

250P: Computer Systems
Architecture

Lecture 5: Advanced Pipelines

Anton Burtsev
January, 2019

2

Hazards

● Structural hazards

● Data hazards

● Control hazards

3

Control Hazards

• Simple techniques to handle control hazard stalls:
 for every branch, introduce a stall cycle (note: every
 6th instruction is a branch on average!)
 assume the branch is not taken and start fetching the
 next instruction – if the branch is taken, need hardware
 to cancel the effect of the wrong-path instructions
 predict the next PC and fetch that instr – if the prediction
 is wrong, cancel the effect of the wrong-path instructions
 fetch the next instruction (branch delay slot) and
 execute it anyway – if the instruction turns out to be
 on the correct path, useful work was done – if the
 instruction turns out to be on the wrong path,
 hopefully program state is not lost

4

Branch delay slot

5

Multicycle Instructions

6

Effects of Multicycle Instructions

• Potentially multiple writes to the register file in a cycle

• Frequent RAW hazards

• WAW hazards (WAR hazards not possible)

• Imprecise exceptions because of o-o-o instr completion

Note: Can also increase the “width” of the processor: handle
 multiple instructions at the same time: for example, fetch
 two instructions, read registers for both, execute both, etc.

7

Precise Exceptions

• On an exception:
 must save PC of instruction where program must resume
 all instructions after that PC that might be in the pipeline
 must be converted to NOPs (other instructions continue
 to execute and may raise exceptions of their own)
 temporary program state not in memory (in other words,
 registers) has to be stored in memory
 potential problems if a later instruction has already
 modified memory or registers

• A processor that fulfils all the above conditions is said to
 provide precise exceptions (useful for debugging and of
 course, correctness)

8

Dealing with these Effects

• Multiple writes to the register file: increase the number of
 ports, stall one of the writers during ID, stall one of the
 writers during WB (the stall will propagate)

• WAW hazards: detect the hazard during ID and stall the
 later instruction

• Imprecise exceptions: buffer the results if they complete
 early or save more pipeline state so that you can return to
 exactly the same state that you left at

9

Slowdowns from Stalls

• Perfect pipelining with no hazards an instruction
 completes every cycle (total cycles ~ num instructions)
 speedup = increase in clock speed = num pipeline stages

• With hazards and stalls, some cycles (= stall time) go by
 during which no instruction completes, and then the stalled
 instruction completes

• Total cycles = number of instructions + stall cycles

• Slowdown because of stalls = 1/ (1 + stall cycles per instr)

10

Pipelining Limits

A B C

A B C

A B C D E F

A B C D E F

Assume that there is a dependence where the final result of the
first instruction is required before starting the second instruction

Gap between indep instrs: T + Tovh

Gap between dep instrs: T + Tovh

Gap between indep instrs:
 T/3 + Tovh

Gap between dep instrs:
 T + 3Tovh

Gap between indep instrs:
 T/6 + Tovh

Gap between dep instrs:
 T + 6Tovh

11

Problem 1

• For the following code sequence, show how the instrs
 flow through the pipeline:
 ADD R3 R1, R2
 LD R7 8[R6]
 ST R9 4[R8]
 BEZ R4, [R5]

12

Problem 1

• For the following code sequence, show how the instrs
 flow through the pipeline:
 ADD R3 R1, R2
 LD R7 8[R6]
 ST R9 4[R8]
 BEZ R4, [R5]

ADD ADD ADD ADD ADD

BEZ BEZ

ST ST ST ST

LD LD LD LD LD

13

Pipeline Summary

 RR ALU DM RW

ADD R3 R1, R2 Rd R1,R2 R1+R2 -- Wr R3

BEZ R1, [R5] Rd R1, R5 -- -- --
 Compare, Set PC

LD R6 8[R3] Rd R3 R3+8 Get data Wr R6

ST R6 8[R3] Rd R3,R6 R3+8 Wr data --

14

Problem 2

• Convert this C code into equivalent RISC assembly
 instructions

 a[i] = b[i] + c[i];

