

Ld

Ld

What if the issue queue also had load/store instructions?
Can we continue executing instructions out-of-order?

R3 [R4]

R5 [R6]

R7 [R8]

R9[R10]

12

Memory Dependence Checking

Ld 0x abcdef

Ld

St

Ld

Ld 0x abcdef

St 0x abcd00

Ld 0x abc000

Ld 0x abcd00

• The issue queue checks for
 register dependences and
 executes instructions as soon
 as registers are ready

• Loads/stores access memory
 as well – must check for RAW,
 WAW, and WAR hazards for
 memory as well

• Hence, first check for register
 dependences to compute
 effective addresses; then check
 for memory dependences

13

Memory Dependence Checking

Ld 0x abcdef

Ld

St

Ld

Ld 0x abcdef

St 0x abcd00

Ld 0x abc000

Ld 0x abcd00

• Load and store addresses are
 maintained in program order in
 the Load/Store Queue (LSQ)

• Loads can issue if they are
 guaranteed to not have true
 dependences with earlier stores

• Stores can issue only if we are
 ready to modify memory (can not
 recover if an earlier instr raises
 an exception)

14

The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1 R1+R2
R2 R1+R3

BEQZ R2
R3 R1+R2
R1 R3+R2

LD R4 8[R3]
ST R4 8[R1]

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6
Instr 7

Reorder Buffer (ROB)

P33 P1+P2
P34 P33+P3

BEQZ P34
P35 P33+P34
P36 P35+P34

P37 8[P35]
P37 8[P36]

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

P37 [P35 + 8]
P37 [P36 + 8]

LSQ

ALU

D-Cache

Committed
Reg Map
R1P1
R2P2

Speculative
Reg Map
R1P36
R2P34

15

Thread-Level Parallelism

• Motivation:
 a single thread leaves a processor under-utilized
 for most of the time
 by doubling processor area, single thread performance
 barely improves

• Strategies for thread-level parallelism:
 multiple threads share the same large processor
 reduces under-utilization, efficient resource allocation
 Simultaneous Multi-Threading (SMT)
 each thread executes on its own mini processor
 simple design, low interference between threads
 Chip Multi-Processing (CMP) or multi-core

16

How are Resources Shared?

Each box represents an issue slot for a functional unit. Peak thruput is 4 IPC.

Cycles

• Superscalar processor has high under-utilization – not enough work every
 cycle, especially when there is a cache miss
• Fine-grained multithreading can only issue instructions from a single thread
 in a cycle – can not find max work every cycle, but cache misses can be tolerated
• Simultaneous multithreading can issue instructions from any thread every
 cycle – has the highest probability of finding work for every issue slot

Superscalar Fine-Grained
Multithreading

Simultaneous
Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Idle

17

What Resources are Shared?

• Multiple threads are simultaneously active (in other words,
 a new thread can start without a context switch)

• For correctness, each thread needs its own PC, IFQ,
 logical regs (and its own mappings from logical to phys regs)

• For performance, each thread could have its own ROB/LSQ
 (so that a stall in one thread does not stall commit in other
 threads), I-cache, branch predictor, D-cache, etc. (for low
 interference), although note that more sharing better
 utilization of resources

• Each additional thread costs a PC, IFQ, rename tables,
 and ROB – cheap!

18

Front
End

Front
End

Front
End

Front
End

Execution Engine

Rename ROB

I-Cache Bpred

Regs IQ

FUsDCache

Private/
Shared

Front-end

Private
Front-end

Shared
Exec Engine

Pipeline Structure

19

Resource Sharing

R1 R1 + R2
R3 R1 + R4
R5 R1 + R3

R2 R1 + R2
R5 R1 + R2
R3 R5 + R3

P65 P1 + P2
P66 P65 + P4
P67 P65 + P66

P76 P33 + P34
P77 P33 + P76
P78 P77 + P35

P65 P1 + P2
P66 P65 + P4
P67 P65 + P66
P76 P33 + P34
P77 P33 + P76
P78 P77 + P35

FU FU FU FU

Instr Fetch

Instr Fetch

Instr Rename

Instr Rename Issue Queue

Register File

Thread-1

Thread-2

20

Performance Implications of SMT

• Single thread performance is likely to go down (caches,
 branch predictors, registers, etc. are shared) – this effect
 can be mitigated by trying to prioritize one thread

• While fetching instructions, thread priority can dramatically
 influence total throughput – a widely accepted heuristic
 (ICOUNT): fetch such that each thread has an equal share
 of processor resources

• With eight threads in a processor with many resources,
 SMT yields throughput improvements of roughly 2-4

21

Pentium4 Hyper-Threading

• Two threads – the Linux operating system operates as if it
 is executing on a two-processor system

• When there is only one available thread, it behaves like a
 regular single-threaded superscalar processor

• Statically divided resources: ROB, LSQ, issueq -- a
 slow thread will not cripple thruput (might not scale)

• Dynamically shared: trace cache and decode
 (fine-grained multi-threaded, round-robin), FUs,
 data cache, bpred

22

Multi-Programmed Speedup

• sixtrack and eon do not degrade
 their partners (small working sets?)

• swim and art degrade their
 partners (cache contention?)

• Best combination: swim & sixtrack
 worst combination: swim & art

• Static partitioning ensures low
 interference – worst slowdown
 is 0.9

23

Problem 2

• Show the renamed version of the following code:
 Assume that you have 36 physical registers and 32
 architected registers

R1 R2+R3
R3 R4+R5
BEQZ R1
R1 R1 + R3
R1 R1 + R3
R3 R1 + R3
R4 R3 + R1

24

Problem 2

• Show the renamed version of the following code:
 Assume that you have 36 physical registers and 32
 architected registers

R1 R2+R3 P33 P2+P3
R3 R4+R5 P34 P4+P5
BEQZ R1 BEQZ P33
R1 R1 + R3 P35 P33+P34
R1 R1 + R3 P36 P35+P34
R3 R1 + R3 P1 P36+P34
R4 R3 + R1 P3 P1+P36

25

Problem 3

• Show the renamed version of the following code:
 Assume that you have 36 physical registers and 32
 architected registers. When does each instr leave the IQ?

R1 R2+R3
R1 R1+R5
BEQZ R1
R1 R4 + R5
R4 R1 + R7
R1 R6 + R8
R4 R3 + R1
R1 R5 + R9

26

Problem 3

• Show the renamed version of the following code:
 Assume that you have 36 physical registers and 32
 architected registers. When does each instr leave the IQ?

R1 R2+R3 P33 P2+P3
R1 R1+R5 P34 P33+P5
BEQZ R1 BEQZ P34
R1 R4 + R5 P35 P4+P5
R4 R1 + R7 P36 P35+P7
R1 R6 + R8 P1 P6+P8
R4 R3 + R1 P33 P3+P1
R1 R5 + R9 P34 P5+P9

27

Problem 3

• Show the renamed version of the following code:
 Assume that you have 36 physical registers and 32
 architected registers. When does each instr leave the IQ?

R1 R2+R3 P33 P2+P3 cycle i
R1 R1+R5 P34 P33+P5 i+1
BEQZ R1 BEQZ P34 i+2
R1 R4 + R5 P35 P4+P5 i
R4 R1 + R7 P36 P35+P7 i+1
R1 R6 + R8 P1 P6+P8 j
R4 R3 + R1 P33 P3+P1 j+1
R1 R5 + R9 P34 P5+P9 j+2
Width is assumed to be 4.
j depends on the #stages between issue and commit.

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

