250P: Computer Systems Architecture

Lecture 3: Basics of pipelining

Anton Burtsev
January, 2019

Building a Car

Time

Building a Car

Unpipelined

The Assembly Line

Clocks and Latches

Clocks and Latches

Some Equations

- Unpipelined: time to execute one instruction = T + Tovh
- For an N -stage pipeline, time per stage $=\mathrm{T} / \mathrm{N}+$ Tovh
- Total time per instruction $=\mathrm{N}(\mathrm{T} / \mathrm{N}+\mathrm{Tovh})=\mathrm{T}+\mathrm{N}$ Tovh
- Clock cycle time $=$ T/N + Tovh
- Clock speed = 1 / (T/N + Tovh)
- Ideal speedup $=(\mathrm{T}+\mathrm{Tovh}) /(\mathrm{T} / \mathrm{N}+\mathrm{Tovh})$
- Cycles to complete one instruction $=\mathrm{N}$
- Average CPI (cycles per instr) = 1

A 5-Stage Pipeline

Time (in clock cycles)

A 5-Stage Pipeline

Use the PC to access the I-cache and increment PC by 4

A 5-Stage Pipeline

Read registers, compare registers, compute branch target; for now, assume branches take 2 cyc (there is enough work that branches can easily take more)

A 5-Stage Pipeline

ALU computation, effective address computation for load/store

A 5-Stage Pipeline

Memory access to/from data cache, stores finish in 4 cycles

A 5-Stage Pipeline

Write result of ALU computation or load into register file

RISC/CISC Loads/Stores

Thank you!

AM vs. GM

- GM of IPCs = 1 / GM of CPIs
- AM of IPCs represents thruput for a workload where each program runs sequentially for 1 cycle each; but high-IPC programs contribute more to the AM
- GM of IPCs does not represent run-time for any real workload (what does it mean to multiply instructions?); but every program's IPC contributes equally to the final measure

Speedup Vs. Percentage

- "Speedup" is a ratio = old exec time / new exec time
- "Improvement", "Increase", "Decrease" usually refer to percentage relative to the baseline = (new perf - old perf) / old perf
- A program ran in 100 seconds on my old laptop and in 70 seconds on my new laptop
- What is the speedup?
- What is the percentage increase in performance?
- What is the reduction in execution time?