15

• Convert this C code into equivalent RISC assembly
 instructions

 a[i] = b[i] + c[i];

 LD R2, [R1] # R1 has the address for variable i
 MUL R3, R2, 8 # the offset from the start of the array
 ADD R7, R3, R4 # R4 has the address of a[0]
 ADD R8, R3, R5 # R5 has the address of b[0]
 ADD R9, R3, R6 # R6 has the address of c[0]
 LD R10, [R8] # Bringing b[i]
 LD R11, [R9] # Bringing c[i]
 ADD R12, R11, R10 # Sum is in R12
 ST R12, [R7] # Putting result in a[i]

Problem 2

16

D/R

ALU

DM

RW

IF

CYC-1

D/R

ALU

DM

RW

IF

CYC-2

D/R

ALU

DM

RW

IF

CYC-3

D/R

ALU

DM

RW

IF

CYC-4

D/R

ALU

DM

RW

IF

CYC-5

D/R

ALU

DM

RW

IF

CYC-6

D/R

ALU

DM

RW

IF

CYC-7

D/R

ALU

DM

RW

IF

CYC-8

• Show the instruction occupying each stage in each cycle (no bypassing)
 if I1 is R1+R2R3 and I2 is R3+R4R5 and I3 is R7+R8R9

Problem 3

17

D/R

ALU

DM

RW

IF
I1

CYC-1

D/R
I1

ALU

DM

RW

IF
I2

CYC-2

D/R
I2

ALU
I1

DM

RW

IF
I3

CYC-3

D/R
I2

ALU

DM
I1

RW

IF
I3

CYC-4

D/R
I2

ALU

DM

RW
I1

IF
I3

CYC-5

D/R
I3

ALU
I2

DM

RW

IF
I4

CYC-6

D/R
I4

ALU
I3

DM
I2

RW

IF
I5

CYC-7

D/R

ALU

DM
I3

RW
I2

IF

CYC-8

• Show the instruction occupying each stage in each cycle (no bypassing)
 if I1 is R1+R2R3 and I2 is R3+R4R5 and I3 is R7+R8R9

Problem 3

18

Bypassing: 5-Stage Pipeline

Source: H&P textbook

19

Problem 4

D/R

ALU

DM

RW

IF

CYC-1

D/R

ALU

DM

RW

IF

CYC-2

D/R

ALU

DM

RW

IF

CYC-3

D/R

ALU

DM

RW

IF

CYC-4

D/R

ALU

DM

RW

IF

CYC-5

D/R

ALU

DM

RW

IF

CYC-6

D/R

ALU

DM

RW

IF

CYC-7

D/R

ALU

DM

RW

IF

CYC-8

• Show the instruction occupying each stage in each cycle (with bypassing)
 if I1 is R1+R2R3 and I2 is R3+R4R5 and I3 is R3+R8R9.
 Identify the input latch for each input operand.

• Show the instruction occupying each stage in each cycle (with bypassing)
 if I1 is R1+R2R3 and I2 is R3+R4R5 and I3 is R3+R8R9.
 Identify the input latch for each input operand.

D/R

ALU

DM

RW

IF
I1

CYC-1

D/R
I1

ALU

DM

RW

IF
I2

CYC-2

D/R
I2

ALU
I1

DM

RW

IF
I3

CYC-3

D/R
I3

ALU
I2

DM
I1

RW

IF
I4

CYC-4

D/R
I4

ALU
I3

DM
I2

RW
I1

IF
I5

CYC-5

D/R

ALU

DM
I3

RW
I2

IF

CYC-6

D/R

ALU

DM

RW
I3

IF

CYC-7

D/R

ALU

DM

RW

IF

CYC-8

L3 L3 L4 L3 L5 L3

Problem 4

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

